The uniqueness of the SDPS-set of the symplectic dual polar space $D W(4 n-1, q)$, $n \geq 2$

Bart De Bruyn*
Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

SDPS-sets are very nice sets of points in dual polar spaces which themselves carry the structure of dual polar spaces. They were introduced in [8] because they gave rise to new valuations and hyperplanes of dual polar spaces. In the present paper, we show that the symplectic dual polar space $D W(4 n-1, q), n \geq 2$, has up to isomorphisms a unique SDPS-set.

Keywords: dual polar space, hyperplane, SDPS-set, valuation
MSC2000: 51A50

1 Introduction

1.1 Basic definitions and properties

Let Π be a non-degenerate polar space of rank $n \geq 2$. With Π there is associated a point-line geometry Δ whose points are the maximal singular subspaces of Π, whose lines are the next-to-maximal singular subspaces of Π and whose incidence relation is reverse containment. We call Δ a dual polar space. By Shult and Yanushka [17] and Cameron [3] (see also De Bruyn

[^0][4]), Δ is a near polygon which means that for every point p and every line L, there exists a unique point on L nearest to p. The distance $\mathrm{d}(x, y)$ between two points x and y of Δ is measured in the point or collinearity graph of Δ. For every point x, for every nonempty subset X of the pointset P of Δ and for every $i \in \mathbb{N}$, we define $\Delta_{i}(x):=\{y \in P \mid \mathrm{d}(x, y)=i\}$, $\Delta_{i}^{*}(x):=\{y \in P \mid \mathrm{d}(x, y) \leq i\}, x^{\perp}:=\Delta_{1}^{*}(x), \mathrm{d}(x, X)=\min \{\mathrm{d}(x, y) \mid y \in$ $X\}, \Delta_{i}(X)=\{y \in P \mid \mathrm{d}(y, X)=i\}$ and $\Delta_{i}^{*}(X)=\{y \in P \mid \mathrm{d}(y, X) \leq i\}$. If X_{1} and X_{2} are two nonempty sets of points, then we define $\mathrm{d}\left(X_{1}, X_{2}\right):=$ $\min \left\{\mathrm{d}\left(x_{1}, x_{2}\right) \mid x_{1} \in X_{1}\right.$ and $\left.x_{2} \in X_{2}\right\}$.

We will denote a dual polar space by putting a " D " in front of the name of the corresponding polar space. The dual polar spaces we will meet in this paper are the symplectic dual polar space $D W(2 n-1, q)$ related to a symplectic polarity of the projective space $\operatorname{PG}(2 n-1, q)$, the hermitian dual polar space $D H\left(k, q^{2}\right)$ related to a non-singular hermitian variety in $\mathrm{PG}\left(k, q^{2}\right)$ and the orthogonal dual polar space $D Q^{-}(2 n+1, q)$ related to a non-singular elliptic quadric in $\operatorname{PG}(2 n+1, q)$.

There exists a bijective correspondence between the nonempty convex subspaces of a dual polar space Δ of rank $n \geq 2$ and the possibly empty singular subspaces of the associated polar space Π : if α is a singular subspace of Π, then the set of all maximal singular subspaces containing α is a convex subspace of Δ. Conversely, every convex subspace of Δ is obtained in this way. The maximal distance between two points of a convex subspace A is called the diameter of A and is denoted by $\operatorname{diam}(A)$. The convex subspaces of diameter 0 and 1 are the points and lines of Δ. The convex subspaces of diameter 2,3 , respectively $n-1$, are called the quads, hexes, respectively maxes, of Δ. The convex subspaces through a given point x of Δ determine a projective space of dimension $n-1$. If x and y are two points of Δ, then $\langle x, y\rangle$ denotes the smallest convex subspace containing x and y, i.e. $\langle x, y\rangle$ is the intersection of all convex subspaces containing x and y. More generally, we will use the notation $\left\langle *_{1}, *_{2}, \ldots, *_{k}\right\rangle$ to denote the smallest convex subspace containing the objects $*_{1}, *_{2}, \ldots, *_{k}$ (which can be points, lines, quads, etc.). If x is a point and A is a nonempty convex subspace of Δ, then A contains a unique point $\pi_{A}(x)$ nearest to x and $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{A}(x)\right)+\mathrm{d}\left(\pi_{A}(x), y\right)$ for every point y of A. We call $\pi_{A}(x)$ the projection of x onto A. If F_{1} and F_{2} are two convex subspaces of Δ of respective diameters δ_{1} and δ_{2}, then either $F_{1} \cap F_{2}=\emptyset$ or $\left(F_{1} \cap F_{2} \neq \emptyset\right.$ and $\left.\operatorname{diam}\left(F_{1} \cap F_{2}\right) \geq \delta_{1}+\delta_{2}-n\right)$.

A hyperplane of a dual polar space Δ is a proper subspace meeting each line (necessarily in a unique point or the whole line). Since Δ is a near
polygon, the set H_{x} of points at non-maximal distance from a given point x is a hyperplane of Δ, called the singular hyperplane with deepest point x.

A function f from the point-set of a dual polar space Δ to \mathbb{N} is called a valuation of Δ if it satisfies the following properties (we call $f(x)$ the value of x):
(V1) there exists at least one point with value 0 ;
(V2) every line L of Δ contains a unique point x_{L} with smallest value and $f(x)=f\left(x_{L}\right)+1$ for every point x of L different from x_{L};
(V3) every point x of Δ is contained in a necessarily unique convex subspace F_{x} such that the following properties are satisfied for every $y \in F_{x}$: (i) $f(y) \leq f(x)$; (ii) if z is a point collinear with y such that $f(z)=f(y)-1$, then $z \in F_{x}$.

Valuations were introduced in De Bruyn and Vandecasteele [7] in the context of general near polygons. They are important structures for the following purposes: (1) classification of near polygons; (2) study of isometric embeddings between near polygons; (3) construction of hyperplanes of near polygons, in particular of dual polar spaces; (4) characterizations of classes of hyperplanes of dual polar spaces. The construction of hyperplanes from valuations is explained in the following proposition:

Proposition 1.1 (Proposition 2 of [8]) Let f be a valuation of a dual polar space Δ and let M denote the maximal value attained by f. Then the set of points with value at most $M-1$ is a hyperplane H_{f} of Δ.

Let Δ be a thick dual polar space of rank $2 n, n \geq 0$. (We take the following convention: a dual polar space of rank 0 is a point and a dual polar space of rank 1 is a line.) A set X of points of Δ is called an SDPS-set (SDPS $=$ sub dual polar space) of Δ if it satisfies the following properties:
(1) No two points of X are collinear in Δ.
(2) If $x, y \in X$ such that $\mathrm{d}(x, y)=2$, then $X \cap\langle x, y\rangle$ is an ovoid of the quad $\langle x, y\rangle$.
(3) The point-line geometry $\widetilde{\Delta}$ whose points are the elements of X and whose lines are the quads of Δ containing at least two points of X (natural incidence) is a dual polar space of rank n.
(4) For all $x, y \in X, \mathrm{~d}(x, y)=2 \cdot \delta(x, y)$. Here, $\mathrm{d}(x, y)$ and $\delta(x, y)$ denote the distances between x and y in the respective dual polar spaces Δ and $\widetilde{\Delta}$.
(5) If $x \in X$ and if L is a line of Δ through x, then L is contained in a quad of Δ which contains at least two points of X.

SDPS-sets in thick dual polar spaces of rank $2 n$ were introduced by De Bruyn and Vandecasteele [8] for general n, and independently (although not using this terminology) by Pralle and Shpectorov [15] for $n=2$. Note that condition (5) is only implicitly in [8]. In [8], we only considered finite dual polar spaces and the possibilities for $(\Delta, \widetilde{\Delta})$ listed there force condition (5) to hold. All the proofs mentioned in [8] are still valid in the infinite case (after a slight modification) if one assumes that the extra condition (5) holds, see Sections $5.8,5.9$ and 5.10 of De Bruyn [4].

Proposition 1.2 (Theorem 4 of De Bruyn and Vandecasteele [8])

Let X be an SDPS-set of a thick dual polar space Δ of rank $2 n \geq 0$. For every point x of Δ, we define $f(x):=d(x, X)$. Then f is a valuation of Δ.

By Propositions 1.1 and 1.2, with every SDPS-set of a thick dual polar space Δ, there is associated a hyperplane of Δ. For a characterization of these hyperplanes, we refer to De Bruyn [5].

An SDPS-set of a dual polar space of rank 0 consists of the unique point of this dual polar space. An SDPS-set of a thick generalized quadrangle Q is an ovoid of Q. The dual polar spaces $D Q^{-}(4 n+1, q)$ and $D W(4 n-1, q)$ admit SDPS-sets for every $n \geq 2$, see De Bruyn and Vandecasteele [8] or Pralle and Shpectorov [15]. The following proposition has been proved in De Bruyn [4, Theorem 5.31], but its proof relies very much on Pralle and Shpectorov [15]:

Proposition 1.3 ([4], [15]) If X is an SDPS-set of a finite thick dual polar space Δ of rank $2 n \geq 4$ and if $\widetilde{\Delta}$ denotes the associated dual polar space of rank n, then one of the following cases occurs:
(1) $\Delta \cong D W(4 n-1, q)$ and $\widetilde{\Delta} \cong D W\left(2 n-1, q^{2}\right)$ for some prime power q. If Q is a quad containing two points of X, then $Q \cap X$ is a classical ovoid of Q, i.e. an elliptic quadric $Q^{-}(3, q)$ in $Q \cong Q(4, q)$.
(2) $\Delta \cong D Q^{-}(4 n+1, q)$ and $\widetilde{\Delta} \cong D H\left(2 n, q^{2}\right)$ for some prime power q. If Q is a quad containing two points of X, then $Q \cap X$ is a classical ovoid of Q, i.e. a unital $H\left(2, q^{2}\right)$ in $Q \cong H\left(3, q^{2}\right)$.

1.2 The Main Theorem of this paper

SDPS-sets of thick dual polar spaces are important objects because of their connection with valuations and hyperplanes of dual polar spaces. They are
also handy to describe isometric embeddings of the symplectic dual polar space $D W(2 n-1, q)$ into the hermitian dual polar space $D H\left(2 n-1, q^{2}\right)$, see De Bruyn [6]. In the finite case, there are only two possibilities by Proposition 1.3 , and although quite much is already known about the structure of the respective SDPS-sets, the uniqueness questions were not yet settled. In this paper, we will prove the uniqueness for one of the two cases.

Main Theorem. The dual polar space $D W(4 n-1, q)$, $n \geq 2$, admits up to isomorphisms a unique SDPS-set.

We will end this section with a construction of the unique SDPS-set of $D W(4 n-1, q), n \geq 2$. Consider the finite field $\mathbb{F}_{q^{2}}$ with q^{2} elements and let \mathbb{F}_{q} denote the unique subfield of order q of $\mathbb{F}_{q^{2}}$. Let η denote an arbitrary element of $\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Then $\mathbb{F}_{q^{2}}=\left\{x_{1}+x_{2} \eta \mid x_{1}, x_{2} \in \mathbb{F}_{q}\right\}$; define $\tau: \mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q}, x_{1}+x_{2} \eta \mapsto x_{1}$. Consider the following bijection ϕ between the vector spaces $\mathbb{F}_{q}^{4 n}$ and $\mathbb{F}_{q^{2}}^{2 n}$:

$$
\phi\left(x_{1}, x_{2}, \ldots, x_{4 n}\right)=\left(x_{1}+\eta x_{2}, \ldots, x_{4 n-1}+\eta x_{4 n}\right) .
$$

If $\langle\cdot, \cdot \cdot\rangle$ is a non-degenerate symplectic form of $\mathbb{F}_{q^{2}}^{2 n}$, then $\tau(\langle\phi(\cdot), \phi(\cdot)\rangle)$ is a non-degenerate symplectic form in $\mathbb{F}_{q}^{4 n}$. If α is a totally isotropic n dimensional subspace of $\mathbb{F}_{q^{2}}^{2 n}$, then $\phi^{-1}(\alpha)$ is a $2 n$-dimensional totally isotropic subspace of $\mathbb{F}_{q}^{4 n}$. In this way we obtain an "embedding" of $D W\left(2 n-1, q^{2}\right)$ in $D W(4 n-1, q)$, giving rise to an SDPS-set of $D W(4 n-1, q)$.

2 The SDPS-sets of $D W(3, q)$

The conclusion of the Main Theorem does not hold if $n=1$. The SDPS-sets of $D W(3, q)$ are precisely the ovoids of $Q(4, q)$. Several classes of non-classical ovoids of $Q(4, q)$ exist:

- For each prime power $q=p^{h}, p$ odd prime power and $h \geq 2$, there is a class of non-classical ovoids of $Q(4, q)$ due to Kantor [9].
- For each prime power $q=2^{2 n+1}, n \geq 1$, there is a class of non-classical ovoids in $Q(4, q)$ due to Tits [19].
- For each prime power $q=3^{2 n+1}, n \geq 1$, there is a class of non-classical ovoids of $Q(4, q)$ due to Kantor [9].
- For each prime power $q=3^{h}, h \geq 3$, there is a class of non-classical ovoids of $Q(4, q)$ due to Thas and Payne [18].
- The generalized quadrangle $Q\left(4,3^{5}\right)$ has a class of non-classical ovoids due to Penttila and Williams [14].

For several prime powers q it is known that all ovoids of $Q(4, q)$ are classical.
Proposition 2.1 - ([2], [12]) Every ovoid of $Q(4,4)$ is classical.

- ([10], [11]) Every ovoid of $Q(4,16)$ is classical.
- ([1]) Every ovoid of $Q(4, q), q$ prime, is classical.

3 Proof of the Main Theorem

3.1 Some lemmas

We first prove some lemmas will be important during the proof of the Main Theorem.

Lemma 3.1 Let F be a convex subspace of a dual polar space Δ of rank $n \geq$ 2 and let x_{1} and x_{2} be two collinear points of Δ. Then $d\left(\pi_{F}\left(x_{1}\right), \pi_{F}\left(x_{2}\right)\right) \leq 1$. Proof. Straightforward, see e.g. De Bruyn [4, Theorem 1.9].

Lemma 3.2 Let Δ be a dual polar space of rank $n \geq 2$ and let F_{1} and F_{2} be two convex subspaces of diameter $\delta \in\{0, \ldots, n\}$ of Δ which lie at maximal distance $n-\delta$ from each other. Then the map $F_{1} \rightarrow F_{2} ; x \mapsto \pi_{F_{2}}(x)$ defines an isomorphism from F_{1} to F_{2}.

Proof. Straightforward, see e.g. De Bruyn [4, Theorem 1.10].
Lemma 3.3 Let Δ be a dual polar space of rank $n \geq 2$. Let F denote a convex subspace of diameter $\delta \in\{0, \ldots, n\}$ of Δ, let x_{1}, x_{2} be points of F at maximal distance δ from each other and let $F_{i}, i \in\{1,2\}$, denote a convex subspace of diameter $n-\delta$ through x_{i} such that $F \cap F_{i}=\left\{x_{i}\right\}$. Then F_{1} and F_{2} lie at maximal distance δ from each other.

Proof. Since $\operatorname{diam}\left(F_{1}\right)=\operatorname{diam}\left(F_{2}\right)=n-\delta, \mathrm{d}\left(x, F_{2}\right) \leq \delta$ for every point x of F_{1}. Let $y_{1} \in F_{1}$ and $y_{2} \in F_{2}$ with $\mathrm{d}\left(y_{1}, y_{2}\right)$ as small as possible. For every $i \in\{1,2\}$, the point $\pi_{F}\left(y_{i}\right)$ is contained on a shortest path between y_{i} and x_{i} and hence is contained in $F \cap F_{i}=\left\{x_{i}\right\}$. This proves that $\pi_{F}\left(y_{1}\right)=x_{1}$ and $\pi_{F}\left(y_{2}\right)=x_{2}$. Considering a shortest path between y_{1} and y_{2} and applying Lemma 3.1, we obtain $\delta=\mathrm{d}\left(x_{1}, x_{2}\right) \leq \mathrm{d}\left(y_{1}, y_{2}\right)$. On the other hand, we already knew that $\mathrm{d}\left(y_{1}, y_{2}\right)=\mathrm{d}\left(F_{1}, F_{2}\right) \leq \delta$. This proves that $\mathrm{d}\left(F_{1}, F_{2}\right)=\delta$.

Lemma 3.4 Let M_{1} and M_{2} be two maxes of a dual polar space Δ of rank $n \geq 2$ which meet each other. Then there exists a max M_{3} of Δ which is disjoint from M_{1} and M_{2}.

Proof. Let $y \in M_{1} \cap M_{2}$ and let $x \in \Delta_{1}(y)$ not contained in $M_{1} \cup M_{2}$. Then any max through x not containing the line $x y$ is disjoint from M_{1} and M_{2}.

Lemma 3.5 Let Γ denote the graph on the line set of $D W(2 n-1, q), n \geq 2$, with two vertices of Γ adjacent whenever the corresponding lines are disjoint and contained in a quad of $D W(2 n-1, q)$. Then Γ is connected.

Proof. Let L_{1} and L_{2} denote two arbitrary lines of $D W(2 n-1, q)$. We will prove by induction on $\mathrm{d}\left(L_{1}, L_{2}\right)$ that there exists a path in Γ connecting L_{1} and L_{2}.

Suppose first that $\mathrm{d}\left(L_{1}, L_{2}\right)=0$. If $L_{1}=L_{2}$, then we are done. So, suppose $L_{1} \neq L_{2}$. Then L_{1} and L_{2} are contained in a quad $Q \cong Q(4, q)$. If L_{3} is a line of Q disjoint from L_{1} and L_{2}, then $\left(L_{1}, L_{3}, L_{2}\right)$ is a path in Γ.

Suppose next that $\mathrm{d}\left(L_{1}, L_{2}\right) \geq 1$ and let $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$ such that $\mathrm{d}\left(x_{1}, x_{2}\right)=\mathrm{d}\left(L_{1}, L_{2}\right)$. Let x_{3} be a point of $\Delta_{1}\left(x_{2}\right)$ at distance $\mathrm{d}\left(L_{1}, L_{2}\right)-1$ from x_{1}. Let L_{3} denote a line through x_{3} contained in the quad $\left\langle x_{3}, L_{2}\right\rangle$, but different from $x_{3} x_{2}$. Then L_{2} and L_{3} are adjacent in Γ. By the induction hypothesis, there exists a path in Γ connecting L_{1} and L_{3}. Hence, there also exists a path in Γ connecting L_{1} and L_{2}.

Lemma 3.6 Let M_{1} and M_{2} be two disjoint maxes of the dual polar space $D W(2 n-1, q), n \geq 2$. Then there exists a unique set $\left\{M_{1}, M_{2}, \ldots, M_{q+1}\right\}$ of mutually disjoint maxes with the property that every line meeting M_{1} and M_{2} also meets $M_{i}, i \in\{3, \ldots, q+1\}$. If z is a point of $D W(2 n-1, q)$ not contained in $M_{1} \cup M_{2} \cup \cdots \cup M_{q+1}$, then there exists a unique quad through z which intersects each $M_{i}, i \in\{1, \ldots, q+1\}$, in a line.

Proof. Let $x_{i}, i \in\{1,2\}$, denote the point of the polar space $W(2 n-$ $1, q)$ corresponding with M_{i}. Since M_{1} and M_{2} are disjoint, the points x_{1} and x_{2} are contained in a hyperbolic line $\left\{x_{1}, x_{2}, \ldots, x_{q+1}\right\}$. Let $M_{i}, i \in$ $\{3, \ldots, q+1\}$, denote the max of $D W(2 n-1, q)$ corresponding with x_{i}. Then $\left\{M_{1}, M_{2}, \ldots, M_{q+1}\right\}$ is a set of mutually disjoint maxes with the property that every line meeting M_{1} and M_{2} also meets $M_{i}, i \in\{3, \ldots, q+1\}$.

Let u and v be two opposite points of M_{1} and put $L_{1}=\left\langle u, \pi_{M_{2}}(u)\right\rangle$ and $L_{2}=\left\langle v, \pi_{M_{2}}(v)\right\rangle$. Then by Lemma 3.3, L_{1} and L_{2} lie at maximal distance $n-1$ from each other. There are now at most $q+1$ maxes which meet every line connecting a point of M_{1} with a point of M_{2}, namely the $q+1$ maxes $\left\langle w, \pi_{L_{2}}(w)\right\rangle$, where $w \in L_{1}$. This proves the uniqueness of the set $\left\{M_{1}, M_{2}, \ldots, M_{q+1}\right\}$.

Now, let z denote a point of $D W(2 n-1, q)$ not contained in $M_{1} \cup M_{2} \cup$ $\cdots \cup M_{q+1}$. Let z_{1} denote the unique point of M_{1} collinear with z and let z_{2} denote the unique point of M_{2} collinear with z_{1}. Since z is not contained in $M_{1} \cup M_{2} \cup \cdots \cup M_{q+1}, z z_{1} \neq z_{1} z_{2}$. Obviously, the quad $\left\langle z z_{1}, z_{1} z_{2}\right\rangle$ is the unique quad through z meeting M_{1} and M_{2} (necessarily in lines). This quad also meets $M_{i}, i \in\{3, \ldots, q+1\}$ in a line since $z_{1} z_{2} \cap M_{i} \neq \emptyset$.

Lemma 3.7 $A(q+1) \times(q+1)$-subgrid G of the generalized quadrangle $Q(4, q)$ is a maximal subspace of $Q(4, q)$. In other words, the graph on the set $Q(4, q) \backslash G$ induced by the collinearity graph of $Q(4, q)$ is connected.

Proof. By Payne and Thas [13, 2.3.1], any subspace of $Q(4, q)$ containing G induces a subquadrangle of $Q(4, q)$. Now, the only proper subquadrangle of $Q(4, q)$ containing G is G itself, proving the lemma.

Definition. Let X be an SDPS-set of $\Delta \cong D W(4 n-1, q), n \geq 1$, and let $\widetilde{\Delta}$ denote the dual polar space isomorphic to $D W\left(2 n-1, q^{2}\right)$ associated with X. A convex subspace F of Δ is called X-special if it is of the form $\left\langle x_{1}, x_{2}\right\rangle$ for two points x_{1} and x_{2} of X. Since $\mathrm{d}\left(x_{1}, x_{2}\right)=2 \cdot \delta\left(x_{1}, x_{2}\right)$, where $\delta(\cdot, \cdot)$ denotes the distance function in $\widetilde{\Delta}$, every X-special convex subspace of Δ has even diameter. If F is an X-special convex subspace, then by De Bruyn and Vandecasteele [8, Lemma 7], $F \cap X$ is an SDPS-set of F and is a convex subspace of $\widetilde{\Delta}$ whose diameter is half the diameter of F regarded as convex subspace of Δ. Also, by De Bruyn and Vandecasteele [8, Lemma 4] no two distinct X-special quads can intersect in a line.

Lemma 3.8 Let X be an SDPS-set of $\Delta \cong D W(4 n-1, q), n \geq 1$, let x be a point of X and let F be an X-special convex subspace of Δ. Then $\pi_{F}(x) \in X$.

Proof. Let $\widetilde{\Delta}$ denote the dual polar space isomorphic to $D W\left(2 n-1, q^{2}\right)$ associated with X. Let $2 d$ denote the diameter of F in Δ. Let $\mathrm{d}(\cdot, \cdot)$, respectively $\delta(\cdot, \cdot)$, denote the distance function in Δ, respectively $\widetilde{\Delta}$. Since $F \cap X$ is a convex subspace of $\widetilde{\Delta}$, there exists a unique point y in $F \cap X$ nearest to x (in $\widetilde{\Delta})$. Let z denote a point of $F \cap X$ such that $\delta(y, z)=d$. Then $\mathrm{d}(y, z)=2 d$. So, y and z are opposite points of F. Since $\delta(x, z)=\delta(x, y)+\delta(y, z)$, we have that $\mathrm{d}(x, z)=\mathrm{d}(x, y)+\mathrm{d}(y, z)$. Since $\mathrm{d}(y, z)$ attains its maximal value $2 d$, we necessarily have $\pi_{F}(x)=y \in X$. This proves the lemma.

Lemma 3.9 Let M denote a max of the dual polar space $\Delta=D H(2 n-$ $\left.1, q^{2}\right), n \geq 2$. Then there exists a group G of automorphisms of Δ satisfying the following properties:
(i) every element of G fixes M point-wise and every line meeting M setwise;
(ii) if L is a line meeting M in a unique point x, then G acts regularly on $L \backslash\{x\}$.

Proof. Let V denote a $2 n$-dimensional vector space over $\mathbb{F}_{q^{2}}$ equipped with a non-degenerate hermitian form (\cdot, \cdot) which is linear in the first argument and semi-linear in the second. Let $H\left(2 n-1, q^{2}\right)$ and $D H\left(2 n-1, q^{2}\right)$ denote the corresponding polar and dual polar space. Let $\left\langle\bar{x}_{M}\right\rangle$ denote the point of $H\left(2 n-1, q^{2}\right)$ corresponding with the $\max M$. For every $k \in \mathbb{F}_{q^{2}}$ satisfying $k^{q}+k=0$, the linear map $\bar{y} \mapsto \bar{y}-k\left(\bar{y}, \bar{x}_{M}\right) \bar{x}_{M}$ defines an automorphism of $H\left(2 n-1, q^{2}\right)$. The corresponding automorphism θ_{k} of $D H\left(2 n-1, q^{2}\right)$ fixes M point-wise and every line meeting M set-wise. It is straightforward to verify that $G:=\left\{\theta_{k} \mid k \in \mathbb{F}_{q^{2}}\right.$ with $\left.k^{q}+k=0\right\}$ is a group of automorphisms of $D H\left(2 n-1, q^{2}\right)$ acting regularly on each set $L \backslash\{x\}$, where L is a line of Δ meeting M in a unique point x.

3.2 Upper bound for the number of SDPS-sets

Definition. An SDPS-set X of $D W(4 n-1, q), n \geq 1$, is called classical if $Q \cap X$ is a classical ovoid of Q for every X-special quad Q. By Proposition 1.3, every SDPS-set of $D W(4 n-1, q)$ is classical if $n \geq 2$. Let $\lambda(n), n \geq 1$, denote the number of classical SDPS-sets of $D W(4 n-1, q)$. The number of
classical ovoids of the generalized quadrangle $Q(4, q)$ is equal to

$$
\lambda(1)=\frac{q^{2}\left(q^{2}-1\right)}{2} .
$$

Lemma 3.10 The number of classical SDPS-sets containing two given opposite points of $D W(4 n-1, q), n \geq 1$, is equal to

$$
\frac{\lambda(n)}{(q+1)\left(q^{3}+1\right) \cdots\left(q^{2 n-1}+1\right) \cdot q^{n^{2}}}
$$

Proof. The automorphism group of $D W(4 n-1, q)$ acts transitively on the set of pairs of opposite points of $D W(4 n-1, q)$. Hence, there exists a constant $\lambda^{\prime}(n)$ such that every two opposite points of $D W(4 n-1, q)$ are contained in precisely $\lambda^{\prime}(n)$ classical SDPS-sets. Counting in two different ways the number of triples $\left(X, x_{1}, x_{2}\right)$, where x_{1} and x_{2} are two opposite points of $D W(4 n-1, q)$ and where X is a classical SDPS-set containing the points x_{1} and x_{2} gives

$$
\begin{aligned}
& (q+1)\left(q^{2}+1\right) \cdots\left(q^{2 n}+1\right) \cdot q^{1+2+\cdots+2 n} \cdot \lambda^{\prime}(n) \\
= & \lambda(n) \cdot\left(q^{2}+1\right)\left(q^{4}+1\right) \cdots\left(q^{2 n}+1\right) \cdot q^{2+4+\cdots+2 n} .
\end{aligned}
$$

(The dual polar space $D W(4 n-1, q)$ contains $(q+1)\left(q^{2}+1\right) \cdots\left(q^{2 n}+1\right)$ points and there are $q^{1+2+\cdots+2 n}$ points in $D W(4 n-1, q)$ which are opposite to a given point of $D W(4 n-1, q)$. Recall also that X carries the structure of a dual polar space $D W\left(2 n-1, q^{2}\right)$.) The lemma now readily follows.

Lemma 3.11 Let Q_{1} and Q_{2} be two quads of $D W(7, q)$ at maximal distance 2 from each other, let $x \in Q_{1}$ and put $Q_{3}:=\left\langle x, \pi_{Q_{2}}(x)\right\rangle$. Let Q_{4} denote a quad through x such that $Q_{4} \cap Q_{1}=Q_{4} \cap Q_{3}=\{x\}$. Let O_{1} be a classical ovoid of Q_{1} containing the point x. Then there exists at most one (classical) SDPS-set X of $D W(7, q)$ satisfying:
(1) $Q_{1} \cap X=O_{1}$;
(2) the quads Q_{2}, Q_{3} and Q_{4} are X-special.

Proof. Let X_{1} and X_{2} denote two SDPS-sets of $D W(7, q)$ satisfying the above conditions. Let $S_{i}, i \in\{1,2\}$, be the generalized quadrangle isomorphic to $D W\left(3, q^{2}\right) \cong Q\left(4, q^{2}\right)$ defined on the set X_{i} by the X_{i}-special quads
of $D W(7, q)$. By Lemma 3.3 applied to the triple $\left(F, F_{1}, F_{2}\right)=\left(Q_{3}, Q_{2}, Q_{4}\right)$, Q_{2} and Q_{4} lie at maximal distance 2 from each other. By Lemma 3.2, $O_{2}:=\pi_{Q_{2}}\left(O_{1}\right)$ is a classical ovoid of Q_{2} and $O_{4}:=\pi_{Q_{4}}\left(O_{2}\right)$ is a classical ovoid of Q_{4}. By Lemma 3.8, $O_{2} \cup O_{4} \subseteq X_{1} \cap X_{2}$. Now, let \mathcal{V} denote the set of quads of $D W(7, q)$ which intersect Q_{1} in a point of O_{1} and Q_{2} in a point of O_{2}. Then $Q_{3} \in \mathcal{V}$ and $\mathrm{d}\left(Q, Q_{4}\right)=2$ for every $Q \in \mathcal{V} \backslash\left\{Q_{3}\right\}$ by Lemma 3.3 applied to the triple $\left(F, F_{1}, F_{2}\right)=\left(Q_{1}, Q_{4}, Q\right)$. As before we can conclude that $O_{Q}:=\pi_{Q}\left(O_{4}\right)$ is a classical ovoid of Q contained in $X_{1} \cap X_{2}$. Now, let Q_{5} be an arbitrary quad of $\mathcal{V} \backslash\left\{Q_{3}\right\}$. Then $\mathrm{d}\left(Q_{5}, Q_{3}\right)=2$ by Lemma 3.3 applied to the triple $\left(F, F_{1}, F_{2}\right)=\left(Q_{1}, Q_{3}, Q_{5}\right)$. So, $O_{Q_{3}}:=\pi_{Q_{3}}\left(O_{Q_{5}}\right)$ is a classical ovoid of Q_{3} which is contained in $X_{1} \cap X_{2}$. Now, put $Y:=\bigcup_{Q \in \mathcal{V}} O_{Q}$. Then Y defines a $\left(q^{2}+1\right) \times\left(q^{2}+1\right)$-subgrid in both the generalized quadrangle $S_{1} \cong Q\left(4, q^{2}\right)$ and $S_{2} \cong Q\left(4, q^{2}\right)$. Let y denote an arbitrary point of $O_{4} \backslash\{x\}$ and let R and R^{\prime} be two distinct elements of \mathcal{V}. Since $y \in X_{1} \cap X_{2}, \pi_{R}(y) \in X_{1} \cap X_{2}$ by Lemma 3.8. Applying Lemma 3.3 to the triple $\left(F, F_{1}, F_{2}\right)=\left(Q_{1}, R, R^{\prime}\right)$, we find $\mathrm{d}\left(R, R^{\prime}\right)=2$. So, there exists a unique quad $R^{\prime \prime}$ through $\pi_{R}(y)$ intersecting R^{\prime} in a unique point. Since Y defines a $\left(q^{2}+1\right) \times\left(q^{2}+1\right)$-subgrid of $S_{i}, i \in\{1,2\}$, this quad is X_{i}-special. Since no two special X_{i}-quads can intersect in a line, $R^{\prime \prime} \cap\left\langle y, \pi_{R}(y)\right\rangle=\left\{\pi_{R}(y)\right\}$. By Lemma 3.3 applied to the triple $\left(F, F_{1}, F_{2}\right)=\left(R^{\prime \prime},\left\langle y, \pi_{R}(y)\right\rangle, R^{\prime}\right), \mathrm{d}\left(R^{\prime},\left\langle y, \pi_{R}(y)\right\rangle\right)=2$. As before, it follows that $\pi_{\left\langle y, \pi_{R}(y)\right\rangle}\left(O_{R^{\prime}}\right)$ is a classical ovoid of $\left\langle y, \pi_{R}(y)\right\rangle$ which is contained in $X_{1} \cap X_{2}$. The set $\pi_{\left\langle y, \pi_{R}(y)\right\rangle}\left(O_{R^{\prime}}\right)$ corresponds with a line of $S_{i}, i \in\{1,2\}$, meeting the $\left(q^{2}+1\right) \times\left(q^{2}+1\right)$-subgrid Y. By Lemma 3.7, it now readily follows that $X_{1}=X_{2}$. This proves the lemma.

Lemma 3.12 Let x be a point of $D W(4 n-1, q), n \geq 2$. Let Q_{1} and Q_{2} denote two quads through x and let F denote a convex subspace of diameter $2 n-2$ through x such that $Q_{1} \cap Q_{2}=Q_{1} \cap F=Q_{2} \cap F=\{x\}$. Let y denote a point of $D W(4 n-1, q)$ at distance $2 n$ from x and let Y denote a classical SDPS-set of F such that $x, \pi_{F}(y) \in Y$ and $\left\langle Q_{1}, Q_{2}\right\rangle \cap F$ is a Y-special quad. Then there exists at most one (classical) SDPS-set X in $D W(4 n-1, q)$ satisfying:
(i) $x, y \in X$;
(ii) Q_{1} and Q_{2} are X-classical;
(iii) $X \cap F=Y$.

Proof. Let Ω denote the set of all SDPS-sets which satisfy the above conditions. Let X^{*} be an arbitrary element of Ω and let \mathcal{I} be the intersection of all SDPS-sets of Ω. Then $\mathcal{I} \subseteq X^{*}$. We will now also show that $X^{*} \subseteq \mathcal{I}$, i.e. X^{*} is contained in each SDPS-set X of Ω. Since both X^{*} and X carry the structure of a dual polar space isomorphic to $D W\left(2 n-1, q^{2}\right)$, we then necessarily have that $X^{*}=X$.

By Lemma 3.8 the point $\pi_{Q_{2}}(y)$ belongs to \mathcal{I}. Since $\mathrm{d}(x, y)=2 n$, $\mathrm{d}\left(y, \pi_{Q_{2}}(y)\right)=2 n-2$. The convex subspace $\left\langle\pi_{Q_{2}}(y), y\right\rangle$ is X-special for every $X \in \Omega$. Since $\left\langle y, \pi_{Q_{2}}(y)\right\rangle \cap Q_{2}=\left\{\pi_{Q_{2}}(y)\right\}, F_{2}:=\left\langle y, \pi_{Q_{2}}(y)\right\rangle$ and $F_{1}:=F$ lie at maximal distance 2 from each other by Lemma 3.3. By Lemmas 3.2 and 3.8, $Y_{2}:=\pi_{F_{2}}(Y)$ is an SDPS-set of F_{2} which is contained in \mathcal{I}, in other words $X \cap F_{2}=Y_{2}$ for every $X \in \Omega$. With a similar reasoning as in the proof of Lemma 3.3, we know that every point of Q_{1} lies at maximal distance 2 from F_{2}. By Lemma 3.8, $Q_{1}^{\prime}:=\pi_{F_{2}}\left(Q_{1}\right)$ is Y_{2}-special. So, $Q_{1}^{\prime} \cap Y_{2}$ is a classical ovoid of Q_{1}^{\prime}. Put $O_{1}:=\pi_{Q_{1}}\left(Q_{1}^{\prime} \cap Y_{2}\right)$. By Lemma 3.8, $O_{1} \subseteq \mathcal{I}$. By Lemma 3.3, Q_{1} and $\left\langle y, \pi_{F}(y)\right\rangle$ lie at maximal distance $2 n-2$ from each other and by Lemma 3.8, $O^{\prime}:=\pi_{\left\langle y, \pi_{F}(y)\right\rangle}\left(O_{1}\right)$ is a classical ovoid of $\left\langle y, \pi_{F}(y)\right\rangle$ which is contained in \mathcal{I}. Similarly, Q_{2} and $\left\langle y, \pi_{F}(y)\right\rangle$ lie at maximal distance $2 n-2$ from each other and $O_{2}:=\pi_{Q_{2}}\left(O^{\prime}\right)$ is a classical ovoid of Q_{2} contained in \mathcal{I}.

Now, let \mathcal{V} denote the set of all convex subspaces of diameter $2 n-2$ containing a point of O_{2} and a point of O^{\prime}. Then every convex subspace of \mathcal{V} is X-special for every $X \in \Omega$. Notice also that by Lemma 3.3, every two distinct elements of \mathcal{V} lie at maximal distance 2 from each other.

Now, for every $G \in \mathcal{V}$, put $Y_{G}:=\pi_{G}(Y)$. Also put $Z:=\bigcup_{G \in \mathcal{V}} Y_{G}$. By Lemma 3.8, $Z \subseteq \mathcal{I}$.

We will now show that $X^{*} \subseteq \mathcal{I}$. Let Δ^{*} denote the dual polar space isomorphic to $D W\left(2 n-1, q^{2}\right)$ defined on the set X^{*} by the X^{*}-special quads. The convex subspaces of \mathcal{V} define a set \mathcal{V}^{\prime} of $q^{2}+1$ maxes of Δ^{*} in the sense of Lemma 3.6, i.e. every line of Δ^{*} meeting two distinct maxes of \mathcal{V}^{\prime} meets every max of \mathcal{V}^{\prime}. In order to show that $X^{*} \subseteq \mathcal{I}$, we must show that every quad of Δ^{*} meeting every max of \mathcal{V}^{\prime} in a line is contained in \mathcal{I}. By Lemma 3.5, the following two steps are sufficient to prove this claim:

- Step 1: We show that $Q^{*} \subseteq \mathcal{I}$ for a particular quad Q^{*} of Δ^{*} which meets every max of \mathcal{V}^{\prime} in a line.
- Step 2: Suppose Q_{1} and Q_{2} are two mutually disjoint quads of Δ^{*}
which are contained in a hex of Δ^{*} and which meet every max of \mathcal{V}^{\prime} in a line. We show that if $Q_{1} \subseteq \mathcal{I}$, then also $Q_{2} \subseteq \mathcal{I}$.

We first prove Step 1. For every $X \in \Omega, Q_{1}$ and Q_{2} are X-special and hence also $\left\langle Q_{1}, Q_{2}\right\rangle$ is X-special since Q_{1} and Q_{2} intersect in a unique point (of $X)$. Since the convex subspace $\left\langle Q_{1}, Q_{2}\right\rangle$ is X^{*}-special and meets F_{1} and F_{2} in X^{*}-special quads, it follows that $Q^{*}:=\left\langle Q_{1}, Q_{2}\right\rangle \cap X^{*}$ is a quad of Δ^{*} which meets every element of \mathcal{V}^{\prime} in a line. For every $X \in \Omega$, the quads $Q_{1}, Q_{2},\left\langle Q_{1}, Q_{2}\right\rangle \cap F_{1}$ and $\left\langle Q_{1}, Q_{2}\right\rangle \cap F_{2}$ of $D W(4 n-1, q)$ are X-special. Moreover, $\left\langle Q_{1}, Q_{2}\right\rangle \cap F_{1} \cap X=\left\langle Q_{1}, Q_{2}\right\rangle \cap F_{1} \cap Y=\left\langle Q_{1}, Q_{2}\right\rangle \cap F_{1} \cap X^{*}$. By Lemma 3.11, $Q^{*}=\left\langle Q_{1}, Q_{2}\right\rangle \cap X^{*}=\left\langle Q_{1}, Q_{2}\right\rangle \cap X$. Hence, $Q^{*} \subseteq \mathcal{I}$.

We prove Step 2. Let Q_{1} and Q_{2} be two mutually disjoint quads of Δ^{*} which are contained in a hex of Δ^{*} and which meet every max of \mathcal{V}^{\prime} in a line. Let $\mathrm{d}(\cdot, \cdot)$, respectively $\delta(\cdot, \cdot)$, denote the distance function in $D W(4 n-1, q)$, respectively Δ^{*}. Let x_{1} and y_{1} be two points of Q_{1} such that $\delta\left(x_{1}, y_{1}\right)=2$. Let x_{2} and y_{2} be the unique points of Q_{2} such that $\delta\left(x_{1}, x_{2}\right)=\delta\left(y_{1}, y_{2}\right)=1$. Then $\delta\left(x_{2}, y_{2}\right)=2$ and $\delta\left(x_{1}, y_{2}\right)=\delta\left(x_{2}, y_{1}\right)=3$. Hence, $\mathrm{d}\left(x_{1}, y_{1}\right)=\mathrm{d}\left(x_{2}, y_{2}\right)=4, \mathrm{~d}\left(x_{1}, x_{2}\right)=\mathrm{d}\left(y_{1}, y_{2}\right)=2$ and $\mathrm{d}\left(x_{1}, y_{2}\right)=$ $\mathrm{d}\left(y_{1}, x_{2}\right)=6$. If $\left\langle x_{1}, x_{2}\right\rangle$ and $\left\langle x_{1}, y_{1}\right\rangle$ meet in a line L, then $\mathrm{d}\left(x_{2}, y_{1}\right) \leq$ $\mathrm{d}\left(x_{2}, \pi_{L}\left(x_{2}\right)\right)+\mathrm{d}\left(\pi_{L}\left(x_{2}\right), y_{1}\right) \leq 1+4=5$, a contradiction. Hence, $\left\langle x_{1}, x_{2}\right\rangle$ and $G_{1}:=\left\langle x_{1}, y_{1}\right\rangle$ intersect in the singleton $\left\{x_{1}\right\}$. Similarly, $\left\langle x_{1}, x_{2}\right\rangle$ and $G_{2}:=\left\langle x_{2}, y_{2}\right\rangle$ intersect in the singleton $\left\{x_{2}\right\}$. By Lemma 3.3, G_{1} and G_{2} lie at maximal distance 2 from each other. If $Q_{1} \subseteq \mathcal{I}$, then we also have that $\pi_{G_{2}}\left(Q_{1}\right)=Q_{2} \subseteq \mathcal{I}$ by Lemma 3.8.

This proves the lemma.
Lemma 3.13 For every $n \geq 2, \lambda(n) \leq q^{4 n-2}\left(q^{4 n-2}-1\right) \cdot \lambda(n-1)$.
Proof. We count in two different ways the number of tuples (x, y, Q_{1}, Q_{2}, F, $Y, X)$ which satisfy the conditions of Lemma 3.12.
Step 1: There are $\alpha_{1}=(q+1)\left(q^{2}+1\right) \cdots\left(q^{2 n}+1\right)$ possibilities for x.
Proof. This is precisely the number of points of $\Delta=D W(4 n-1, q)$.
Step 2: For given x, there are $\alpha_{2}=q^{1+2+\cdots+2 n}$ possibilities for y.
Proof. This is precisely the number of points of $\Delta=D W(4 n-1, q)$ opposite to x.
Step 3: For given x and y, there are $\alpha_{3}=\frac{\left(q^{2 n}-1\right)\left(q^{2 n}-q\right)}{\left(q^{2}-1\right)\left(q^{2}-q\right)}$ possibilities for F. Proof. Recall that $\operatorname{Res}_{\Delta}(x)$ is isomorphic to $\operatorname{PG}(2 n-1, q)$. The convex
subspace F corresponds with a $(2 n-3)$-dimensional subspace of $\operatorname{Res}_{\Delta}(x)$. So, there are precisely $\alpha_{3}=\frac{\left(q^{2 n}-1\right)\left(q^{2 n}-q\right)}{\left(q^{2}-1\right)\left(q^{2}-q\right)}$ possibilities for F.
Step 4: For given x, y and F, there are $\alpha_{4}=q^{4 n-4}$ possibilities for Q_{1}.
Proof. Reason again in the projective space $\operatorname{Res}_{\Delta}(x) \cong \mathrm{PG}(2 n-1, q)$. The number of possibilities for Q_{1} is equal to the number of lines of $\operatorname{Res}_{\Delta}(x)$ disjoint with a given $(2 n-3)$-dimensional subspace. This number is equal to $q^{4 n-4}$.
Step 5: For given x, y, F and Q_{1}, there are

$$
\alpha_{5} \cdot \lambda(n-1):=\frac{\lambda(n-1)}{(q+1)\left(q^{3}+1\right) \cdots\left(q^{2 n-3}+1\right) q^{(n-1)^{2}}}
$$

possibilities for Y.
Proof. The SDPS-set Y of F must contain x and $\pi_{F}(y)$. By Lemma 3.10, there are

$$
\frac{\lambda(n-1)}{(q+1)\left(q^{3}+1\right) \cdots\left(q^{2 n-3}+1\right) q^{(n-1)^{2}}}
$$

possibilities for Y.
Step 6: For given x, y, F, Q_{1} and Y, there are $\alpha_{6}=\frac{q^{2 n-2}-1}{q^{2}-1}\left(q^{2}-1\right)\left(q^{2}-q\right)$ possibilities for Q_{2}.
Proof. Since Q_{1} and Q_{2} are X-special quads and intersect in a point of X, the convex suboctagon $\left\langle Q_{1}, Q_{2}\right\rangle$ is also X-special and hence intersects F in an X-special quad. This quad is necessarily Y-special. The set of Y special quads of F through y is equal to the number of lines of $D W\left(2 n-3, q^{2}\right)$ through a given point of $D W\left(2 n-3, q^{2}\right)$, i.e. equal to $\frac{q^{2 n-2}-1}{q^{2}-1}$. If $\left\langle Q_{1}, Q_{2}\right\rangle \cap F$ is known, then also $\left\langle Q_{1}, Q_{2}\right\rangle$ is known, since $\left\langle Q_{1}, Q_{2}\right\rangle=\left\langle Q_{1},\left\langle Q_{1}, Q_{2}\right\rangle \cap F\right\rangle$.

Now, suppose U is a convex suboctagon through Q_{1} intersecting F in a quad. We count the number of quads of U through x which have no line in common with Q_{1} and $F \cap U$. This number is equal to the number of lines of $\mathrm{PG}(3, q)$ which are disjoint with the union of two given mutually disjoint lines of $\mathrm{PG}(3, q)$. This number equals $\left(q^{2}-1\right)\left(q^{2}-q\right)$.

In conclusion, we can say that there are precisely $\alpha_{6}=\frac{q^{2 n-2}-1}{q^{2}-1}\left(q^{2}-1\right)\left(q^{2}-\right.$ q) possibilities for Q_{2}.

Step 7: For given x, y, F, Q_{1}, Y and Q_{2}, there is at most one possibility for X.
Proof. This is precisely Lemma 3.12.

By Steps 1 till 7, there are at most

$$
\lambda(n-1) \cdot \prod_{i=1}^{6} \alpha_{i}
$$

possible tuples $\left(x, y, Q_{1}, Q_{2}, F, Y, X\right)$. Via a second counting we will calculate the precise number of such tuples.

Step 8: There are $\lambda(n)$ possibilities for X.
Proof. By definition of $\lambda(n)$.
Step 9: For given X, there are $\alpha_{7}=\left(q^{2}+1\right)\left(q^{4}+1\right) \cdots\left(q^{2 n}+1\right)$ possibilities for x.
Proof. This is precisely the number of points of $D W\left(2 n-1, q^{2}\right)$.
Step 10: For given X and x, there are $\alpha_{8}=q^{2+4+\cdots+2 n}$ possibilities for y.
Proof. This is precisely the number of points of $D W\left(2 n-1, q^{2}\right)$ which are opposite to a given point of $D W\left(2 n-1, q^{2}\right)$.
Step 11: For given X, x and y, there are precisely $\alpha_{9}=\frac{q^{2 n}-1}{q^{2}-1} \cdot q^{2 n-2} \cdot\left(q^{2 n-2}-\right.$ 1) possibilities for $\left(F, Q_{1}, Q_{2}\right)$.

Proof. Let $D W\left(2 n-1, q^{2}\right)$ denote the dual polar space associated with the SDPS-set X. The convex subspaces of $D W\left(2 n-1, q^{2}\right)$ through x define a projective space isomorphic to $\operatorname{PG}\left(n-1, q^{2}\right)$. F corresponds with a hyperplane of this projective space and Q_{1} and Q_{2} correspond with two distinct points of this projective space not contained in that hyperplane. It follows that there are $\alpha_{9}=\frac{q^{2 n}-1}{q^{2}-1} \cdot q^{2 n-2} \cdot\left(q^{2 n-2}-1\right)$ possibilities for $\left(F, Q_{1}, Q_{2}\right)$.
Step 12: For given X, x, y, F, Q_{1} and Q_{2}, there is only one possibility for Y.
Proof. This follows from the fact that $Y=F \cap X$.

Summarizing, we can say that there are $\lambda(n) \cdot \prod_{i=7}^{9} \alpha_{i}$ possible tuples $\left(x, y, Q_{1}, Q_{2}, F, X\right)$. By the first discussion, we know that

$$
\lambda(n) \cdot \prod_{i=7}^{9} \alpha_{i} \leq \lambda(n-1) \cdot \prod_{i=1}^{6} \alpha_{i} .
$$

It follows that

$$
\lambda(n) \leq \frac{\prod_{i=1}^{6} \alpha_{i}}{\prod_{i=7}^{9} \alpha_{i}} \cdot \lambda(n-1)=q^{4 n-2} \cdot\left(q^{4 n-2}-1\right) \cdot \lambda(n-1) .
$$

Since $\lambda(1)=\frac{q^{2}\left(q^{2}-1\right)}{2}$, we have:
Corollary 3.14 There are at most $\frac{1}{2} q^{2 n^{2}}\left(q^{2}-1\right)\left(q^{6}-1\right) \cdots\left(q^{4 n-2}-1\right)$ classical SDPS-sets in the dual polar space $D W(4 n-1, q), n \geq 1$.

3.3 Subtended SDPS-sets

We mention the following two propositions which we take from De Bruyn [6] (Theorems 1.5 and 1.6).

Proposition 3.15 ([6]) Up to isomorphism, there exists a unique isometric embedding of $D W(2 n-1, q)$ into $D H\left(2 n-1, q^{2}\right)(n \geq 2)$.

Proposition 3.16 ([6]) Let Δ be a dual polar space isomorphic to $D W(2 n-$ $1, q), n \geq 2$, which is isometrically embedded into the dual polar space $\Delta^{\prime}=$ DH $\left(2 n-1, q^{2}\right)$. Then the following holds:
(i) $\max \left\{d(x, \Delta) \mid x \in \Delta^{\prime}\right\}=\left\lfloor\frac{n}{2}\right\rfloor$;
(ii) if $d(x, \Delta)=\delta$, then $\Delta_{\delta}(x) \cap \Delta$ is an SDPS-set in a convex subspace of diameter 2δ of Δ;
(iii) if n is even, then the set of points of Δ^{\prime} at distance at most $\frac{n}{2}-1$ from Δ is a hyperplane of Δ^{\prime};
(iv) if n is even, then the complement of the hyperplane defined in (iii) has $q^{\frac{n^{2}}{2}}\left(q^{2}-1\right)\left(q^{6}-1\right) \cdots\left(q^{2 n-2}-1\right)$ points.

Now, let the dual polar space $\Delta=D W(4 n-1, q), n \geq 1$, be isometrically embedded into $D H\left(4 n-1, q^{2}\right)$ and let H be the hyperplane of $D H\left(4 n-1, q^{2}\right)$ which consists of all points of $D H\left(4 n-1, q^{2}\right)$ at distance at most $n-1$ from Δ. If x belongs to the complement \bar{H} of H, then $\Delta_{n}(x) \cap \Delta$ is an SDPS-set of $D W(4 n-1, q)$ by Proposition 3.16 (ii). We call any SDPS-set which can be obtained in this way a subtended SDPS-set.

Lemma 3.17 Any two subtended SDPS-sets of $\Delta=D W(4 n-1, q), n \geq 1$, are isomorphic.

Proof. By Shult [16, Lemma 6.1], the complement \bar{H} of the hyperplane H is connected. Hence, it suffices to show the following: if x_{1} and x_{2} are two
collinear points of \bar{H}, then $\Delta_{n}\left(x_{1}\right) \cap \Delta$ and $\Delta_{n}\left(x_{2}\right) \cap \Delta$ are isomorphic SDPSsets of Δ. Let y denote the unique point of the line $x_{1} x_{2}$ at distance $n-1$ from $\Delta=D W(4 n-1, q)$. Then $\Delta_{n-1}(y) \cap \Delta$ is an SDPS-set in a convex subspace F of diameter $2 n-2$ of Δ. Let M denote an arbitrary max of Δ containing F. Let \bar{F} (respectively \bar{M}) denote the unique convex subspace of diameter $2 n-2$ (respectively $2 n-1$) of $D H\left(4 n-1, q^{2}\right)$ containing F (respectively M). Notice that $y \in \bar{F}$ since by Proposition 3.16 (ii) y is contained on a shortest path between two points of $\Delta_{n-1}(y) \cap \Delta$ at maximal distance $2 n-2$ from each other. Now, the embedding of M into \bar{M} is isometric. By Proposition 3.16 (i), it follows that the maximal distance from a point of M to \bar{M} is equal to $n-1$. This implies that $x_{1} x_{2} \cap \bar{M}=y$. By Lemma 3.9, there exists an automorphism θ of $D H\left(2 n-1, q^{2}\right)$ satisfying the following properties:
(1) θ fixes \bar{M} point-wise and every line meeting \bar{M} set-wise;
(2) $\theta\left(x_{1}\right)=x_{2}$.

Now, since M is a max of $D W(4 n-1, q)$, there exist a collection of lines of $D W(4 n-1, q)$ meeting M which cover the whole point-set of $D W(4 n-1, q)$. Each line of this collection is fixed by θ. Hence, $\theta(\Delta)=\Delta$. It follows that $\theta\left(\Delta_{n}\left(x_{1}\right) \cap \Delta\right)=\Delta_{n}\left(x_{2}\right) \cap \Delta$. This is precisely what we needed to show.

The question which one can ask now is whether that there exist two points x_{1} and x_{2} in \bar{H} such that $\Delta_{n}\left(x_{1}\right) \cap \Delta=\Delta_{n}\left(x_{2}\right) \cap \Delta$. The answer is affirmative for the case $n=1$. If one looks to the case of an isometric embedding of $Q(4, q)$ into $Q(5, q)$, then every classical ovoid of $Q(4, q)$ is subtended by precisely two points of $Q(5, q) \backslash Q(4, q)$. We will prove that a similar property holds for every $n \geq 2$. In Section 3.4, we prove the following:

Lemma 3.18 (Section 3.4) If X is an SDPS-set of $\Delta=D W(4 n-1, q)$, $n \geq 1$, then there are at most 2 points $x \in \bar{H}$ such that $\Delta_{n}(x) \cap \Delta=X$.

Corollary 3.19 There are at least $\frac{|\bar{H}|}{2}=\frac{1}{2} q^{2 n^{2}}\left(q^{2}-1\right)\left(q^{6}-1\right) \cdots\left(q^{4 n-2}-1\right)$ subtended SDPS-sets in $D W(4 n-1, q), n \geq 1$.

Combining this with Corollary 3.14, we find that
Theorem 3.20 (1) There are precisely $\frac{1}{2} q^{2 n^{2}}\left(q^{2}-1\right)\left(q^{6}-1\right) \cdots\left(q^{4 n-2}-1\right)$ classical SDPS-sets in $D W(4 n-1, q), n \geq 1$.
(2) Every classical SDPS-set of $D W(4 n-1, q), n \geq 1$, is subtended.
(3) All classical SDPS-sets of $D W(4 n-1, q), n \geq 1$, are isomorphic.

3.4 Proof of Lemma 3.18

Lemma 3.21 Let $D W(4 n-1, q)$, $n \geq 1$, be isometrically embedded into $D H\left(4 n-1, q^{2}\right)$. Let x be a point of $D H\left(4 n-1, q^{2}\right)$ at distance n from $D W(4 n-1, q)$ and let X be the $S D P S$-set $\Delta_{n}(x) \cap D W(4 n-1, q)$ of $D W(4 n-$ $1, q)$. For every line L of $D H\left(4 n-1, q^{2}\right)$ through x, let y_{L} denote the unique point of L at distance $n-1$ from $D W(4 n-1, q)$ and let F_{L} denote the unique convex subspace of diameter $2 n-2$ of $D W(4 n-1, q)$ containing all points of $\Delta_{n-1}\left(y_{L}\right) \cap D W(4 n-1, q)$. Then the map $L \mapsto F_{L}$ is a bijection between the set of lines of $D H\left(4 n-1, q^{2}\right)$ through x and the set of X-special convex subspaces of diameter $2 n-2$ of $D W(4 n-1, q)$.

Proof. Since there are as many lines in $D H\left(4 n-1, q^{2}\right)$ through x as there are X-special convex subspaces of diameter $2 n-2$ in $D W(4 n-1, q)$, namely $1+q^{2}+\ldots+q^{4 n-2}=\left(1+q^{2 n}\right)\left(1+q^{2}+\cdots+q^{2 n-2}\right)$, it suffices to show injectivity.

For every X-special convex subspace F of diameter $2 n-2$ of $D W(4 n-$ $1, q)$, the unique convex subspace \bar{F} of diameter $2 n-2$ of $D H\left(4 n-1, q^{2}\right)$ containing F only contains points at distance at most $n-1$ from F (and hence also from $D W(4 n-1, q))$ by Proposition 3.16 (i). Hence, there exists at most one line through x meeting \bar{F}. If L is a line through x such that $F_{L}=F$, then by Proposition 3.16 (ii), y_{L} is contained on a shortest path between two points of $F \cap \Delta_{n-1}\left(y_{L}\right)$ at maximal distance $2 n-2$ from each other. It follows that $y_{L} \in \bar{F}$, i.e. L meets \bar{F}. The injectivity now readily follows.

Lemma 3.22 Let $D W(4 n-1, q), n \geq 1$, be isometrically embedded into the dual polar space $D H\left(4 n-1, q^{2}\right)$ and let X be an SDPS-set of $D W(4 n-$ $1, q$). Let F_{1} and F_{2} be two X-special convex subspaces of diameter $2 n-2$ of $D W(4 n-1, q)$ such that $\left(F_{1} \cap X\right) \cap\left(F_{2} \cap X\right)=\emptyset$. Let $\overline{F_{i}}, i \in\{1,2\}$, denote the unique convex subspace of diameter $2 n-2$ of $D H\left(4 n-1, q^{2}\right)$ containing F_{i}. Then $\overline{F_{1}}$ and $\overline{F_{2}}$ lie at maximal distance 2 from each other.

Proof. Let $D W\left(2 n-1, q^{2}\right)$ denote the dual polar space defined on the set X by the X-special quads and let $\mathrm{d}(\cdot, \cdot)$, respectively $\delta(\cdot, \cdot)$, denote the distance function in $D H\left(4 n-1, q^{2}\right)$, respectively $D W\left(2 n-1, q^{2}\right)$. Let x_{1} and y_{1} be two points of $F_{1} \cap X$ such that $\delta\left(x_{1}, y_{1}\right)=n-1$ and let x_{2} and y_{2} be the unique points of $F_{2} \cap X$ such that $\delta\left(x_{1}, x_{2}\right)=\delta\left(y_{1}, y_{2}\right)=1$. Then $\delta\left(x_{2}, y_{2}\right)=n-1$, $\delta\left(x_{1}, y_{2}\right)=n$ and $\delta\left(x_{2}, y_{1}\right)=n$. It follows that $\mathrm{d}\left(x_{1}, y_{1}\right)=\mathrm{d}\left(x_{2}, y_{2}\right)=2 n-2$,
$\mathrm{d}\left(x_{1}, x_{2}\right)=\mathrm{d}\left(y_{1}, y_{2}\right)=2$ and $\mathrm{d}\left(x_{1}, y_{2}\right)=\mathrm{d}\left(x_{2}, y_{1}\right)=2 n$. If $\left\langle x_{1}, x_{2}\right\rangle \cap \overline{F_{2}}$ is a line L, then $\mathrm{d}\left(x_{1}, y_{2}\right) \leq \mathrm{d}\left(x_{1}, \pi_{L}\left(x_{1}\right)\right)+\mathrm{d}\left(\pi_{L}\left(x_{1}\right), y_{2}\right) \leq 1+(2 n-2)=2 n-1$, a contradiction. Hence, $\left\langle x_{1}, x_{2}\right\rangle \cap \overline{F_{2}}=\left\{x_{2}\right\}$. Similarly, $\left\langle x_{1}, x_{2}\right\rangle \cap \overline{F_{1}}=\left\{x_{1}\right\}$. So, the triple $\left(\left\langle x_{1}, x_{2}\right\rangle, \bar{F}_{1}, F_{2}\right)$ satisfies the conditions of Lemma 3.3. It follows that $\overline{F_{1}}$ and $\overline{F_{2}}$ lie at maximal distance 2 from each other.

The following lemma is precisely Lemma 3.18.
Lemma 3.23 Let $D W(4 n-1, q), n \geq 1$, be isometrically embedded in $D H\left(4 n-1, q^{2}\right)$ and let X be a classical SDPS-set of $D W(4 n-1, q)$. Then there exist at most two points x in $D H\left(4 n-1, q^{2}\right)$ at distance n from $D W(4 n-$ $1, q)$ such that $\Delta_{n}(x) \cap D W(4 n-1, q)=X$.

Proof. We will prove this by induction on n. As already remarked above the lemma holds for $n=1$ since every classical ovoid of $Q(4, q)$ is subtended by precisely two points of $Q(5, q) \backslash Q(4, q)$. So, suppose $n \geq 2$ and that the lemma holds for smaller values of n.

Let F^{*} denote a given X-special convex subspace of diameter $2 n-2$ of $D W(4 n-1, q)$ and let $\overline{F^{*}}$ denote the unique convex subspace of diameter $2 n-2$ of $D H\left(4 n-1, q^{2}\right)$ containing F^{*}. Then by the induction hypothesis, there exists at most two and hence precisely two (see the end of Section 3.3) points x_{1} and x_{2} in $\overline{F^{*}}$ at distance $n-1$ from F^{*} such that $\Delta_{n-1}\left(x_{1}\right) \cap F^{*}=$ $\Delta_{n-1}\left(x_{2}\right) \cap F^{*}=F^{*} \cap X$. By Lemma 3.21, if x is a point of $D H\left(4 n-1, q^{2}\right)$ at distance n from $D W(4 n-1, q)$ such that $\Delta_{n}(x) \cap D W(4 n-1, q)=X$, then x is collinear with either x_{1} or x_{2}. So, it suffices to show the following:
$(*)$ there exists at most one point x in $D H\left(4 n-1, q^{2}\right)$ at distance n from $D W(4 n-1, q)$ such that $\Delta_{n}(x) \cap D W(4 n-1, q)=X$ and x is collinear with x_{1}.

Now, for every X-special convex subspace F of diameter $2 n-2$ of $D W$ (4n$1, q$), we construct a point x_{F} of the unique convex subspace \bar{F} of diameter $2 n-2$ of $D H\left(4 n-1, q^{2}\right)$ containing F. If $F=F^{*}$, then we define $x_{F}=x_{1}$. If F is disjoint from F^{*}, then x_{F} denotes the unique point of \bar{F} at distance 2 from x_{1} (see Lemma 3.22). If $F \neq F^{*}$ and F^{*} meet, then take an X-special convex subspace F^{\prime} of diameter $2 n-2$ of $D W(4 n-1, q)$ disjoint from F and F^{*} (cf. Lemma 3.4) and let x_{F} denote the unique point of \bar{F} at distance 2 from $x_{F^{\prime}}$ (see Lemma 3.22). Let U denote the set of all points x_{F}, where F is an X-special convex subspace of diameter $2 n-2$ of $D W(4 n-1, q)$.

Suppose x is a point of $D H\left(4 n-1, q^{2}\right)$ at distance n from $D W(4 n-1, q)$ such that $\Delta_{n}(x) \cap D W(4 n-1, q)=X$ and x is collinear with x_{1}. If F is an X-special convex subspace of diameter $2 n-2$ of $D W(4 n-1, q)$ disjoint from F^{*}, then the unique point of \bar{F} collinear with x has distance 2 from x_{1} and hence coincides with x_{F}. Now, let $F \neq F^{*}$ be an X-special convex subspace of diameter $2 n-2$ of $D W(4 n-1, q)$ meeting F^{*} and take F^{\prime} as above. We already know that $x_{F^{\prime}}$ is collinear with x. Now, the unique point of \bar{F} collinear with x (see Lemma 3.21) has distance 2 from $x_{F^{\prime}}$ and hence coincides with x_{F}.

Hence, we can say the following: if x is a point of $D H\left(4 n-1, q^{2}\right)$ at distance n from $D W(4 n-1, q)$ such that $\Delta_{n}(x) \cap D W(4 n-1, q)=X$ and x is collinear with x_{1}, then x is collinear with every point of U. So, in order to establish $(*)$, it suffices to show that there is at most one point at distance n from $D W(4 n-1, q)$ which is collinear with all points of U. Notice that if such a point exists, then U consists of points at mutual distance 2 from each other. Let u_{1} and u_{2} be two arbitrary distinct points of U. Then we may suppose that $\mathrm{d}\left(u_{1}, u_{2}\right)=2$. Let Q be a quad of $\left\langle u_{1}, u_{2}\right\rangle$. Since $|U|$ is equal to the number of lines of $D H\left(2 n-1, q^{2}\right)$ through x, i.e. $1+q^{2}+\ldots+q^{4 n-2}$, not all points of U are contained in Q. Let u_{3} be a point of $U \backslash Q$. Then x (if it exists) necessarily coincides with the unique point of Q collinear with u_{3}. [Notice that x must be contained in Q since it is collinear with u_{1} and u_{2}.]

References

[1] S. Ball, P. Govaerts and L. Storme. On ovoids of parabolic quadrics. Des. Codes Cryptogr. 38 (2006), 131-145.
[2] A. Barlotti. Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. 10 (1955), 96-98.
[3] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75-85.
[4] B. De Bruyn. Near polygons. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[5] B. De Bruyn. A characterization of the SDPS-hyperplanes of dual polar spaces. European J. Combin., to appear.
[6] B. De Bruyn. Isometric full embedding of $D W(2 n-1, q)$ into $D H(2 n-$ 1, q^{2}). Finite Fields Appl., to appear.
[7] B. De Bruyn and P. Vandecasteele. Valuations of near polygons. Glasg. Math. J. 47 (2005), 347-361.
[8] B. De Bruyn and P. Vandecasteele. Valuations and hyperplanes of dual polar spaces. J. Combin. Theory Ser. A 112 (2005), 194-211.
[9] W. M. Kantor. Ovoids and translation planes. Canad. J. Math. 34 (1982), 1195-1207.
[10] C. M. O'Keefe and T. Penttila. Ovoids of $\mathrm{PG}(3,16)$ are elliptic quadrics. J. Geom. 38 (1990), 95-106.
[11] C. M. O'Keefe and T. Penttila. Ovoids of $\operatorname{PG}(3,16)$ are elliptic quadrics, II. J. Geom. 44 (1992), 140-159.
[12] G. Panella. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 10 (1955), 507-513.
[13] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles. Research Notes in Mathematics 110. Pitman, Boston, 1984.
[14] T. Penttila and B. Williams. Ovoids of parabolic spaces. Geom. Dedicata 82 (2000), 1-19.
[15] H. Pralle and S. Shpectorov. The ovoidal hyperplanes of a dual polar space of rank 4. Adv. Geom., to appear.
[16] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299-316.
[17] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1-72.
[18] J. A. Thas and S. E. Payne. Spreads and ovoids in finite generalized quadrangles. Geom. Dedicata 52 (1994), 227-253.
[19] J. Tits. Ovoïdes et groupes de Suzuki. Arch. Math. 13 (1962), 187-198.

[^0]: *Postdoctoral Fellow of the Research Foundation - Flanders

