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Abstract

This work is inspired by a paper of Hertel and Pott on maximum non-linear
functions [8]. Geometrically, these functions correspond with quasi-quadrics; ob-
jects introduced in [5]. Hertel and Pott obtain a characterization of some binary
quasi-quadrics in a�ne spaces by their intersection numbers with hyperplanes
and spaces of codimension 2.
We obtain a similar characterization for quadrics in projective spaces by inter-
section numbers with low-dimensional spaces. Ferri and Tallini [7] characterized
the non-singular quadric Q(4; q) by its intersection numbers with planes and
solids. We prove a corollary of this theorem for Q(4; q) and then extend this
corollary to all quadrics in PG(n; q); n � 4. The only exceptions we get occur
for q even, where we can have an oval or an ovoid as intersection with our point
set in the non-singular part.

1 Notations and background

1.1 Polar spaces and generalized quadrangles

Polar spaces were �rst described axiomatically by Veldkamp [12]. Later on, Tits
simpli�ed Veldkamp's list of axioms and further completed the theory [11]. We recall
Tits' de�nition of polar spaces.
A polar space of rank n; n � 2, is a point set P together with a family of subsets of
P called subspaces, satisfying the following axioms.

(i) A subspace, together with the subspaces it contains, is a d-dimensional projective
space with �1 � d � n� 1 (d is called the dimension of the subspace).

(ii) The intersection of two subspaces is a subspace.
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(iii) Given a subspace V of dimension n� 1 and a point p 2 PnV , there is a unique
subspaceW of dimension n�1 such that p 2 W and V \W has dimension n�2;
W contains all points of V that are joined to p by a line (a line is a subspace of
dimension 1).

(iv) There exist two disjoint subspaces of dimension n� 1.

The �nite classical polar spaces are the following structures.

(i) The non-singular quadrics in odd dimension, Q+(2n + 1; q) and Q�(2n + 1; q),
together with the subspaces they contain, giving a polar space of rank n+1 and
n respectively. The non-singular parabolic quadrics in even dimension, Q(2n; q),
together with the subspaces they contain, giving a polar space of rank n.

(ii) The non-singular hermitian varieties in PG(2n; q2), together with the subspaces
they contain, n � 2 (respectively, PG(2n + 1; q2); n � 1), giving a polar space
of rank n (respectively, rank n+ 1).

(iii) The points of PG(2n + 1; q), together with the totally isotropic subspaces of a
non-singular symplectic polarity of PG(2n + 1; q), giving a polar space of rank
n.

By theorems of Veldkamp and Tits, all polar spaces with �nite rank at least 3 are
classi�ed. In the �nite case (i.e. the polar space has a �nite number of points), we get
the following theorem, which can be found in [11].

Theorem 1.1 A �nite polar space of rank at least 3 is classical.

Buekenhout and Shult described polar spaces as point-line geometries, and it is this
description we will use.

De�nition A Shult space is a point-line geometry S = (P;B; I), with B a non-empty
set of subsets of P of cardinality at least 2, such that the incidence relation I (which
is containment here) satis�es the following axiom. For each line L 2 B and for each
point p 2 PnL, the point p is collinear with either one or all points of the line L.

A Shult space is non-degenerate if no point is collinear with all other points. A Shult
space is linear if two distinct lines have at most one common point. Buekenhout and
Shult proved the following fundamental theorem [4].

Theorem 1.2 (i) Every non-degenerate Shult space is linear.

(ii) If S is a non-degenerate Shult space of �nite rank at least 3, and if all lines
contain at least three points, then the Shult space together with all its subspaces
is a polar space.
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A �nite generalized quadrangle (GQ) of order (s; t) is an incidence structure S =
(P;B; I) in which P and B are disjoint (non-empty) sets of objects called points and
lines respectively, and for which I is a symmetric point-line incidence relation satisfying
the following axioms.

(GQ1) Each point is incident with t+1 lines (t � 1) and two distinct points are incident
with at most one line.

(GQ2) Each line is incident with s+1 points (s � 1) and two distinct lines are incident
with at most one point.

(GQ3) If p is a point and L is a line not incident with p, then there is a unique point-line
pair (q;M) such that pIMIqIL.

A generalized quadrangle (GQ) of order (s; t) contains (s+1)(st+1) points. If s = t,
then S is also said to be of order s.
If S has a �nite number of points and if s > 1 and t > 1, then it is easy to show that
one can replace axiom (GQ1) by the following axioms.

(GQ1') No point is collinear with all points.

(GQ1") There is a point on at least two lines.

It is this alternative de�nition which we will use in our proofs.

1.2 The classical generalized quadrangles

Consider a non-singular quadric of Witt index 2, that is, of projective index 1, in
PG(3; q), PG(4; q) and PG(5; q) respectively. The points and lines of the quadric
form a generalized quadrangle which is denoted by Q+(3; q), Q(4; q) and Q�(5; q)
respectively, and of order (q; 1), (q; q) and (q; q2) respectively. Next, let H be a non-
singular hermitian variety in PG(3; q2), respectively PG(4; q2). The points and lines
of H form a generalized quadrangle H(3; q2), respectively H(4; q2), which has order
(q2; q), respectively (q2; q3). The points of PG(3; q) together with the totally isotropic
lines with respect to a symplectic polarity form a GQ, denoted W (q), of order q. The
generalized quadrangles de�ned here are the so-called classical generalized quadrangles.

De�nition A generalized quadrangle S = (P;B; I) is fully embedded in a projective
space PG(V ) if there is a map � from P (respectively B) to the set of points (respec-
tively lines) of a projective space PG(V ), V a vector space over some skew �eld (not
necessarily �nite-dimensional), such that:

(i) � is injective on points,

(ii) if x 2 P and L 2 B with xIL, then x�IL�,

(iii) the set of points x�, where x 2 P , generates PG(V ),
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(iv) every point in PG(V ) on the image of a line of the quadrangle is also the image
of a point of the quadrangle.

The following beautiful theorem is due to Buekenhout and Lef�evre [3].

Theorem 1.3 Every �nite generalized quadrangle fully embedded in projective space
is classical.

A lot of information on �nite generalized quadrangles can be found in the reference
work [9].

1.3 Other background

De�nition A blocking set with respect to t-spaces in PG(n; q) is a set B of points
such that every t-dimensional subspace of PG(n; q) meets B in at least one point.

The following result of Bose and Burton gives a nice characterization of the smallest
ones [2].

Theorem 1.4 If B is a blocking set with respect to t-spaces in PG(n; q), then jBj �
jPG(n� t; q)j and equality holds if and only if B is an (n� t)-dimensional subspace.

De�nition A k-arc of PG(2; q) is a set of k points, no three collinear. Let m(2; q)
denote the maximal size of a k-arc in PG(2; q).

We state the Bose result on the maximum size of a k-arc in PG(2; q) [1].

Theorem 1.5 If q is odd, then m(2; q) = q + 1. If q is even, then m(2; q) = q + 2.

De�nition A k-cap in PG(n; q) is a set of k points in PG(n; q), no three of which
are collinear.

The size of a k-cap in PG(3; q) is bounded. For q even in [1] and for q odd in [10].

Theorem 1.6 If K is a k-cap of PG(3; q), then k � q2 + 1 for q > 2, and k � 8 for
q = 2.

De�nition A (q2+1)-cap of PG(3; q), q > 2, is called an ovoid; an ovoid of PG(3; 2)
is a set of 5 points of PG(3; 2) no four of which are coplanar. A (q+1)-arc of PG(2; q)
is called an oval.

Lemma 1.7 Consider a set K of points in PG(4; q). Suppose all planes intersect K
in 1; q + 1 or 2q + 1 points. If K is a cap in PG(4; q), then jKj � q3 + 1.

Proof Consider a line L intersecting K in 2 points and consider all planes through L
in PG(4; q). These planes can not intersect K in 2q+1 points, by theorem 1.5. Hence,
K contains at most

(q2 + q + 1)(q � 1) + 2 = q3 + 1

points.
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1.4 Previous characterization results

We state the following result of Durante, Napolitano and Olanda [6].

Theorem 1.8 Let K be a set of points in PG(3; q), with jKj = q2+q+1, and suppose
that K contains at least two lines. Furthermore suppose that K intersects every plane
in 1, q + 1 or 2q + 1 points. Then K is a cone projecting an oval in a plane � from a
point v not in �.

Ferri and Tallini proved the following nice characterization of the parabolic quadric
Q(4; q) [7].

Theorem 1.9 A set K of points in PG(n; q), with n � 4 and jKj � q3 + q2 + q + 1,
intersecting all planes in 1, a or b points, where b � 2q + 1, and intersecting every
solid in c, c + q or c + 2q points, where c � q2 + 1, such that solids intersecting in c
and solids intersecting in c+ q points exist, is a non-singular quadric of PG(4; q).

2 A corollary of the theorem of Ferri and Tallini

We consider a set K of points in PG(4; q) intersecting every plane in 1, q+1 or 2q+1
points, and every solid in q2 + 1, q2 + q + 1 or q2 + 2q + 1 points.
We will call planes intersecting K in 1, q + 1 and 2q + 1 points respectively, small,
medium and large respectively. We will call solids intersecting K in q2 + 1, q2 + q + 1
and q2 + 2q + 1 points respectively, small, medium and large respectively.
We prove the conditions required for the characterization by Ferri and Tallini ofQ(4; q).
Consider a given solid �. We will count how many small, medium and large planes
respectively there are in �; call the number of them a, b and c respectively. Denote
the number of points of K inside � by 
. Counting the total number of planes in a
solid, the incident pairs (p; �) where p is a point of K and � a plane, and the number
of ordered triples (p; r; �) where p and r are distinct points of K lying in the plane �
respectively, yields the following equations,

a+ b+ c = (q + 1)(q2 + 1);

a+ b(q + 1) + c(2q + 1) = 
(q2 + q + 1);

bq(q + 1) + c2q(2q + 1) = 
(
 � 1)(q + 1):

We can calculate a, b and c exactly for each value of 
; later on we will only use that
c = 0 if 
 = q2 + 1, that a, b and c are all non-zero if 
 = q2 + q+ 1, and that a = 0 if

 = q2 + 2q + 1.
Note that it never occurs that two of the integers a, b and c are zero.

Lemma 2.1 Small solids intersect K in an ovoid.
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Proof Consider a small solid � and all planes through a line L inside �, where we
assume that L contains x � 2 points of K. Since a small solid contains no large planes
we get exactly

(q + 1)(q + 1� x) + x = q2 + 1

points, hence x = 2. For q = 2 we have 5 points, no four coplanar. So for all q, small
solids intersect K in an ovoid.

We �rst prove that the size assumption of theorem 1.9 is ful�lled.

Lemma 2.2 The set K contains q3 + q2 + q + 1 or q3 + q2 + 2q + 1 points.

Proof 1) If a small plane � exists, then consider all solids through � inside the 4-
dimensional space �. We obtain the following lower bound on the size of K,

jKj � 1 + (q + 1)q2 = q3 + q2 + 1:

Equality holds if and only if all solids through � are small, and small solids are ovoids.
Take a line L inside �. If L lies in a solid through �, then L contains at most 2 points
of K.
Next consider a line M not intersecting � and assume it contains a point x of K.
Consider the small solid � spanned by x and �. Inside � one can �nd a small plane
containing x. Hence, M lies in a small solid through a small plane, a case already
treated. So all lines intersect K in at most 2 points.
Hence, we would �nd a cap of size q3+ q2+1. This yields a contradiction with lemma
1.7.
So at least one solid through � is medium or large, so jKj � q3 + q2 + q + 1. In both
cases, there is a large plane. Let � be this large plane. Look at all solids through �
inside �. We get the inequality,

jKj � (q + 1)q2 + 2q + 1 = q3 + q2 + 2q + 1:

2) If no small plane exists, then all 3-spaces are large ones. In this case, we get the
following size for K:

jKj = (q + 1)q2 + 2q + 1 = q3 + q2 + 2q + 1:

Taking an arbitrary plane and looking at all solids through it learns that the number
of points in K is always 1 mod q, hence this lemma is proved.

Lemma 2.3 There exist small and medium solids.

Proof We show that for both possible values of jKj, there exist small and medium
solids. Denote the number of small, medium and large solids in the 4-dimensional
space by a, b and c respectively.
Counting the total number of solids � in a 4-dimensional space, the number of incident
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pairs (p;�) where p 2 K, and the number of ordered triples (p; r;�) where p and r
are distinct points of K incident with �, yields the following equations,

a+ b+ c =
q5 � 1

q � 1
;

(q2 + 1)a+ (q2 + q + 1)b+ (q2 + 2q + 1)c = jKj
q4 � 1

q � 1
;

(q2 + 1)q2a+ (q2 + q + 1)(q2 + q)b+ (q2 + 2q + 1)(q2 + 2q)c = jKj(jKj � 1)
q3 � 1

q � 1
:

Solving these equations yields that in both cases a 6= 0 and b 6= 0, so there exist small
and medium solids.

In our previous lemmas we have proved all the necessary conditions for theorem 1.9,
hence we have the following result.

Theorem 2.4 If a set of points K in PG(4; q) is such that it intersects all planes in
1; q+1; or 2q+1 points and all solids in q2+1; q2+ q+1 or q2+2q+1 points, then
it is a parabolic quadric Q(4; q).

3 The characterization

Consider a set of points K in PG(n; q); n � 4, that has as intersection numbers with
planes

1; q + 1; 2q + 1; q2 + q + 1

and as intersection numbers with solids

q + 1; q2 + 1; q2 + q + 1; q2 + 2q + 1; 2q2 + q + 1; q3 + q2 + q + 1:

We adopt the following terminology for the rest of this paper. We call planes and solids
that intersect the setK in i and j points respectively, i-planes and j-solids respectively.
A line containing q+1 points of the set K is called a full line, a (q2+ q+1)-plane will
be called a full plane, and a (q3 + q2 + q + 1)-solid will be called a full solid.

Lemma 3.1 A (2q2 + q + 1)-solid meets the set K in the union of two full planes.

Proof Consider a (2q2+ q+1)-solid �, a line L contained in � and look at all planes
through L inside �. Suppose that L contains x points of the set K. Then, if we
suppose that � does not contain a full plane, we �nd at most

(q + 1)(2q + 1� x) + x

points. We �nd that x � 2, but then we would have a cap of size 2q2 + q + 1 in
PG(3; q). This is impossible, hence � does contain a full plane, say �. Next consider

7



a point p in �n� belonging to � \K, and let L be a line through p in � such that L
does not lie in a full plane of �; hence L lies only in (2q + 1)-planes of �. Call x the
number of points in K \ L. Then we get the following equality,

x+ (q + 1)(2q + 1� x) = 2q2 + q + 1:

Hence, x = 2. If there is no full plane through p in �, this would mean that K =
�[fpg, which is a contradiction. Hence, we have shown that � meets K in the union
of two full planes.

Lemma 3.2 A (q + 1)-solid meets K in a full line.

Proof Since by assumption every plane is blocked, and since a (q + 1)-solid contains
only q + 1 points of K, the proof is �nished by theorem 1.4.

Lemma 3.3 If a solid � contains a full plane � and a point p 2 Kn�, then � is a
(2q2 + q + 1)-solid or a full solid.

Proof Since � already contains q2 + q + 2 points of K, we only have to prove that �
is not a (q2+2q+1)-solid. Suppose it is a q2+2q+1-solid. Consider a line N through
p inside � intersecting K in x points. Consider all planes through N inside �. They
all intersect K in at least q + 2 points and hence in at least 2q + 1 points. Counting
yields the following equality,

(q + 1)(2q + 1� x) + x = q2 + 2q + 1:

This is only possible if x = q + 1. Since N was an arbitrary line through p in �, �
would intersect K in more than q2 + 2q + 1 points, a contradiction.

Lemma 3.4 There exist full lines.

Proof If there exists a full plane or a (q+1)-solid, then we are done. So suppose that
these do not exist. Then by the previous lemmas, there is a 4-dimensional space �
whose planes are only 1-planes, (q+1)-planes and (2q+1)-planes and whose solids are
only (q2 + 1)-solids, (q2 + q + 1)-solids and (q2 + 2q + 1)-solids. But then by theorem
2.4, � meets K in a parabolic quadric Q(4; q); which contains lines.

We de�ne a point-line geometry S = (P;B; I), where the points of P are the points of
K, where the lines of B are the full lines and where incidence is containment.

Theorem 3.5 The geometry S is a Shult space.
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Proof We have already shown that there exist full lines, so B is non-empty.
The di�erent cases we consider in this proof will also show that B contains at least
two lines.
Consider a point p of S and a line L of S, such that p and L are not incident. We
prove the axiom for the incidence relation of a Shult space, and we refer to it as the
1-or-all axiom (see page 2 for the de�nition of a Shult space).
Consider the plane � generated by p and L. Since this plane contains at least q + 2
points of S, it is either a (2q + 1)-plane or a full plane. If this plane is a full plane,
then we have the all part of the 1-or-all axiom.
So suppose from now on that � is a (2q + 1)-plane. We distinguish several cases that
cover all possible situations.
1) Suppose that there exists a solid � through � containing a full plane �. If � was
a full solid, then � would be a full plane. So � either is a (q2 + 2q + 1)-solid or a
(2q2 + q + 1)-solid.
Since � 6= �, lemma 3.3 shows that � is a (2q2+q+1)-solid. By lemma 3.1, � contains
two full planes, they both intersect � in a line, hence the 1-axiom is ful�lled.
2) Suppose now that there exists a 4-space � containing � that does not contain full
planes. Since (2q2 + q + 1)-solids and full solids contain full planes, also these do not
occur in this 4-space.
a) Suppose that also no (q+1)-solids occur in �. Then we have exactly the intersection
numbers with planes and solids as required for theorem 2.4, so that S intersects � in
a parabolic quadric Q(4; q), which is a generalized quadrangle, so we have proved the
1-axiom.
b) Suppose that a (q + 1)-solid � does occur in �, and that it intersects S in a full
line M di�erent from L. Consider all planes through M in �. Then we �nd at most

q2(2q + 1� (q + 1)) + (q + 1) = q3 + q + 1

points of S in �. Consider all lines through p inside �. One of them, say N , intersects
S in exactly 2 points, otherwise � would intersect S in more than 2q + 1 points.
Consider all planes through N inside �. Since � is a (2q + 1)-plane, we �nd at least

(q2 + q)(q + 1� 2) + (2q + 1� 2) + 2 = q3 + q + 1

points. Comparing these inequalities yields that all planes of � containing M and not
contained in � are (2q+1)-planes. Hence, all solids of � di�erent from �, intersecting
� in a plane that contains M , contain

q((2q + 1)� (q + 1)) + q + 1 = q2 + q + 1

points of S. The line L and the solid � intersect in a point r. Then frg = L \M . If
M lies in �, then we have proved the 1-axiom, so suppose that M does not lie in �.
Consider the solid � generated by � and M . This solid contains at least two lines,
namely L and M , it intersects K in q2 + q + 1 points and all planes of this solid are
1-planes, (q+1)-planes or (2q+1)-planes. Theorem 1.8 gives that � intersects K in a
cone with as vertex r and base an oval. Hence, the line pr is the only line of S through
p intersecting L. We have proved the 1-axiom.
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c) The remaining case is that the (q + 1)-solids in � intersect K exactly in L. Let
� be such a (q + 1)-solid of � through L. Considering all planes through L inside �
yields as above that K intersects � in at most q3+ q+1 points. Consider a 1-plane �
contained in �, and consider all solids through � in �. Since we know the (q+1)-solids
contained in � contain L, we get at least

q(q2) + q + 1 = q3 + q + 1

points. Considering the two inequalities above learns us that they must be two equali-
ties, so there pass q (q2+1)-solids through � inside �. By lemma 2.1, all (q2+1)-solids
through � inside � intersect K in an ovoid of PG(3; q).
We consider the union of all these ovoids and add one extra point of L; hence we have
found a cap of size q(q2+1�1)+2 = q3+2 in PG(4; q), yielding a contradiction with
lemma 1.7.
Indeed, take any line N lying in � and not in �. There always exists a solid �0 through
N in � such that � = �0 \ � intersects L in a point. So �0 intersects K in an ovoid
and hence N intersects K in at most 2 points.
3) Consider now a 4-space � containing � such that no solid through � inside � con-
tains a full plane, but � does. Call this full plane �.
a) Suppose that p 2 �. Then L does not intersect �. Take a point r on L and consider
the solid �0

r
generated by r and �. By lemma 3.3, �0 is a (2q2 + q + 1)-solid or a full

solid.
If a solid �0

r
is a full solid, then r is collinear with p in S. Since � is a (2q + 1)-plane,

we have proved the 1-axiom. Suppose now that all solids �0
r
are (2q2 + q + 1)-solids.

If the full plane of �0
r
through r intersects � in a line through p, then we have again

proved the 1-axiom. Suppose that this never happens. Then all the lines pr, r 2 L,
contain only two points of S, namely p and r. But then � contains exactly q+2 points
of S, a contradiction.
b) Suppose that p =2 � and look at the solid generated by the point p and the plane
�, call it �.
Suppose that � is a full solid. Then it does not contain �. It intersects � in a line of
S, hence we have proved the 1-axiom.
If � is a (2q2 + q + 1)-solid, then it intersects K in a union of two full planes. But
then one of these planes contains p, and we are again in case 3)(a).

Theorem 3.6 If S is non-degenerate, then it is a non-singular quadric in PG(n; q); n �
4.

Proof If there exists a full plane, then S is a non-degenerate Shult space of �nite rank
at least 3, and since all lines contain at least three points by de�nition, S with all its
subspaces is a polar space. By theorem 1.1 it is a �nite classical polar space and by
looking at the intersection numbers, we see that S is a non-singular quadric.
If there exists no full plane, then the previous arguments show we have proved for S
axiom (GQ3) for generalized quadrangles. Clearly, there is a point p through which
there pass two lines of S. Hence, S is a generalized quadrangle.
By theorem 1.3, it is a classical one; going through the list of classical generalized
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quadrangles yields it is the non-singular parabolic quadric Q(4; q) or the non-singular
elliptic quadric Q�(5; q).

Suppose now that S is degenerate, so there exist points collinear with all other points.
We call such points singular points.

Lemma 3.7 The singular points of S form a subspace �k of PG(n; q).

Proof Take two singular points p and r of S and consider a point t lying on the line
L = pr. Surely, t 2 S. All points on S are collinear with t. Take a point s of S not
lying on L and consider the plane generated by s and L. This plane has to be a full
one, hence s is collinear with t.

Lemma 3.8 If S contains singular points, then all lines not intersecting the subspace
�k formed by the singular points, intersect S in 0, 1, 2 or q + 1 points.

Proof Consider a line L not intersecting �k. Take a singular point p and consider
the plane generated by p and L. Since this plane contains either 1, q + 1, 2q + 1 or
q2 + q + 1 points of S by assumption, the statement is proved.

Lemma 3.9 If n� k� 1 � 4, then S is a cone with vertex a k-dimensional space and
base a non-singular quadric.

Proof If S is degenerate, then look at a complementary space PG(n � k � 1; q) of
the space �k. By assumption, this space does not contain singular points of S. If
n � k � 1 � 4, then theorem 3.6 shows that S intersects this space in a non-singular
quadric, hence S is a cone with vertex a k-dimensional space and base a non-singular
quadric.

Now we consider all other cases one by one.
a) If n� k � 1 = �1, then S is the projective space PG(n; q).
b) If n� k � 1 = 0, then S is a hyperplane of PG(n; q).
c) If n � k � 1 = 1, then the complementary space is a line. If this line intersects K
in zero points, we have an (n� 2)-dimensional space. If it intersects K in 2 points, we
have the union of two hyperplanes.
d) If n � k � 1 = 2, then the complementary space is a plane �. Suppose that �
intersects S in q + 1 points. Since all lines intersect K \ � in 0, 1, 2 or q + 1 points,
the intersection of � and S is an oval (a line is impossible otherwise we have extra
singular points). Suppose that � intersects K in 2q + 1 points. Since � contains more
than q+2 points of K, � surely contains a line L of S. Take a point p 2 S \� outside
L. Considering all lines through p in � learns that one of them is a line of S. The
intersection of the two lines would be a singular point, this yields a contradiction.
e) If n� k � 1 = 3, then the complementary space is a solid �.
If this solid intersects S in q2 + 1 points, it intersects S in an ovoid.
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If this solid intersects S in q2 + q + 1 points, it surely contains a line L of S. Take
a point p on S, p =2 L, inside �. Then the plane generated by p and L intersects
S in two lines, as before. Hence, � contains at least two lines. Theorem 1.8 learns
that S intersects � in a cone with vertex a point p and base an oval. This yields a
contradiction, since the point p is then a singular point of S.
Suppose � intersects S in q2+2q+1 points. By lemma 3.3, we may assume � intersects
all planes in 1; q + 1 or 2q + 1 points. Again we surely have lines of S lying in S \ �.
Consider a point p of S \ � and a line L of S, with p =2 L. The plane � generated by
them is a (2q + 1)-plane and the intersection sizes of lines immediately prove axiom
(GQ3) for generalized quadrangles. By assumption, there is no point of S in � collinear
with all other points of � \ S.
So S \ � is a generalized quadrangle. Again by theorem 1.3, it is a classical one and
hence it is Q+(3; q).
If � intersects S in 2q2+q+1 points, then, by lemma 3.1, we get extra singular points,
this yields a contradiction.
Now we can state our main theorem.

Theorem 3.10 If a set of points K in PG(n; q); n � 4, intersects planes and solids
in the same number of points as quadrics, then K is either

(i) The projective space PG(n; q),

(ii) A hyperplane in PG(n; q),

(iii) A quadric in PG(n; q).

(iv) If q is even, it can also be a

(iv.1) A cone with vertex an (n� 3)-dimensional space and base an oval.

(iv.2) A cone with vertex an (n� 4)-dimensional space and base an ovoid.
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