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Abstract

Cameron-Liebler line classes are sets of lines in PG(3,¢) that contain a fixed
number x of lines of every spread. Cameron and Liebler classified Cameron-Liebler
line classes for = € {0,1,2,¢®> — 1,¢%,¢*> + 1} and conjectured that no others exist.
This conjecture was disproven by Drudge for ¢ = 3 [8] and his counterexample
was generalised to a counterexample for any odd ¢ by Bruen and Drudge [4]. A
counterexample for ¢ even was found by Govaerts and Penttila [9]. Non-existence
results on Cameron-Liebler line classes were found for different values of z. In
this paper, we improve the non-existence results on Cameron-Liebler line classes
of Govaerts and Storme [11], for ¢ not a prime. We prove the non-existence of

q

Cameron-Liebler line classes for 3 <z < 7.

1 Introduction

Cameron-Liebler line classes were introduced by Cameron and Liebler [5] in an attempt
to classify collineation groups of PG(n,q) that have equally many point orbits and line
orbits. In their paper, they conjectured which groups these are. It is now known [2] that
the conjecture is true when the group is irreducible, but there is no classification yet of
Cameron-Liebler line classes. In this paper, new non-existence results are presented.

There are many equivalent definitions for Cameron-Liebler line classes. Following
Penttila [15], a clique in PG(3, q) is either the set of all lines through a point P, denoted
by star(P), or dually the set of all lines in a plane 7, denoted by line(w). The planar pencil
of lines in a plane 7 through a point P is denoted by pen(P, 7).

Definition 1.1 (Cameron and Liebler [5], Penttila [15]) Let £ be a set of lines in
PG(3,q) and let x. be its characteristic function. Then L is called a Cameron-Liebler
line class if one of the following equivalent conditions is satisfied.

*The research of the second author is supported by a research grant of the Research council of Ghent
University.
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1. There exists an integer = such that |[£ N S| = z for all spreads S.
2. There exists an integer z such that for every incident point-plane pair (P, )

|star(P) N L| + |line(m) N L] = x + (¢ + 1)|pen(P, ) N L|. (1)
3. There exists an integer z such that for every line [ of PG(3, q)
{m € L :m meets [,m # 1} = (¢ + D+ (¢° — 1)xc(0). (2)

The parameter x is called the parameter of the Cameron-Liebler line class. We note
that the first definition implies that = € {0,1,2,...,¢* + 1}. Cameron and Liebler [5]
showed that a Cameron-Liebler line class of parameter = consists of x(¢* + ¢ + 1) lines
and that the only Cameron-Liebler line classes for x = 1 are the cliques, i.e., all lines
through a point or all lines in a plane, and for x = 2 the unions of two disjoint cliques.
They also noted that the complement of a Cameron-Liebler line class with parameter
x is a Cameron-Liebler line class with parameter ¢> + 1 — 2. So, it suffices to study
Cameron-Liebler line classes with parameter < [(¢* + 1)/2]. Thus, the case ¢ = 2
was immediately solved. In their paper, Cameron and Liebler conjectured that no other
Cameron-Liebler line classes exist.

Penttila [15] shows that for ¢ # 2 there exist no Cameron-Liebler line classes with
parameter x = 3 or x = 4, with possible exception of the cases (z,q) € {(4,3),(4,4)}.
Bruen and Drudge [3] prove the non-existence of Cameron-Liebler line classes with para-
meter 2 < z < ,/g. Drudge [8] excludes the existence of a Cameron-Liebler line class with
parameter z = 4 in PG(3,3), and proves that for ¢ # 2 there exist no Cameron-Liebler
line classes with parameter 2 < x < €, where ¢ + 1 + € denotes the size of the smallest
nontrivial blocking sets in PG(2, ¢). He also gives a counterexample to the conjecture of
Cameron and Liebler: a Cameron-Liebler line class with parameter x = 5 in PG(3,3), in
this way settling the case ¢ = 3. Bruen and Drudge [4] then construct a Cameron-Liebler
line class with parameter z = (¢ + 1)/2 for any odd ¢. In [9], Govaerts and Penttila
completed the study of the case x = 4 by showing that there exists no Cameron-Liebler
line class with parameter x = 4 in PG(3,4). In [9], Govaerts and Penttila also disproved
the conjecture of Cameron and Liebler for ¢ even by showing the existence of a Cameron-
Liebler line class with parameter z = 7 in PG(3,4).

In this paper, new bounds on x for the non-existence of Cameron-Liebler line classes
with parameter x are obtained. We improve the results of Govaerts and Storme for ¢ not
prime. They proved the following two theorems and corollary [11].

Theorem 1.2 In PG(3,q), q prime, ¢ > 2, there exist no Cameron-Liebler line classes
with parameter 2 < x < q.

Theorem 1.3 (1) In PG(3,q), q square, there exist no Cameron-Liebler line classes with
parameter 2 < x < min(€', ¢**), where ¢+1+¢ denotes the size of the smallest nontrivial
blocking sets in PG(2,q) not containing a Baer subplane.

(2) Let ¢ = p*", p > 7 prime, h > 1 odd, and let ¢ + 1 + ¢’ denote the size of the
smallest nontrivial blocking sets in PG(2,q) containing neither a minimal blocking set of

2
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size q+p*"+1, nor one of size q+p*"+p"+1. In PG(3,q), there exist no Cameron-Liebler
line classes with parameter 2 < x < min(e”, ¢°/%).

(3) Let ¢ = p*", p > 7 prime, h > 1 even, and let ¢ + 1+ €’ denote the size of the
smallest nontrivial blocking sets in PG(2,q) containing neither a Baer subplane, nor a
minimal blocking set of size q + p** + 1, nor one of size ¢ + p** + p" + 1. In PG(3,q),
there exist no Cameron-Licbler line classes with parameter 2 < x < min(¢”, ¢*/*).

Corollary 1.4 (1) Let q be a square, ¢ = p", p prime.

1. If ¢ > 16, then there exist no Cameron-Liebler line classes in PG(3,q) with para-
meter 2 < x < ¢,¢*3, where ¢, equals 27Y/% when p € {2,3} and 1 when p > 5.

2. If p > 3 and h = 2, then there exist no Cameron-Liebler line classes in PG(3,q)
with parameter 2 < x < ¢*/*.

(2) Let ¢ = p®, p > 7 prime, then there exist no Cameron-Liebler line classes in
PG(3, q) with parameter 2 < x < ¢°/%.

(3) Let ¢ = p% p > T prime, then there exist no Cameron-Liebler line classes in
PG(3,q) with parameter 2 < x < ¢/*.

We improve these results for ¢ not prime. Theorem 4.2 gives a new improved bound
for general q # 2, ¢ not prime.

This theorem will be proven by studying how the lines of the Cameron-Liebler line class
with parameter x correspond with z-tight sets on QT (5, q) and {z(¢*+q+1),x(q+1);5, q}-
minihypers contained in the Klein quadric Q*(5,¢). Using properties of the associated
{z(¢* +q+1),z(q+1); 5, ¢}-minihyper combined with the fact that this minihyper lives
on Q7 (5,¢), gives us new non-existence results on Cameron-Liebler line classes.

2 Definitions and preliminary results

Let vn,y1 = (¢"™' —1)/(q¢ — 1) denote the number of points of PG(n, q).
An i-tight set of a finite generalised quadrangle was introduced by Payne [13, 14] and
was generalised to polar spaces of higher rank by Drudge [7].

Definition 2.1 A set of points 7 of a finite polar space of rank r» > 2 over a finite field
of order q is i-tight if

Z'qT71*1
1 —
|P ﬂ Tl = iqrq_llfl

q—1

+q¢ ' fPeT
it P T.

This definition poses restrictions on the intersection of a hyperplane with a point set.
This has a lot in common with the concept of the minihypers.

Definition 2.2 An {f, m;n,q}-minihyper is a pair (F,w), where F' is a subset of the
point set of PG(n, ¢) and w is a weight function w : PG(n,¢) — N : P — w(P), satisfying

l.w(P)>0&< PecF,

2. Y pepw(P) = f, and
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3. min{} p .y w(P) : H is a hyperplane} = m.

The weight function w determines the set F' completely. When this function has only
the values 0 and 1, then (F,w) is determined completely by the set F'. In this paper, this
will always be the case, so we will not make any further reference to the weight function
w.

In this paper, we are interested in the {z(¢*+q¢+1), z(¢+1); 5, ¢}-minihypers contained
in the Klein quadric Q" (5, ¢), and associated with the Cameron-Liebler line classes with
parameter x. The following results discuss the intersections of subspaces with these
minihypers. They will be very crucial to prove the improved results on the non-existence
of Cameron-Liebler line classes. The first theorem is stated as a corollary in [6].

Theorem 2.3 Let F be a {ZZ o €iVit1, Z?:_ll €;0i; M, q }-minihyper, where ¢ > h,0 < ¢ <
¢g—1,0<i<n-—-13" Oez h.

Then a plane of PG(n,q) is either contained in I or intersects it in an {mi(q+ 1) +
mo, my; 2, q}-minihyper, where my + mo < h.

Theorem 2.4 (Hamada [12]) Let F be a {> ", elle,Z ! evis m, qy-manihyper, where
0<e<q—1,i=0,....,n—1. Then |[FNA| =S eui_y1 for any (n — 2)-space A in
PG(n,q) and |[F NG| = Z;:ll €1 for some (n — 2)-spaces G in PG(n,q).

Let H;,j =1,2,...,q+ 1, be the g+ 1 hyperplanes in PG(n,q) that pass through an
(n — 2)-space G intersecting F in >0 e;vi 1 points. Then F N H;j is a

n—1 n—1
{6; + Z €iVi, Z €vi—1;m — 1, q}-minihyper
i=1 i=1

m Hi,éfor Jj = 1,2,...,q+ 1, where the ¢; are some non-negative integers such that

In the case of a {dv,11,0v,;n,q}-minihyper, the parameters in Hamada’s theorem
become very nice. In the remainder of this article, we will only consider minihypers of
this form. The next result of [10] is fundamental for the induction arguments used in the
lemmas and theorem which follow.

Lemma 2.5 (Govaerts and Storme [10]) Let (F,w) be a {0v,41,dv,;n, q}-minthyper
satisfying 0 < § < (¢ +1)/2,0 < p < n— 1, and containing a p-space w,. Then the
minthyper (F',w') defined by the weight function w’, where

o w'(p)=w(p) —1, forpem,, and
o w'(p) =w(p), forp e PG(n,q) \ 7,
is a {(0 — 1)vu41, (6 — 1)v,; n, q}-minihyper.

It is easy to see that minihypers are closely related to blocking sets. A {6v,11,v,;n,¢}-
minihyper is a év,-fold blocking set. We state some useful definitions on blocking sets.

John Wiley & Sons
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Definition 2.6 A k-fold blocking set in PG(n, q) is a set of points that intersects every
hyperplane in at least k points.

A k-fold blocking set is called minimal if no proper subset is a k-fold blocking set.

A 1-fold blocking set is simply called a blocking set. It is called trivial if it contains a
line.

Theorem 2.7 e (Szényi [16]) A 1-fold blocking set B in PG(2,q), of size |B| <
q+ %3, where ¢ = p”, p prime, h > 1, is uniquely reducible to a minimal blocking
set B’ intersecting every line in 1 (mod p) points.

e (Sz6nyi and Weiner [17]) A minimal 1-fold blocking set B in PG(n,q), n > 3,
q=7p", p>2prime, h > 1, of size |B| < q+ 1, intersects every line in zero points
orin 1 (mod p) points.

3 Minihypers on the Klein quadric

It is our intention to prove the non-existence of Cameron-Liebler line classes of parameter
2 <z < %in PG(3,q) by using {z(¢> + ¢+ 1), 2(q + 1); 5, ¢}-minihypers F' contained in
the Klein quadric Q™ (5, q).

Consider an {z(¢* + ¢+ 1), 2(¢ + 1); 5, ¢}-minihyper F, with < £, on Q*(5,¢). We

know that a hyperplane H intersects Q™ (5, ¢) in either a parabolic quadric Q(4, ¢) or in a
tangent cone (R, Q*(3,¢)) with vertex R in Q* (5, ¢) and base a 3-dimensional hyperbolic
quadric Q7 (3, ¢q).
Lemma 3.1 Let F be an {x(¢* + ¢ + 1), 2(q + 1); 5, ¢}-minihyper, with x < %, contained
in the Klein quadric Q*(5,q), and let Hy be a hyperplane in PG(5,q) such that Hy N
QT (5,q9) = (R,Q"(3,q)) and such that HyN F is an {x(q + 1), z;4, q}-minihyper. Then
there exists a solid in Hy, not containing R, intersecting F' in exactly x points.

Proof First of all, |[HoNF| =z(qg+1) < @. Consider a point R’ of Q™ (5, ¢) N Hy with
R' ¢ F, R # R. There are ¢® + ¢®> + ¢ + 1 lines in H, through R’. At most qzﬂ of them
can contain a point of F', so there exists a line [ through R’ having an empty intersection
with [’ and not containing R. Similarly, we can find a plane 7 through [ having an empty
intersection with F'. The g+ 1 solids through 7 together contain x(¢ + 1) points of F' and
each one of them contains at least « points of F' (Theorem 2.4). This means that every

solid through 7 contains exactly x points of F'. Choose one of those solids, not containing
R, and this is the desired solid. O

Lemma 3.2 Let I be an {x(q+1),z;4, q}-minihyper, v < %, contained in Q)(4,q). Then
F" is the union of x pairwise disjoint lines.

Proof For every point R € F’, we find a plane 7 through R only intersecting F’ in R.
Then consider all solids through 7, they all contain at least x — 1 other points of F”, since
every solid contains at least x points of F’. There remain z(¢+1)—1—(¢+1)(x—1) =¢q
other points of F’. So some hyperplane K, through 7 contains more than x points of F".

John Wiley & Sons
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By [10, Corollary 2], Ky N F’ is a blocking set with respect to the planes of K.

Consider the minimal blocking set B inside Ky N F’. Suppose that B is not a line.

Take three non-collinear points R;, Ry, R3 € B. Every line intersects B in zero or in 1
(mod p) points (Theorem 2.7). The line [; = (R;, Ry) already contains two points of B,
so must contain at least 1 + p > 3 points of B. A line containing more than two points
of a quadric lies on that quadric. Similarly, the lines Iy = (R, R3) and I3 = (Rs, R3) are
lines of Q(4, ¢). Consider the plane 7 spanned by [y, and [3. Since these three lines are
lines of Q(4, q), 7 is contained in Q(4, ¢), which is impossible.

Thus the minimal blocking set B is a line, hence the minihyper F’ contains a line [.
By Lemma 2.5, we have that F'\l is an {(x —1)(¢+ 1),z — 1;4, ¢}-minihyper. Repeating
the previous arguments x times gives us that F” is the union of z pairwise disjoint lines.

O

Lemma 3.3 Suppose that F is an {x(¢> + ¢+ 1),2(q + 1); 5, ¢}-manihyper, with v < 4.
Suppose that P is a point of F lying on two lines 1y, ly, completely contained in F. Then
the plane (l1,15) is completely contained in F'.

Proof Suppose that the plane (I1,ly) € F, then FN(ly,l5) is an {mq(q+1)+mg, m1;2, q}-
minihyper I, where m; +mg < x < £ (Theorem 2.3). Furthermore, [ Uly C F, implying
that |(l1,1l5) N F| > 2q + 1, which implies m; > 2. So (l;,l5) N F' is a t-fold blocking set,
with m; =t > 2. Assume now that [(l1,l) N F| = tq + a, with a = mg + m; < x.
Considering the lines [; and [y, and the other ¢ — 1 lines of (ly,[3) on P, we find that
I, L)NFE| =224+ 1+ (q—1)(t—1)=(t+1)g —t + 2. Hence, |{l1,b) N F|=tqg+a >
(t+1)qg —t+2, implying a > g —t + 2. Now (l1,l5) N F is a t-fold blocking set of size
tq + a. Note that a < x < 1, giving t > 1 + 2, a contradiction since ¢ < . We conclude
that (I1,1ls) C F. O

4 Cameron-Liebler line classes and minihypers

We can now prove the following theorem.

Theorem 4.1 An {z(¢* + q + 1), x(q + 1); 5, ¢}-minihyper, with x < %, contained in
QT (5,q) is the union of x pairwise disjoint planes. So for x > 3, such a minihyper does
not exist.

Proof ;From Theorem 2.4, we can find a solid A which intersects F' in x points, and
such that the ¢ + 1 hyperplanes through A intersect F' in an {z(q+ 1), z;4, ¢}-minihyper
F’. These ¢+ 1 hyperplanes intersect Q™ (5, ¢) in either a tangent cone or in a non-singular
parabolic quadric Q(4,q).

We can make sure that at least ¢ — 1 hyperplanes through A intersect Q7 (5,¢) in
non-singular parabolic quadrics. If at least one of them intersects Q™ (5, ¢) in a tangent
cone (R, Q%(3,q)), Lemma 3.1 says that we can choose A in this hyperplane in such a
way that A intersects Q7 (5,¢) in a 3-dimensional hyperbolic quadric. The polarity of
the Klein quadric then implies that only two hyperplanes through A intersect Q™ (5, ¢) in
tangent cones.

John Wiley & Sons

Page 6 of 9



Page 7 of 9

Journal of Combinatorial Designs

The {z(¢+1), x; 4, ¢}-minihypers F’ which are the intersection of the other ¢—1 hyper-
planes Hy,..., H,; through A with F' are contained in non-singular parabolic quadrics
and so are the union of x pairwise disjoint lines (Lemma 3.2). Each line of the minihyper
H;NF intersects A in a point. Suppose that P is a point of ANF. Then P lies on one line
of each minihyper H; N F', so P lies on at least two lines of the minihyper F. From Lemma
3.3, we know that the plane 7 spanned by these lines is completely contained in F'. Using
Lemma 2.5, we have that F\7 is an {(z — 1)(¢* + ¢+ 1), (z — 1)(¢ + 1); 5, ¢}-minihyper.
With 2’ =z — 1 < £, we can repeat the previous arguments.

Doing this x times gives us that F'is the union of x pairwise disjoint planes. But three
planes cannot be pairwise disjoint in Q7 (5,¢). So this minihyper does not exist when
x> 3. 0

We now state the new non-existence results on Cameron-Liebler line classes.

Theorem 4.2 In PG(3,q), q > 3, there exist no Cameron-Liebler line classes with para-
meter 2 <z < 1.

Proof Let £ be a Cameron-Liebler line class with parameter x. A line [ intersects
x(q + 1) lines of £ if | ¢ £ and [ intersects (q + 1)z + ¢? lines of £, including [, if [ € £
(Definition 1.1).

Translated via the Klein correspondence, £ defines a set 7 on Q™ (5, ¢) such that

n fax(g+)+¢* fPeT
P “T|—{x(q+1) it PZT.PeQt(s.q).

So T defines an z-tight set on QT (5,¢), with |£| =7 = z(¢* + ¢+ 1). So [1, Theorem
12] implies that 7 defines an {z(¢*> + ¢+ 1), z(q + 1);5, ¢}-minihyper F' on Q*(5,q). We
only need to check that 7 generates PG(5, q).

Since |T| > 3(¢* + g+ 1), dim(7) > 4. If dim(7") = 4, then (7) N Q" (5,q9) = Q(4,q)
since 7 is not contained in a tangent hyperplane to Q% (5, q).

Since |7] < |Q(4,q)|, let R € Q(4,q) \ 7. Consider in Tr(Q(4,q)) a plane only
intersecting Q(4, ¢) in R. This plane then lies in the tangent hyperplane Tr(Q(4, ¢)) and
in ¢ hyperplanes sharing an elliptic quadric Q™ (3, q) with Q(4, q).

These elliptic quadrics Q™ (3, ¢) define via the Klein correspondence regular spreads of
PG(3, ¢q) sharing x lines with £ (Definition 1.1), so these elliptic quadrics contain z points
of T. Since R* contains z(q + 1) points of 7, we find that, in total, 7 would contain
z(q+ 1) + 1q = 2xq + = points. But this is false, since |T| = z(¢* + ¢+ 1).

So, it is indeed true that 7 defines an {z(¢*> + ¢ + 1), z(¢ + 1); 5, ¢}-minihyper F on
QT (5,¢q). But Theorem 4.1 states that this minihyper does not exist, so we conclude that
the Cameron-Liebler line classes with parameter 3 < x < £ do not exist. U
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