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1 Introduction

Generalized polygons were introduced in 1959 by Jacques Tits in the appendix
of [7]. Since then, they play a central role in incidence geometry. The gen-
eralized 3-gons were already well studied objects under the name projective
planes. Generalized 4-gons, or generalized quadrangles, have been intensively
studied in connection with various mathematical objects such as flocks of cones,
hyperovals, extremal graphs, isoparametric hypersurfaces with four principal
curvatures, etc. Also generalized 6-gons, generalized hexagons, seem to have a
lot of connections, for instance with perfect codes, two-character sets in projec-
tive spaces, geometric hyperplanes in dual polar spaces, etc. In general, there is
a strong interplay between generalized polygons and simple groups. Therefore,
a classification of generalized polygons would be a very useful tool in a lot of
problems. However, this is not feasible because of a free construction method
of Tits [8].

In the finite case, there is more hope, but the existence of the many classes
of finite projective planes does not feed the hope for a general classification.
However, in the ‘small’ cases, there is a classification: projective planes with
no more than 132 points are all known. Similarly, generalized quadrangles with
at most 4 points per line are known, and so are the generalized quadrangles
with exactly 5 points per line and 5 lines per point (a generalized polygon with
s + 1 points per line and t + 1 lines per point is said to have order (s, t)). All
generalized hexagons of order (2, 2), (2, 8) and (8, 2) are known. For generalized
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8-gons, i.e. generalized octagons, there is no classification for any feasible order.
Due to a result of Feit & Higman [5] a generalized n-gon with order (s, t), with
s, t ≥ 2 (the thick case), only exists for n ∈ {3, 4, 6, 8}, and due to a result of
Tits, see Theorem 1.6.2 of [9], all other finite generalized n-gons (which are then
called weak) arise in a certain well defined way from thick ones. Currently, the
most important open problems concerning classification of generalized polygons
with small order are these concerning generalized hexagons with order (3, 3) and
generalized octagons with order (2, 4) and (4, 2).

In the present paper we consider generalized hexagons with order (3, 3).
The only known example, denoted H(3) and called the split Cayley hexagon of
order 3, has a lot of substructures that are generalized hexagons of order (1, 3)
and (3, 1) (to be more precise, there are 378 subhexagons with order (1, 3) and
378 subhexagons with order (3, 1)). We will show that the existence of at least
one such substructure in any generalized hexagon with order 3 forces it to be
isomorphic to H(3). Obviously, for duality reasons, it is enough to consider the
case of a subhexagon with order (1, 3).

Main Theorem. Let Γ be an arbitrary generalized hexagon with order 3 con-
taining a subhexagon of order (1, 3). Then Γ ∼= H(3), the split Cayley hexagon
of order 3.

2 Preliminaries

A point-line geometry Γ is a structure consisting of points and lines and an
incidence relation telling which points and lines are incident with each other
(which points “lie” on which lines, or which lines “go through” which points).
The incidence graph is the bipartite graph on the points and lines where adja-
cency is incidence. This graph induces a distance between the elements of Γ.
An example of a point-line geometry is a projective plane, and we refer to [6]
for basic notions and terminology concerning projective planes. A generalized
hexagon is a point-line geometry Γ such that its incidence graph has diameter
6 and girth 12. Easy examples of generalized hexagons are the doubles of the
projective planes defined as follows. Let P be a projective plane and let Γ be
the geometry with point set the set of points and lines of P, with line set the set
of flags of P (a flag in any point-line geometry is an incident point-line pair),
and with natural incidence relation, then Γ is called the double of P and is a
generalized hexagon.

Interchanging the roles of points and lines in a point-line geometry gives
rise to another (possibly isomorphic) point-line geometry called the dual of the
original one. The dual of a generalized hexagon is again a generalized hexagon.

If in a generalized hexagon Γ every line is incident with a constant number of
points, say s+1, and every point is incident with a constant number of lines, say
t+ 1, then (s, t) is said to be the order of Γ. Generalized hexagons without an
order arise from other generalized polygons (with an order) in a well understood
way, by a result of Tits, see [9, Theorem 1.6.2]. Any generalized hexagon of order
(1, t) is isomorphic to the double of a projective plane of order t. If a generalized
hexagon has order (s, s), then we also say that it has order s.

As mentioned above, there is a distance map on the set of points and lines
which measures distances in the incidence graph. Elements at mutual distance 6
(i.e. maximal distance) in a generalized hexagon are called opposite.
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A point-regulus in a generalized hexagon Γ is the set of all points that are at
distance 3 from two given opposite lines L,M . Dually, one defines a line-regulus.
A subhexagon Γ′ of a generalized hexagon Γ is the point-line geometry induced
on subsets of the point set and the line set, that is again a generalized hexagon.

Finite generalized hexagons seem to be rare. Every known generalized
hexagon of order s is isomorphic to a so-called split Cayley Hexagon H(s) or its
dual, where s is a prime power. We will not give a precise definition (and refer
to [7] or [9]), but content ourselves with mentioning the following characteriza-
tion, see [4]. If a generalized hexagon Γ of order s contains a subhexagon Γ′

of order (1, s) such that Γ′ is the double of a classical Desarguesian projective
plane P, and if every collineation of P in the little projective group is induced
by a collineation of Γ stabilizing Γ′, then Γ ∼= H(s). We will use this charac-
terization for s = 3, in which case the little projective group of the projective
plane coincides with the full collineation group.

From now on, let Γ be an arbitrary generalized hexagon of order 3 containing
a subhexagon Γ′ of order (1, 3). As described above, Γ′ is the double 2P of the
unique projective plane P of order 3. For every object X defined in Γ′, we will
denote the corresponding object in P by X. For example, if L is a line of Γ′,
then L is the corresponding flag of P.

3 An interesting subgeometry

We start our investigation by considering the following interesting subgeometry
of Γ.

Definition 3.1. Let ∆ be the subgeometry of Γ consisting of all lines contained
in Γ but not in Γ′ and of all points of Γ which do not lie on a line of Γ′. It is
easily checked that ∆ contains 234 points and 312 lines.

Lemma 3.2. For every line L of ∆, there is a unique line π(L) of Γ′ meeting
L. In particular, every line of ∆ contains exactly 3 points of ∆.

Proof. For every line M of Γ′, there are 2 · 3 = 6 lines of ∆ meeting M , and no
line of ∆ can meet more than one line of Γ′. Hence there are exactly 6 ·52 = 312
lines of ∆ meeting a (unique) line of Γ′. Since ∆ contains exactly 364−52 = 312
lines, the result follows.

Lemma 3.3. ∆ is a connected geometry.

Proof. This follows from the main result of [1], but a direct combinatorial proof
goes as follows.

Let ∆0 be any connected component of ∆. Let x ∈ ∆0 be arbitrary. For
every y ∈ ∆0 at distance 2 or 4 (in the incidence graph), there is exactly one
path from x to y, whereas for every y ∈ ∆0 at distance 6, there are at most four
paths from x to y. (We do not care about the points at distance > 6.) Since
every line of ∆ contains exactly 3 points and every point of ∆ is contained in
exactly 4 lines, we can give a lower bound for the number s0 of points of ∆0:

s0 ≥ 1 + 4 · 2 + 4 · 2 · 3 · 2 + 4 · 2 · 3 · 2 · 3 · 2/4 = 129 ,

which is more than half the number of points of ∆. Hence there can be only
one connected component, and ∆ is connected.
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The map π of Lemma 3.2 induces a map π from the set of lines of ∆ to the
set F of flags of P. Since every point of ∆ is contained in 4 lines of ∆, the map
π induces a map from the set of points of ∆ to the set of 4-subsets of F , which
we will also denote by π. Finally, let L be a line of ∆, then L contains 3 points
p1, p2, p3 of ∆, and we define τ(L) := π(p1)∪ π(p2)∪ π(p3); this gives us a map
τ from the set of lines of ∆ to the set of 10-subsets of F . Following [4], we
call the set S(L) := τ(L) \ {π(L)} a sphere with center π(L). More generally, a
sphere with center C is a set of lines of Γ′, all opposite C, partitioning the set
of points of Γ′ at distance 5 from C. It is easy to see that the center of a sphere
is unique.

Lemma 3.4. (i) Let p be a point of ∆, and let F1, F2 ∈ π(p) with F1 �= F2.
Then dF (F1, F2) = 3, i.e. F1 and F2 are opposite flags.

(ii) Let L be a line of ∆, and let F1, F2 ∈ τ (L) with F1 �= F2. Then dF(F1, F2) ≥
2, i.e. F1 and F2 do not have a point or a line in common.

(iii) Let L1 and L2 be two lines of ∆ intersecting in a point not in ∆, and let
F1 ∈ S(L1) and F2 ∈ S(L2). Then dF (F1, F2) ≥ 1, i.e. F1 �= F2.

(iv) Let L1 and L2 be two lines of ∆ intersecting in a point p of ∆, and let
F1 ∈ S(L1) \ π(p) and F2 ∈ S(L2) \ π(p). Then dF (F1, F2) ≥ 1, i.e.
F1 �= F2.

Proof. This follows from the fact that d(π(L1), π(L2)) = 2dF (π(L1), π(L2)) for
all lines L1, L2 of ∆, and the fact that Γ does not contain k-gons for k ≤ 5.

Remark 3.5. By Lemma 3.4.(i), the best way to visualize S(L) is as follows.
Let π(L) = (q,M), then we can consider M as a “line at infinity” of P, and q
is then a given “parallel class”. So all flags of S(L) are in fact flags of an affine
plane of order 3 in which one of the parallel classes is missing, i.e. a net of order
3 and degree 3. We will denote this net by N(q,M).

4 Classical and quadrangular points and lines

The definitions of classical and quadrangular points and lines which we will now
introduce, will be of great importance. As will become clear from Theorem 4.7
below, it will allow us to divide the problem into two cases.

Definition 4.1. Let p be a point of ∆; then we say that p is classical if the
lines of the four flags of π(p) are concurrent and their points are collinear. Let
L be a line of ∆; then we say that L is classical if the three points of ∆ on L
are classical.

Definition 4.2. Let p be a point of ∆; then we say that p is quadrangular if
no three of the points of the four flags of π(p) are collinear. By a slight abuse
of terminology, we will say that the set π(p) is a complete quadrilateral of P.
Let L be a line of ∆; then we say that L is quadrangular if the three points of
∆ on L are quadrangular.

Definition 4.3. Let L be a line of ∆, and let F = (q,M) := π(L). Suppose
that, for each point z onM different from p, there is a line Tz through q (different
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from M) such that every flag of τ (L) having its line through z has its point on
Tz. Then the set τ (L) will be called regular, and again following [4], the sphere
S(L) will be called a regulus sphere.

Lemma 4.4. Let L be a line of ∆. Then τ(L) is regular if and only if L is
classical or L is quadrangular.

Proof. This is easy to check using Remark 3.5.

Lemma 4.5. Let p be a point of ∆ and let L be a line through p. Then

(i) p is classical if and only if L is classical;

(ii) p is quadrangular if and only if L is quadrangular.

Proof. Let L = {p, p2, p3, p4} and let F = (q,M) := π(L). Then by Lemma
3.4.(i), for each point r of P not on M , there is exactly one line N through r
not through q such that (r,N) ∈ τ (L).

(i) Suppose that p is classical; then there is a line T through q different from
M , and a point z on M different from q, such that each flag of π(p) has its
point on T and its line through z. Let M = {q, z, a, b}, then the remaining
6 points of P (not on M and not on T ) have their corresponding line
through a or b. It is easily checked (using N(q,M)) that the choice of one
of these 6 flags completely determines the other (using Lemma 3.4.(ii)),
and that τ(L) is regular. Since L contains a classical point, it cannot be
quadrangular, and it follows from Lemma 4.4 that L is classical.

(ii) Suppose that p is quadrangular. Let M = {q, a, b, c}, then every flag of
S(L) has its point not on M , and its line through a, b or c; moreover,
the three flags of π(p) different from π(L) have their points on the three
different lines through p (different from M) and their lines through a
different point of {a, b, c}. In this case, all the other 6 flags are already
completely determined by Lemma 3.4.(ii), and it turns out that τ (L) is
regular. Since L contains a quadrangular point, it cannot be classical, and
it follows from Lemma 4.4 that L is quadrangular.

Lemma 4.6. Let p be a point not in Γ′, but lying on a line of Γ′. Then at least
one of the three lines of ∆ through p has a regular image under τ .

Proof. Denote the three lines of ∆ through p by L1, L2 and L3. Then it is clear
that π(L1) = π(L2) = π(L3); denote this flag by F = (q,M), and consider the
corresponding net N := N(q,M). By Lemma 3.4.(iii), S(L1) ∪ S(L2) ∪ S(L3)
consists of 27 different flags of N, hence every flag of N occurs in the image
under S of some of these three lines. In particular, it follows from Lemma 3.4
that through every point r of N and every i ∈ {1, 2, 3}, there is exactly one line
J i

r such that (r, J i
r) ∈ S(Li).

Now suppose that τ (L1) is not regular. Choose three points which are two
by two non-collinear in N; since τ(L1) is not regular, one of the directions occurs
twice in the flags of τ (L1) containing these three points, and another direction
occurs once. Starting from these data, τ (L1) can be completed in only two
different ways, and in both cases, τ (L2) and τ (L3) are uniquely determined (up
to switching them). It turns out that either τ(L2) or τ (L3) is regular.
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Theorem 4.7. Either all points of ∆ are classical, or all points of ∆ are quad-
rangular.

Proof. By Lemma 4.6, there exists at least one line L in ∆ for which τ(L) is
regular. By Lemma 4.4, L is either classical or quadrangular. So by Lemma
4.5, there exist points in ∆ which are classical or quadrangular. But again by
Lemma 4.5 and using the fact that ∆ is connected by Lemma 3.3, it follows
that either all points of ∆ are classical, or all points of ∆ are quadrangular.

We now investigate which of the two cases of Theorem 4.7 occurs for the
split Cayley hexagon H(3). Somewhat surprisingly, we will then invoke this
result in Theorem 4.9 precisely to show that the other case can never occur.

Theorem 4.8. If Γ ∼= H(3), then all points of ∆ are classical. Moreover, S is
a bijection between the set of lines of ∆ and the set of regulus spheres of Γ′.

Proof. Suppose that Γ = H(3), let p be an arbitrary point of ∆, and let
L1, . . . , L4 be the four lines through p. By [9, 2.4.15] and [9, 1.9.17], Γ is
distance-3-regular, i.e. every line-regulus is completely determined by 2 of its
lines. Observe that π(L1) and π(L2) are opposite; let q and r be the two points
of Γ′ lying at distance 3 from both π(L1) and π(L2). Then the regulus deter-
mined by q and r and the regulus determined by p and r have the lines π(L1)
and π(L2) in common, hence they must be equal; denote the two remaining
lines of this regulus by M and N . Then M and N lie in Γ′, and lie at distance
3 from p; it follows that {M,N} = {π(L3), π(L4)}. We conclude that q and r
both lie at distance 3 from the four lines π(L1), . . . , π(L4).

We may assume that q corresponds to a point pq of P and that r corresponds
to a line Lq of P. Then it follows that the flags π(L1), . . . , π(L4) all have their
lines through pq and their points on Lq, so the point p is classical.

In order to show that S is a bijection between the set of lines of ∆ and the
set of regulus spheres of Γ′, it is sufficient to show that S is surjective, since ∆
contains 312 lines, and since there are exactly 312 regulus spheres in P. In fact,
every regulus sphere S with center (q,M) can be uniquely represented by the
set of three antiflags (z, Tz) as in Definition 4.3, where z ∈ M and Tz � q. For
every flag (q,M) of P, there are hence 6 regulus spheres with center (q,M).

We will now show that the automorphism group of P acts transitively on
the set of regulus spheres. Since every automorphism of P extends to an auto-
morphism of H(3), it will follow that every regulus sphere of P occurs in the
image of ∆ under S.

Since Aut(P) is flag-transitive, it suffices to show that every regulus sphere
with center (q,M) can be mapped onto every other regulus sphere with the
same center. Moreover, because of the description we just gave, it is sufficient to
show that every set of three antiflags {(x1, X1), (x2, X2), (x3, X3)} with xi ∈M
and Xi � q can be mapped onto the set {(xσ(1), X1), (xσ(2), X2), (xσ(3), X3)}
for every permutation σ of the set {1, 2, 3}, by an element of Aut(P) which
fixes the flag (q,M). But any non-trivial homology with center q and an ar-
bitrary axis through x3 different from M maps {(x1, X1), (x2, X2), (x3, X3)} to
{(x2, X1), (x1, X2), (x3, X3)}, and hence every possible set of three such anti-
flags can be obtained by applying a sequence of such homologies, and we are
done.

Theorem 4.9. All points of ∆ are classical.
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Proof. Assume that not all points of ∆ are classical; by Theorem 4.7, it then
follows that all points of ∆ are quadrangular. We will show that this would
imply that Γ ∼= H(3) after all, which would contradict Theorem 4.8.

We start by showing that every point p of ∆ is uniquely determined by its
image π(p). Let L be a line of ∆, and let p1, p2 and p3 be the points of ∆ on
L. Then the 3 sets π(pi) all contain the flag π(L) = (q,M); let N := N(q,M).
Observe that the 3 sets π(pi) are translates of each other, with axis M and
center q. Hence it is natural to define a “collinearity relation” on the set of
complete quadrilaterals in P, by calling two complete quadrilaterals collinear if
and only if they have a unique flag (x,X) in common, and they can be mapped
onto each other by a translation with axis X and center x. We will denote this
relation by ∼. It is clear that this relation has the property that if π(r) ∼ Q
for some point r of ∆ and some complete quadrilateral Q of P, then there is a
unique point s of ∆ collinear with r such that Q = π(y).

We claim that the graph Σ of the relation ∼ is connected. Indeed, suppose
it is not. Clearly, Aut(P) acts faithfully and vertex-transitively on Σ. Hence
the stablizer S in Aut(P) of one of the connected components of Σ is a proper
subgroup of Aut(P) and therefore S is contained in a maximal subgroup T of
Aut(P). Hence T is either a point stabilizer, a line stabilizer, the stabilizer of
a conic, or a Singer group; see, for example, [3, p. 13]. The first two cases are
impossible since S does not fix a point or a line, and the last two cases are
impossible since they do not contain translations (whereas S does). Hence we
obtain a contradiction, and Σ is connected.

It thus follows from the property just mentioned that every complete quadri-
lateral of P occurs in the image of π. Since there are exactly 234 complete
quadrilaterals in P, and since ∆ has 234 points, the map π is a bijection be-
tween the points of ∆ and the complete quadrilaterals in P, which preserves
collinearity.

Now let φ be an arbitrary automorphism of P, then φ induces an automor-
phism of Γ′. Since φ maps complete quadrilaterals onto complete quadrilaterals,
it also induces a bijection from ∆ to itself. Since π and φ obviously commute, it
follows that φ induces an automorphism of Γ. Hence every automorphism of P
is induced (via Γ′) by an automorphism of Γ. It follows from the Main Result
in [4] that Γ ∼= H(3), and we have obtained our required contradiction.

5 Proof of the Main Theorem

We finally come to the proof of our Main Theorem. We need one additional
little lemma.

Lemma 5.1. Let p be a (classical) point of ∆, let π(p) = {N1, . . . , N4}, and let
S1 be a regulus sphere with center N1 such that π(p) ⊂ S1 ∪N1. Then there is a
unique regulus sphere S2 with center N2 such that (S1 ∪N1)∩ (S2 ∪N2) = π(p).

Proof. This is easily checked by reasoning in P.

Theorem 5.2. Γ ∼= H(3).

Proof. We will explicitly construct an isomorphism ψ from the line set of Γ to
the line set of H(3). Note that Γ and H(3) both contain a subhexagon of order
(1, 3), which we denote by Γ′ and H(3)′, respectively; let α be an arbitrary
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isomorphism from Γ′ to H(3)′. The subgeometries “∆” of Γ and H(3) will be
denoted by ∆Γ and ∆H(3), respectively.

For every line L of Γ′, we define ψ(L) := α(L). If L is an arbitrary line of
∆Γ, then it follows from Theorem 4.9 that S(L) is a regulus sphere, and hence
α(S(L)) is a regulus sphere as well. It thus follows from Theorem 4.8 that there
is a unique line M of ∆H(3) such that S(M) = α(S(L)); let ψ(L) := M . In this
way, ψ is a well-defined map from the line set of Γ to the line set of H(3). Note
that we do not yet know whether this map is a bijection.

We now show that ψ maps concurrent different lines to concurrent different
lines. So let L1 �= L2 be two concurrent lines of Γ. If L1 and L2 are both lines
of Γ′, then it is obvious that ψ(L1) and ψ(L2) are also different and concurrent.
If L1 is a line of ∆Γ and L2 is a line of Γ′, then L2 must be the line π(L1).
Since S(ψ(L1)) = α(S(L1)) and since the center of a sphere is unique, we also
have π(ψ(L1)) = α(π(L1)) = α(L2) = ψ(L2), and therefore ψ(L1) and ψ(L2)
are different and concurrent.

So we may assume that both L1 and L2 are two different concurrent lines
of ∆Γ. Suppose first that L1 and L2 intersect in a point p not in ∆Γ, and let
L3 be the third line of ∆Γ through p. The spheres S(Li) are regulus spheres,
and have the same center; moreover, they do not have a flag in common, by
Lemma 3.4.(iii). It follows that, up to a possible switch of L2 and L3, S(L2)
and S(L3) are uniquely determined by S(L1), in the sense that they are the
only two regulus spheres with the same center of S(L1) such that no two of the
spheres S(L1), S(L2) and S(L3) have a line in common. Therefore, α(S(L2))
and α(S(L3)) are uniquely determined by α(S(L1)) as well, in the same sense.
Now let M1 := ψ(L1), and let M2 and M3 be the two remaining lines through
the unique point of M1 not in ∆H(3). Then the same argument holds for M1,
M2 and M3, and since S(M1) = α(S(L1)), we can conclude that, possibly
after switching M2 and M3, S(M2) = α(S(L2)) and S(M3) = α(S(L3)). In
particular, S(M2) = S(ψ(L2)), so it follows from Theorem 4.8 thatM2 = ψ(L2),
and we conclude that ψ(L1) and ψ(L2) intersect, in a point not in ∆H(3).

Suppose finally that L1 and L2 intersect in a point p of ∆Γ. Let L3 and L4

be the two remaining lines through p; then π(p) = {π(L1), . . . , π(L4)}. Observe
that S(ψ(L1)) = α(S(L1)) is a regulus sphere with center α(π(L1)) and that
S(ψ(L2)) = α(S(L2)) is a regulus sphere with center α(π(L2)); moreover, it
follows from Lemma 3.4.(iii) that these two spheres cannot have any other line
in common than those of π(p). Let q be the unique point on ψ(L1) such that
π(q) = α(π(p)) = {α(π(L1)), . . . , α(π(L4))}. Then there is a unique line M
through q — which is different from ψ(L1) — such that π(M) = α(π(L2)),
and hence S(M) is a regulus sphere with center α(π(L2)); moreover, by Lemma
3.4.(iii), S(M) and S(ψ(L1)) cannot have any other line in common than those
of π(q). It therefore follows from Lemma 5.1 that S(M) = S(ψ(L2)), and hence,
by Theorem 4.8, M = ψ(L2) so that ψ(L1) and ψ(L2) do indeed intersect in a
single point.

We finally show that ψ is a bijection. Suppose not, then there exist two
different lines L1 and L2 in Γ such that ψ(L1) = ψ(L2); then L1 and L2 must
both be lines of ∆Γ. We already know that L1 and L2 are not concurrent. On
the other hand, it follows from ψ(L1) = ψ(L2) that α(π(L1)) = π(ψ(L1)) =
π(ψ(L2)) = α(π(L2)), and hence π(L1) = π(L2); this line intersects both L1

and L2. In particular, we have shown that any two lines which have the same
image under ψ, have a common intersection line which does not belong to ∆Γ.
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Now let M1 be an arbitrary line of ∆Γ intersecting L1 in a point of ∆Γ. Then
π(M1) is the only line of Γ intersecting M1 which does not belong to ∆Γ. Let
q1, q2 and q3 be the three points of ∆Γ on L2. Note that these three points lie at
distance 5 from M1, and that every line through one of these points belongs to
∆Γ. For each i ∈ {1, 2, 3}, there is a unique line Ni at distance 2 from M1 and
at distance 3 from qi. Since the three lines Ni must all be different (otherwise k-
gons with k < 6 would occur), at least one of these lines is different from π(M1),
and hence belongs to ∆Γ. Without loss of generality, we may assume that N1

belongs to ∆Γ; let R be the unique line through q1 intersecting N1. Hence we
have constructed a sequence of lines (L1,M1, N1, R, L2) which all belong to ∆Γ,
and such that any two subsequent lines of this sequence intersect in a point
(which might or might not belong to ∆Γ). The only two lines in this sequence
which have the same image under ψ are L1 and L2, since otherwise, the existence
of a common intersection line which does not belong to ∆Γ would result in a
k-gon with k < 6. Hence (ψ(L1), ψ(M1), ψ(N1), ψ(R), ψ(L2)) is a sequence of
lines in ∆H(3) in which the first and the last line coincide, but no other 2 lines
coincide. This can only be possible if all these lines intersect in a common point
r. But now let M2 be a line of ∆Γ different from M1 and N1, going through
the intersection point of M1 and N1. Then ψ(M2) intersects both ψ(M1) and
ψ(N1), and hence goes through r. But there are only four lines through r, and
hence ψ(M2) has to coincide with one of the lines ψ(L1) = ψ(L2), ψ(M1), ψ(N1)
or ψ(R). In each case, the existence of a common intersection line which does
not belong to ∆Γ results in a k-gon with k < 6.

With this contradiction, we conclude that ψ must be a bijection, and since it
maps intersecting lines onto intersecting lines, it induces an isomorphism from
Γ to H(3), which finishes the proof of this theorem.
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Études Sci. Publ. Math. 2 (1959), 13–60.

[8] J. Tits: Endliche Spiegelungsgruppen, die als Weylgruppen auftreten,
Invent. Math. 43 (1977), 283–295.

[9] H. Van Maldeghem: “Generalized Polygons”, Monographs in Mathe-
matics 93, Birkhaüser Verlag, Basel/Boston/Berlin, 1998.

Tom De Medts and Hendrik Van Maldeghem
Department of Pure Mathematics and Computer Algebra, Ghent University
Krijgslaan 281, S22, B-9000 Gent, Belgium
e-mail: {tdemedts,hvm}@cage.UGent.be

10


