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Abstract

SDPS-sets are very nice sets of points in dual polar spaces which
themselves carry the structure of dual polar spaces. They were intro-
duced in [8] because they gave rise to new valuations and hyperplanes
of dual polar spaces. In the present paper, we show that the symplec-
tic dual polar space DW (4n — 1,¢q), n > 2, has up to isomorphisms a
unique SDPS-set.
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1 Introduction

1.1 Basic definitions and properties

Let II be a non-degenerate polar space of rank n > 2. With II there is
associated a point-line geometry A whose points are the maximal singular
subspaces of II, whose lines are the next-to-maximal singular subspaces of II
and whose incidence relation is reverse containment. We call A a dual polar
space. By Shult and Yanushka [17] and Cameron [3] (see also De Bruyn
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[4]), A is a near polygon which means that for every point p and every
line L, there exists a unique point on L nearest to p. The distance d(z,y)
between two points x and y of A is measured in the point or collinearity
graph of A. For every point z, for every nonempty subset X of the point-
set P of A and for every i € N, we define A;(z) := {y € P|d(z,y) = i},
Ar() = {y € P|d(z,y) < i}, o == Al(x), d(z, X) = min{d(z,y)|y €
X}, A(X) = {y € P d(y, X) = i} and A;(X) = {y € P|d(y.X) < i}.
If X; and X, are two nonempty sets of points, then we define d(X, X5) :=
min{d(z1,zs) | z1 € X7 and x5 € X},

We will denote a dual polar space by putting a “D” in front of the name
of the corresponding polar space. The dual polar spaces we will meet in
this paper are the symplectic dual polar space DW (2n — 1,q) related to
a symplectic polarity of the projective space PG(2n — 1,¢q), the hermitian
dual polar space DH(k,q?) related to a non-singular hermitian variety in
PG(k,¢*) and the orthogonal dual polar space DQ™(2n + 1,q) related to a
non-singular elliptic quadric in PG(2n + 1, q).

There exists a bijective correspondence between the nonempty convex
subspaces of a dual polar space A of rank n > 2 and the possibly empty
singular subspaces of the associated polar space II: if « is a singular subspace
of II, then the set of all maximal singular subspaces containing « is a convex
subspace of A. Conversely, every convex subspace of A is obtained in this
way. The maximal distance between two points of a convex subspace A is
called the diameter of A and is denoted by diam(A). The convex subspaces
of diameter 0 and 1 are the points and lines of A. The convex subspaces
of diameter 2, 3, respectively n — 1, are called the quads, hezes, respectively
mazxes, of A. The convex subspaces through a given point z of A determine a
projective space of dimension n—1. If x and y are two points of A, then (z,y)
denotes the smallest convex subspace containing = and y, i.e. (x,y) is the
intersection of all convex subspaces containing x and y. More generally, we
will use the notation (xj,%*s,..., %) to denote the smallest convex subspace
containing the objects 1, %o, ..., %, (which can be points, lines, quads, etc.).
If z is a point and A is a nonempty convex subspace of A, then A contains a
unique point 74 (x) nearest to x and d(x,y) = d(z, 7a(x)) + d(7a(z),y) for
every point y of A. We call ma(x) the projection of x onto A. If Fy and F
are two convex subspaces of A of respective diameters d; and s, then either
F1 ﬂFg = @ or (Fl ﬂFQ 7é @ and d1am(F1 N FQ) Z 61 +52 - n)

A hyperplane of a dual polar space A is a proper subspace meeting each
line (necessarily in a unique point or the whole line). Since A is a near
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polygon, the set H, of points at non-maximal distance from a given point x
is a hyperplane of A, called the singular hyperplane with deepest point x.

A function f from the point-set of a dual polar space A to N is called a
valuation of A if it satisfies the following properties (we call f(z) the value
of z):

(V1) there exists at least one point with value 0;

(V2) every line L of A contains a unique point x; with smallest value
and f(z) = f(zr) + 1 for every point x of L different from x;

(V3) every point = of A is contained in a necessarily unique convex sub-
space F such that the following properties are satisfied for every y € F,: (i)
fly) < f(=x); (ii) if z is a point collinear with y such that f(z) = f(y) — 1,
then z € F.

Valuations were introduced in De Bruyn and Vandecasteele [7] in the con-
text of general near polygons. They are important structures for the fol-
lowing purposes: (1) classification of near polygons; (2) study of isometric
embeddings between near polygons; (3) construction of hyperplanes of near
polygons, in particular of dual polar spaces; (4) characterizations of classes
of hyperplanes of dual polar spaces. The construction of hyperplanes from
valuations is explained in the following proposition:

Proposition 1.1 (Proposition 2 of [8]) Let f be a valuation of a dual po-
lar space A and let M denote the maximal value attained by f. Then the set
of points with value at most M — 1 is a hyperplane Hy of A.

Let A be a thick dual polar space of rank 2n, n > 0. (We take the
following convention: a dual polar space of rank 0 is a point and a dual polar
space of rank 1 is a line.) A set X of points of A is called an SDPS-set (SDPS
= sub dual polar space) of A if it satisfies the following properties:

(1) No two points of X are collinear in A.

(2) If z,y € X such that d(z,y) = 2, then X N (z,y) is an ovoid of the
quad (z,y).

(3) The point-line geometry A whose points are the elements of X and
whose lines are the quads of A containing at least two points of X (natural
incidence) is a dual polar space of rank n.

(4) For all z,y € X, d(z,y) =2-6(x,y). Here, d(x,y) and 6(x,y) denote
the distances between x and y in the respective dual polar spaces A and A.

(5) If x € X and if L is a line of A through z, then L is contained in a
quad of A which contains at least two points of X.



SDPS-sets in thick dual polar spaces of rank 2n were introduced by De Bruyn
and Vandecasteele [8] for general n, and independently (although not using
this terminology) by Pralle and Shpectorov [15] for n = 2. Note that condi-
tion (5) is only implicitly in [8]. In [8], we only considered finite dual polar
spaces and the possibilities for (A, A) listed there force condition (5) to hold.
All the proofs mentioned in [8] are still valid in the infinite case (after a slight
modification) if one assumes that the extra condition (5) holds, see Sections
5.8, 5.9 and 5.10 of De Bruyn [4].

Proposition 1.2 (Theorem 4 of De Bruyn and Vandecasteele [8])
Let X be an SDPS-set of a thick dual polar space A of rank 2n > 0. For
every point x of A, we define f(x) := d(x, X). Then f is a valuation of A.

By Propositions 1.1 and 1.2, with every SDPS-set of a thick dual polar space
A, there is associated a hyperplane of A. For a characterization of these
hyperplanes, we refer to De Bruyn [5].

An SDPS-set of a dual polar space of rank 0 consists of the unique point of
this dual polar space. An SDPS-set of a thick generalized quadrangle () is an
ovoid of (). The dual polar spaces DQ~(4n+1,q) and DW (4n — 1, q) admit
SDPS-sets for every n > 2, see De Bruyn and Vandecasteele [8] or Pralle and
Shpectorov [15]. The following proposition has been proved in De Bruyn [4,
Theorem 5.31], but its proof relies very much on Pralle and Shpectorov [15]:

Proposition 1.3 ([4], [15]) If X is an SDPS-set of a finite thick dual polar
space A of rank 2n > 4 and if A denotes the associated dual polar space of
rank n, then one of the following cases occurs:

(1) A~ DW(4n —1,q) and A = DW (2n — 1,4°) for some prime power
q- If Q is a quad containing two points of X, then QN X 1is a classical ovoid
of Q, i.e. an elliptic quadric Q= (3,q) in Q = Q(4,q).

(2) A= DQ (4n+1,q) and A = DH(2n,q?) for some prime power q.
If Q) is a quad containing two points of X, then QN X 1is a classical ovoid of
Q, i.e. a unital H(2,q*) in Q = H(3,¢%).

1.2 The Main Theorem of this paper

SDPS-sets of thick dual polar spaces are important objects because of their
connection with valuations and hyperplanes of dual polar spaces. They are
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also handy to describe isometric embeddings of the symplectic dual polar
space DWW (2n — 1, ¢) into the hermitian dual polar space DH (2n —1,¢?), see
De Bruyn [6]. In the finite case, there are only two possibilities by Proposition
1.3, and although quite much is already known about the structure of the
respective SDPS-sets, the uniqueness questions were not yet settled. In this
paper, we will prove the uniqueness for one of the two cases.

Main Theorem. The dual polar space DW (4n —1,q), n > 2, admits up to
isomorphisms a unique SDPS-set.

We will end this section with a construction of the unique SDPS-set of
DW(4n —1,q), n > 2. Consider the finite field F2 with ¢* elements and
let IF, denote the unique subfield of order ¢ of Fp. Let 1 denote an ar-
bitrary element of Fp \ F,. Then Fp = {21 + zon|z1,22 € F,}; define
T :Fp — Fg, 21 + 29 — x;. Consider the following bijection ¢ between the
vector spaces F," and FZ':

O(x1, 29, ..., Tan) = (X1 +NT2y ..., Tap_1 + NTap)-

If (-,-) is a non-degenerate symplectic form of F2, then 7((¢(-), #(-))) is
a non-degenerate symplectic form in ]Fflm. If o is a totally isotropic n-
dimensional subspace of Fg?, then ¢~!(a) is a 2n-dimensional totally isotropic

subspace of F3". In this way we obtain an “embedding” of DW(2n — 1,¢?)
in DW(4n — 1, q), giving rise to an SDPS-set of DW (4n — 1, q).

2 The SDPS-sets of DWW (3, q)

The conclusion of the Main Theorem does not hold if n = 1. The SDPS-sets
of DW (3, q) are precisely the ovoids of Q(4, q). Several classes of non-classical
ovoids of (4, q) exist:

e For each prime power ¢ = p”, p odd prime power and h > 2, there is a
class of non-classical ovoids of Q(4, q) due to Kantor [9].

e For each prime power g = 221 n > 1, there is a class of non-classical
ovoids in Q(4, ¢q) due to Tits [19].

e For each prime power g = 3*"™! n > 1, there is a class of non-classical
ovoids of (4, ¢) due to Kantor [9].
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e For each prime power ¢ = 3", h > 3, there is a class of non-classical
ovoids of (4, ¢) due to Thas and Payne [18].

e The generalized quadrangle (4, 3%) has a class of non-classical ovoids
due to Penttila and Williams [14].

For several prime powers ¢ it is known that all ovoids of (4, q) are classical.

Proposition 2.1 o (2], [12]) Every ovoid of Q(4,4) is classical.
e ([10], [11]) Every ovoid of Q(4,16) is classical.

e ([1]) Every ovoid of Q(4,q), q prime, is classical.

3 Proof of the Main Theorem

3.1 Some lemmas

We first prove some lemmas will be important during the proof of the Main
Theorem.

Lemma 3.1 Let F be a convex subspace of a dual polar space A of rank n >
2 and let x1 and x be two collinear points of A. Then d(mp(x1), 7r(x2)) < 1.
Proof. Straightforward, see e.g. De Bruyn [4, Theorem 1.9]. u

Lemma 3.2 Let A be a dual polar space of rank n > 2 and let Fy and Fy be
two convez subspaces of diameter § € {0,...,n} of A which lie at maximal
distance n — 0 from each other. Then the map Fy — Fp;x — 7R, (x) defines
an isomorphism from Fy to F5.

Proof. Straightforward, see e.g. De Bruyn [4, Theorem 1.10]. u

Lemma 3.3 Let A be a dual polar space of rank n > 2. Let F denote a
convex subspace of diameter § € {0,...,n} of A, let x1, x5 be points of F at
mazximal distance § from each other and let F;, i € {1,2}, denote a convex
subspace of diameter n —§ through x; such that FNF; = {x;}. Then F| and
Fy lie at maximal distance § from each other.



Proof. Since diam(F}) = diam(Fy) = n — 6, d(z, F3) < § for every point x
of Fy. Let y; € I} and yo € F5 with d(y1,y2) as small as possible. For every
i € {1,2}, the point mr(y;) is contained on a shortest path between y; and z;
and hence is contained in F' N F; = {x;}. This proves that mp(y;) = x; and
7r(y2) = x2. Considering a shortest path between y; and ys and applying
Lemma 3.1, we obtain § = d(x1,22) < d(y1,¥2). On the other hand, we
already knew that d(yi,y2) = d(Fi, F3) < 0. This proves that d(Fy, Fy) = 0.

Lemma 3.4 Let My and My be two mazxes of a dual polar space A of rank
n > 2 which meet each other. Then there exists a max Ms of A which is
disjoint from M and M.

Proof. Let y € M;N M, and let z € A;(y) not contained in My U Ms. Then
any max through x not containing the line zy is disjoint from M; and M. =

Lemma 3.5 LetI' denote the graph on the line set of DW (2n—1,q), n > 2,
with two vertices of I' adjacent whenever the corresponding lines are disjoint
and contained in a quad of DW(2n —1,q). Then T is connected.

Proof. Let L; and L, denote two arbitrary lines of DW (2n — 1, ¢). We will
prove by induction on d(Ly, Ly) that there exists a path in I connecting L,
and L.

Suppose first that d(Lq, L) = 0. If Ly = Lo, then we are done. So,
suppose L; # Ls. Then Ly and Ly are contained in a quad Q = Q(4,q). If
L3 is a line of @) disjoint from L; and Lo, then (Li, L3, Ly) is a path in T

Suppose next that d(L;, Ly) > 1 and let 1 € Ly and x9 € Ly such that
d(z1,29) = d(Ly, Ly). Let z3 be a point of Aj(zy) at distance d(L;, La) — 1
from z;. Let L3 denote a line through x3 contained in the quad (z3, Ls), but
different from x3x,. Then Lo, and L3 are adjacent in I'. By the induction
hypothesis, there exists a path in I' connecting L, and L3. Hence, there also
exists a path in I' connecting L, and L. "

Lemma 3.6 Let My and M, be two disjoint mazxes of the dual polar space
DW(2n —1,q), n > 2. Then there exists a unique set {My, Ma, ..., M1}
of mutually disjoint maxes with the property that every line meeting My and
My also meets M;, i € {3,...,q+ 1}. If z is a point of DW(2n — 1,q) not
contained in My U My U ---U Mgy1, then there exists a unique quad through
z which intersects each M;, i € {1,...,q+ 1}, in a line.



Proof. Let z;, i € {1,2}, denote the point of the polar space W (2n —
1,q) corresponding with M;. Since M; and M, are disjoint, the points x;
and xo are contained in a hyperbolic line {z1,xa,..., 2441} Let M;, i €
{3,...,q+1}, denote the max of DW(2n—1, q) corresponding with z;. Then
{My, My, ..., My} is aset of mutually disjoint maxes with the property that
every line meeting M; and M, also meets M;, 1 € {3,...,q+ 1}.

Let u and v be two opposite points of M; and put Ly = (u, s, (u)) and
Ly = (v,mp(v)). Then by Lemma 3.3, L; and Ly lie at maximal distance
n — 1 from each other. There are now at most ¢ + 1 maxes which meet
every line connecting a point of M; with a point of M;, namely the ¢ + 1
maxes (w,7r,(w)), where w € L;. This proves the uniqueness of the set
{My, My, ..., M1}

Now, let z denote a point of DW (2n — 1, ¢) not contained in M; U My U
-+ U Mg41. Let z; denote the unique point of M; collinear with z and let
zo denote the unique point of My collinear with z;. Since z is not contained
in My UMyU---UMgyq, 221 # 2122. Obviously, the quad (221, 2129) is the
unique quad through z meeting M; and M, (necessarily in lines). This quad
also meets M;, i € {3,...,¢+ 1} in a line since 212 N M; # (). "

Lemma 3.7 A (¢ + 1) x (q + 1)-subgrid G of the generalized quadrangle
Q(4,q) is a maximal subspace of Q(4,q). In other words, the graph on the
set Q(4,q) \ G induced by the collinearity graph of Q(4,q) is connected.

Proof. By Payne and Thas [13, 2.3.1], any subspace of (4, ¢q) containing
G induces a subquadrangle of Q(4,¢). Now, the only proper subquadrangle
of Q(4,q) containing G is G itself, proving the lemma. .

Definition. Let X be an SDPS-set of A 2~ DW (4n—1,q), n > 1, and let A
denote the dual polar space isomorphic to DW (2n — 1, ¢*) associated with
X. A convex subspace F' of A is called X-special if it is of the form (xq, x5)
for two points z; and x5 of X. Since d(z1,22) = 2 - §(xy, z2), where 4(-,-)
denotes the distance function in E, every X-special convex subspace of A
has even diameter. If F'is an X-special convex subspace, then by De Bruyn
and Vandecasteele [8, Lemma 7], F'N X is an SDPS-set of /" and is a convex
subspace of A whose diameter is half the diameter of F regarded as convex
subspace of A. Also, by De Bruyn and Vandecasteele [8, Lemma 4] no two
distinct X-special quads can intersect in a line.



Lemma 3.8 Let X be an SDPS-set of A= DW(4n—1,q), n > 1, let x be a
point of X and let F' be an X -special convex subspace of A. Then mp(z) € X.

Proof. Let A denote the dual polar space isomorphic to DW(2n — 1,¢%)
associated with X. Let 2d denote the diameter of F'in A. Let d(-, ), respec-
tively 6(-, -), denote the distance function in A, respectively A. Since FNX is
a convex subspace of ﬁ, there exists a unique point y in F'NX nearest to z (in
ﬁ) Let z denote a point of F'N X such that d(y, z) = d. Then d(y, z) = 2d.
So, y and z are opposite points of F. Since d(x,z) = §(z,y) + (y, 2), we
have that d(z, z) = d(z,y) + d(y, z). Since d(y, z) attains its maximal value
2d, we necessarily have mp(z) = y € X. This proves the lemma. "

Lemma 3.9 Let M denote a max of the dual polar space A = DH(2n —
1,¢%), n > 2. Then there exists a group G of automorphisms of A satisfying
the following properties:

(1) every element of G fixres M point-wise and every line meeting M set-
wise;

(73) if L is a line meeting M in a unique point z, then G acts regularly

on L\ {z}.

Proof. Let V' denote a 2n-dimensional vector space over [F 2 equipped with
a non-degenerate hermitian form (-,-) which is linear in the first argument
and semi-linear in the second. Let H(2n — 1,¢?) and DH(2n — 1, ¢*) denote
the corresponding polar and dual polar space. Let (Z);) denote the point of
H(2n — 1,¢*) corresponding with the max M. For every k € Fp2 satisfying
k?+ k = 0, the linear map y +— 4y — k(y, Zps )Ty defines an automorphism of
H(2n — 1,¢?). The corresponding automorphism 6, of DH (2n — 1, ¢%) fixes
M point-wise and every line meeting M set-wise. It is straightforward to
verify that G := {0y | k € F,2 with k9 + k = 0} is a group of automorphisms
of DH(2n — 1,¢?) acting regularly on each set L\ {x}, where L is a line of
A meeting M in a unique point x. ]

3.2 Upper bound for the number of SDPS-sets

Definition. An SDPS-set X of DW (4n — 1,q), n > 1, is called classical if
@ N X is a classical ovoid of ) for every X-special quad (). By Proposition
1.3, every SDPS-set of DW (4n — 1,q) is classical if n > 2. Let A\(n), n > 1,
denote the number of classical SDPS-sets of DW (4n — 1,¢). The number of



classical ovoids of the generalized quadrangle Q(4, ¢) is equal to

¢*(q° — o)

A1) = 5

Lemma 3.10 The number of classical SDPS-sets containing two given op-
posite points of DW (4n —1,q), n > 1, is equal to

A(n)
(q+ (@ +1) (@ +1) - g

Proof. The automorphism group of DW (4n — 1,q) acts transitively on
the set of pairs of opposite points of DW(4n — 1,q). Hence, there exists
a constant X (n) such that every two opposite points of DW (4n — 1,q) are
contained in precisely X'(n) classical SDPS-sets. Counting in two different
ways the number of triples (X, z1,x3), where x; and xo are two opposite
points of DW (4n — 1, ¢) and where X is a classical SDPS-set containing the
points z; and x5 gives

(q+ 1@+ 1) (¢ + 1) - g T X (n)

=An) - (@ + 1)(g" +1) - (¢ + 1) - TR

(The dual polar space DW (4n — 1,q) contains (¢ + 1)(¢*> + 1) -+ (¢*" + 1)
points and there are ¢**2* 2" points in DW (4n — 1,¢) which are opposite
to a given point of DW (4n — 1,¢q). Recall also that X carries the structure
of a dual polar space DW (2n — 1,¢*).) The lemma now readily follows. m

Lemma 3.11 Let Q1 and Qs be two quads of DW (7, q) at mazimal distance
2 from each other, let x € Q1 and put Q3 := (v, mg,(z)). Let Q4 denote a
quad through x such that Q, N Q1 = Q4N Q3 = {x}. Let O1 be a classical
ovoid of Q1 containing the point x. Then there exists at most one (classical)

SDPS-set X of DW(7,q) satisfying:
(1) Q1NX =0y
(2) the quads Q2, Q3 and Q4 are X -special.

Proof. Let X; and X, denote two SDPS-sets of DW (7,q) satisfying the
above conditions. Let S;, i € {1,2}, be the generalized quadrangle isomor-
phic to DW (3,¢%) = Q(4, ¢*) defined on the set X; by the X;-special quads
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of DW(7,q). By Lemma 3.3 applied to the triple (F, F}, Fy) = (Q3, Q2, Q4),
@2 and )4 lie at maximal distance 2 from each other. By Lemma 3.2,
Oy = mg,(0y) is a classical ovoid of Q2 and Oy := m,(O2) is a classical
ovoid of ()4. By Lemma 3.8, O,UO, C X;NX,5. Now, let V denote the set of
quads of DW (7, ¢q) which intersect ()7 in a point of O; and @5 in a point of
Oy. Then Q3 € V and d(Q, Q4) = 2 for every Q € V\{Q3} by Lemma 3.3 ap-
plied to the triple (F, F}, Fy) = (Q1,Q4, Q). As before we can conclude that
Og = mg(0y) is a classical ovoid of @) contained in X;NX5. Now, let Q5 be an
arbitrary quad of V\{Qs3}. Then d(Qs, Q3) = 2 by Lemma 3.3 applied to the
triple (F, Fy, F3) = (Q1,Q3,Qs). So, Og, = mo,(Og,) is a classical ovoid of
(23 which is contained in X; N X5. Now, put YV := UQev Oq. Then Y defines
a (¢*+1) x (¢* 4+ 1)-subgrid in both the generalized quadrangle S; = Q(4, ¢°*)
and Sy = Q(4,¢*). Let y denote an arbitrary point of O, \ {z} and let R
and R’ be two distinct elements of V. Since y € X; N X, mr(y) € X1 N X,
by Lemma 3.8. Applying Lemma 3.3 to the triple (F, F1, Fy) = (@1, R, R'),
we find d(R, R') = 2. So, there exists a unique quad R” through 7g(y) in-
tersecting R’ in a unique point. Since Y defines a (¢* + 1) x (¢* + 1)-subgrid
of S;, 1 € {1,2}, this quad is X;-special. Since no two special X;-quads can
intersect in a line, R” N (y, 7r(y)) = {mr(y)}. By Lemma 3.3 applied to the
triple (F, F1, ) = (R", (y,7r(y)), R), d(R, (y,7r(y))) = 2. As before, it
follows that 7y ) (Or) is a classical ovoid of (y, mr(y)) which is contained
in Xy N X,. The set 7y »p()) (Orr) corresponds with a line of S;, i € {1,2},
meeting the (¢? + 1) x (¢> + 1)-subgrid Y. By Lemma 3.7, it now readily
follows that X; = X5. This proves the lemma. n

Lemma 3.12 Let = be a point of DW (4n — 1,q), n > 2. Let Q1 and Qs
denote two quads through x and let F' denote a convexr subspace of diameter
2n — 2 through x such that Q1 N Qy = Q1N F = QaNF = {x}. Lety
denote a point of DW (4n — 1,q) at distance 2n from x and let Y denote
a classical SDPS-set of F' such that z, 7p(y) € Y and (Q1,Q2) N F is a
Y -special quad. Then there exists at most one (classical) SDPS-set X in
DW (4n — 1,q) satisfying:

(i) =,y € X;
(17) Q1 and Qy are X -classical;
(i) XNF =Y.
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Proof. Let €2 denote the set of all SDPS-sets which satisfy the above con-
ditions. Let X* be an arbitrary element of {2 and let Z be the intersection
of all SDPS-sets of 2. Then Z C X*. We will now also show that X* C 7,
i.e. X* is contained in each SDPS-set X of 2. Since both X* and X carry
the structure of a dual polar space isomorphic to DW (2n — 1,¢?%), we then
necessarily have that X* = X.

By Lemma 3.8 the point mg,(y) belongs to Z. Since d(z,y) = 2n,
d(y,mg,(y)) = 2n — 2. The convex subspace (mg,(y),y) is X-special for
every X € . Since (y,mq,(y)) N Q2 = {mq.(y)}, I2 = (y,mq,(y)) and
Fy := F lie at maximal distance 2 from each other by Lemma 3.3. By Lem-
mas 3.2 and 3.8, Y5 := 7, (Y) is an SDPS-set of F, which is contained in Z,
in other words X N F, = Y, for every X € 2. With a similar reasoning as
in the proof of Lemma 3.3, we know that every point of (); lies at maximal
distance 2 from F,. By Lemma 3.8, Q)] := 7g,(Q1) is Ya-special. So, Q] NYs
is a classical ovoid of Q}. Put Oy := 7, (Q] NY;). By Lemma 3.8, O; C 7.
By Lemma 3.3, @1 and (y, 7r(y)) lie at maximal distance 2n — 2 from each
other and by Lemma 3.8, O" := 7y r,.(y)) (O1) is a classical ovoid of (y, 7 (y))
which is contained in Z. Similarly, @2 and (y, 7r(y)) lie at maximal distance
2n —2 from each other and Oj := mg, (O') is a classical ovoid of ()3 contained
in 7.

Now, let V denote the set of all convex subspaces of diameter 2n — 2
containing a point of Oy and a point of O’. Then every convex subspace of
V is X-special for every X € ). Notice also that by Lemma 3.3, every two
distinct elements of V lie at maximal distance 2 from each other.

Now, for every G € V, put Yg := ng(Y). Also put Z := (Jgey Y. By
Lemma 3.8, 7 C 7.

We will now show that X* C Z. Let A* denote the dual polar space
isomorphic to DW (2n—1, ¢*) defined on the set X* by the X *-special quads.
The convex subspaces of V define a set V' of ¢* + 1 maxes of A* in the sense
of Lemma 3.6, i.e. every line of A* meeting two distinct maxes of V' meets
every max of V'. In order to show that X* C Z, we must show that every
quad of A* meeting every max of V' in a line is contained in Z. By Lemma
3.5, the following two steps are sufficient to prove this claim:

e Step 1: We show that Q* C 7 for a particular quad Q* of A* which
meets every max of V' in a line.

e Step 2: Suppose )1 and ()2 are two mutually disjoint quads of A*
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which are contained in a hex of A* and which meet every max of V' in
a line. We show that if (); C Z, then also (); C 7.

We first prove Step 1. For every X € (), @); and ) are X-special and hence
also (Q1,Qs) is X-special since @); and Q- intersect in a unique point (of
X). Since the convex subspace (@1, Q2) is X *-special and meets F; and Fy
in X*-special quads, it follows that Q* := (@Q1,Q2) N X* is a quad of A*
which meets every element of V' in a line. For every X € (), the quads
Q1,Q2,(Q1,Q2) N F1 and (Q1,Qs) N Fy of DW(4n — 1,q) are X-special.
Moreover, (Q1,Q2) NFINX = (Q1,Q2) N F1NY ={(Q1,Q2) N F; N X*. By
Lemma 3.11, Q* = (Q1, Q2) N X* = (@1, Q2) N X. Hence, Q* C 7.

We prove Step 2. Let (); and )2 be two mutually disjoint quads of
A* which are contained in a hex of A* and which meet every max of V'
in a line. Let d(-,-), respectively d(-,-), denote the distance function in
DW (4n — 1,q), respectively A*. Let x; and 3; be two points of ¢); such
that d(x1,y1) = 2. Let 2o and yo be the unique points of @)y such that
d(z1,22) = 0(y1,y2) = 1. Then §(x2,y2) = 2 and 0(x1,y2) = §(x2, 1) = 3.
Hence, d(x1,y1) = d(za,y2) = 4, d(z1,22) = d(y1,92) = 2 and d(z1,y2) =
d(yy,me) = 6. If (x1,29) and (x1,71) meet in a line L, then d(zg,1;) <
d(xe, mr(22)) + d(7p(x2),11) < 144 = 5, a contradiction. Hence, (1, x9)
and Gy := (z1,y1) intersect in the singleton {x;}. Similarly, (zy,x2) and
Go = (x9, o) intersect in the singleton {z3}. By Lemma 3.3, G; and G, lie
at maximal distance 2 from each other. If Q1 C Z, then we also have that
Ta,(Q1) = Q2 € Z by Lemma 3.8.

This proves the lemma. "

Lemma 3.13 For everyn > 2, \(n) < ¢ (¢ 2 —1) - A(n —1).

Proof. We count in two different ways the number of tuples (z,y, Q1, @2, F,
Y, X') which satisfy the conditions of Lemma 3.12.

Step 1: There are ay = (¢ + 1)(¢* + 1) - - - (¢*" + 1) possibilities for x.
PROOF. This is precisely the number of points of A = DW(4n — 1, q).
Step 2: For given x, there are ay = ¢ 7272 possibilities for y.
ProOOF. This is precisely the number of points of A = DW(4n — 1,q)
opposite to x.

Step 3: For given x and vy, there are as = % possibilities for F.

PRrROOF. Recall that Resa(z) is isomorphic to PG(2n — 1,¢q). The convex
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subspace F' corresponds with a (2n — 3)-dimensional subspace of Resa(z).

So, there are precisely az = %

Step 4: For given x, y and F, there are ay = ¢*"~* possibilities for Q.
PROOF. Reason again in the projective space Resa(x) = PG(2n — 1,q).
The number of possibilities for (), is equal to the number of lines of Resa ()
disjoint with a given (2n — 3)-dimensional subspace. This number is equal
to ¢4,

possibilities for F'.

Step 5: For given x, y, F' and Q1, there are

A(n—1)

“An—-1):=
AT ) @

possibilities for'Y .
PROOF. The SDPS-set Y of F' must contain « and 7g(y). By Lemma 3.10,
there are

A(n—1)

(+ D@+ D (@7 + g7

possibilities for Y.

271,72_1

Step 6: For given x, y, I, Q1 and Y, there are ag = © 57 (> —1)(¢*—q)
possibilities for Q.

ProOOF. Since )7 and (), are X-special quads and intersect in a point of
X, the convex suboctagon (Q1,Q2) is also X-special and hence intersects
F in an X-special quad. This quad is necessarily Y-special. The set of Y-
special quads of F' through ¥ is equal to the number of lines of DW (2n—3, ¢%)

through a given point of DW (2n—3, ¢%), i.e. equal to qt;j*l. If (Q1,Q2)NF

1
is known, then also (@1, Q2) is known, since (Q1, Q2) = (Q1, (Q1,Q2) N F).

Now, suppose U is a convex suboctagon through (); intersecting F in a
quad. We count the number of quads of U through x which have no line in
common with ¢y and F N U. This number is equal to the number of lines
of PG(3, q) which are disjoint with the union of two given mutually disjoint
lines of PG(3,¢). This number equals (¢*> — 1)(¢* — q).

In conclusion, we can say that there are precisely ag =
q) possibilities for Q5.

2 (g2 1) (g

Step 7: For given x, y, F, QQ1, Y and )2, there is at most one possibility
for X.
Proor. This is precisely Lemma 3.12.
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By Steps 1 till 7, there are at most

)\(n—l)'Hozi

possible tuples (z,y, Q1, Q2, F,Y, X). Via a second counting we will calculate
the precise number of such tuples.

Step 8: There are \(n) possibilities for X.
PROOF. By definition of A(n).

Step 9: For given X, there are az = (¢*+1)(¢* +1) - - - (¢*" + 1) possibilities
for x.

PROOF. This is precisely the number of points of DW (2n — 1, ¢*).

Step 10: For given X and x, there are ag = ¢*T4+ 2" possibilities for y.
PROOF. This is precisely the number of points of DW (2n — 1, ¢?) which are
opposite to a given point of DW (2n — 1, ¢?).

2n—2 _

Step 11: For given X, x and y, there are precisely ag = q:;__ll P2

1) possibilities for (F,Qq,Q2).

PROOF. Let DW (2n—1,¢?*) denote the dual polar space associated with the
SDPS-set X. The convex subspaces of DW (2n — 1, ¢?) through z define a
projective space isomorphic to PG(n — 1,¢?). F corresponds with a hyper-
plane of this projective space and ()1 and ()» correspond with two distinct
points of this projective space not contained in that hyperplane. It follows

that there are oy = q;;:11 @72 (¢*"2 — 1) possibilities for (F,Q1, Q).

Step 12: For given X, z, y, ', Q1 and )2, there is only one possibility for
Y.
PROOF. This follows from the fact that Y = F N X.

q

Summarizing, we can say that there are A(n) - [[,_, a; possible tuples
(x,y,Q1,Q2, F, X). By the first discussion, we know that

9 6

)\(n)-Hai < )\(n—l)-Hai.

i=7 i=1
It follows that

A € T A = 1) = g (g 1) A - )
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Since A\(1) = @, we have:

Corollary 3.14 There are at most %q2"2(q2 —1)(¢5=1)---(¢"™2=1) clas-
sical SDPS-sets in the dual polar space DW (4n —1,q), n > 1.

3.3 Subtended SDPS-sets

We mention the following two propositions which we take from De Bruyn [6]
(Theorems 1.5 and 1.6).

Proposition 3.15 ([6]) Up to isomorphism, there exists a unique isometric
embedding of DW (2n — 1,q) into DH(2n —1,4¢*) (n > 2).

Proposition 3.16 ([6]) Let A be a dual polar space isomorphic to DW (2n—
1,q9), n > 2, which is isometrically embedded into the dual polar space A" =
DH(2n — 1,q¢?%). Then the following holds:

(i) max{d(z,A)|r € A"} = 5],

(13) if d(z,A) = 6, then As(x) N A is an SDPS-set in a convex subspace
of diameter 20 of A;

(4it) if n is even, then the set of points of A’ at distance at most § — 1
from A is a hyperplane of A';

(1v) if n is even, then the complement of the hyperplane defined in (iii)

n2
has ¢ = (¢> — 1)(¢° —1)--- (¢*2 — 1) points.

Now, let the dual polar space A = DW (4n—1,q), n > 1, be isometrically
embedded into DH (4n—1, ¢?) and let H be the hyperplane of DH (4n—1, ¢*)
which consists of all points of DH (4n — 1, ¢?*) at distance at most n — 1 from
A. If x belongs to the complement H of H, then A, (x) N A is an SDPS-set
of DW(4n — 1,q) by Proposition 3.16 (ii). We call any SDPS-set which can
be obtained in this way a subtended SDPS-set.

Lemma 3.17 Any two subtended SDPS-sets of A = DW (4n —1,q), n > 1,
are 1somorphic.

Proof. By Shult [16, Lemma 6.1], the complement H of the hyperplane H
is connected. Hence, it suffices to show the following: if z; and z, are two
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collinear points of H, then A, (z;)NA and A, (z2) NA are isomorphic SDPS-
sets of A. Let y denote the unique point of the line xx5 at distance n—1 from
A =DW(4n—1,q). Then A,_;(y)NA is an SDPS-set in a convex subspace
F' of diameter 2n — 2 of A. Let M denote an arbitrary max of A containing
F. Let F (respectively M) denote the unique convex subspace of diameter
2n — 2 (respectively 2n—1) of DH (4n — 1, ¢*) containing F' (respectively M).
Notice that y € F since by Proposition 3.16 (ii) y is contained on a shortest
path between two points of A,_;(y) N A at maximal distance 2n — 2 from
each other. Now, the embedding of M into M is isometric. By Proposition
3.16 (i), it follows that the maximal distance from a point of M to M is equal
to n — 1. This implies that 120 N M = y. By Lemma 3.9, there exists an
automorphism 0 of DH (2n — 1, ¢?) satisfying the following properties:

(1) 6 fixes M point-wise and every line meeting M set-wise;

(2) 0(x1) = .

Now, since M is a max of DW (4n—1, q), there exist a collection of lines of
DW (4n—1,q) meeting M which cover the whole point-set of DW (4n—1,q).
Each line of this collection is fixed by 6. Hence, (A) = A. It follows that
(A, (1) NA) = A,(x2) NA. This is precisely what we needed to show. m

The question which one can ask now is whether that there exist two
points z; and z, in H such that A,(x;) N A = A,(22) N A. The answer
is affirmative for the case n = 1. If one looks to the case of an isometric
embedding of Q(4,q) into Q(5,q), then every classical ovoid of Q(4,q) is
subtended by precisely two points of Q(5,q) \ Q(4,¢q). We will prove that a
similar property holds for every n > 2. In Section 3.4, we prove the following:

Lemma 3.18 (Section 3.4) If X is an SDPS-set of A = DW(4n —1,q),
n > 1, then there are at most 2 points x € H such that A, (z) N A = X.
Corollary 3.19 There are at least "1 = 142" (¢> —1)(¢® —1)--- (¢** 2 — 1)
subtended SDPS-sets in DW (4n —1,q), n > 1.

Combining this with Corollary 3.14, we find that

Theorem 3.20 (1) There are precisely 2¢*" (¢ — 1)(¢5 — 1) -+ (g2 — 1)
classical SDPS-sets in DW (4n —1,q), n > 1.

(2) Every classical SDPS-set of DW (4n — 1,q), n > 1, is subtended.

(3) All classical SDPS-sets of DW(4n — 1,q), n > 1, are isomorphic.
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3.4 Proof of Lemma 3.18

Lemma 3.21 Let DW(4n — 1,q), n > 1, be isometrically embedded into
DH(4n — 1,q¢?). Let x be a point of DH(4n — 1,¢%) at distance n from
DW (4n—1,q) and let X be the SDPS-set A, (x)NDW (4n—1,q) of DW (4n—
1,q). For every line L of DH(4n —1,¢?) through x, let y denote the unique
point of L at distance n—1 from DW (4n—1,q) and let F, denote the unique
convez subspace of diameter 2n — 2 of DW (4n — 1,q) containing all points
of Ap_1(yr) N DW (4n — 1,q). Then the map L — Fy, is a bijection between
the set of lines of DH(4n — 1,¢?) through x and the set of X -special convex
subspaces of diameter 2n — 2 of DW (4n — 1,q).

Proof. Since there are as many lines in DH (4n — 1, ¢*) through z as there
are X-special convex subspaces of diameter 2n — 2 in DW (4n — 1, ¢), namely
I+¢@3+...+¢"" 2= 0+ + @+ -+ ¢*?), it suffices to show
injectivity.

For every X-special convex subspace F' of diameter 2n — 2 of DW (4n —
1,q), the unique convex subspace F' of diameter 2n — 2 of DH(4n — 1,¢%)
containing F' only contains points at distance at most n — 1 from F' (and
hence also from DW (4n — 1,q)) by Proposition 3.16 (i). Hence, there exists
at most one line through = meeting F. If L is a line through z such that
F, = F, then by Proposition 3.16 (ii), y. is contained on a shortest path
between two points of F'N A, _1(y;) at maximal distance 2n — 2 from each
other. It follows that y;, € F, i.e. L meets F. The injectivity now readily
follows. n

Lemma 3.22 Let DW(4n—1,q), n > 1, be isometrically embedded into the
dual polar space DH(4n — 1,¢*) and let X be an SDPS-set of DW (4n —
1,q). Let Fy and F» be two X -special convexr subspaces of diameter 2n — 2 of
DW (4n —1,q) such that (FLNX)N(FaNX) = 0. Let F;, i € {1,2}, denote
the unique conver subspace of diameter 2n — 2 of DH(4n — 1,4?) containing
F,. Then Fy and F, lie at mazimal distance 2 from each other.

Proof. Let DW(2n—1,¢*) denote the dual polar space defined on the set X
by the X-special quads and let d(-, -), respectively (-, -), denote the distance
function in DH (4n—1, ¢*), respectively DW (2n—1, ¢*). Let z; and y; be two
points of F; N X such that §(z1,y;) = n — 1 and let x5 and y, be the unique
points of F5 N X such that 6(zq,x2) = d(y1,y2) = 1. Then 6(zq,y2) =n — 1,
d(z1,y2) = n and §(z9,y;) = n. It follows that d(zy1,y1) = d(x2,y2) = 2n—2,
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d(z1,22) = d(y1,y2) = 2 and d(x1,y2) = d(x2, 1) = 2n. If (x1,25) N Fy is a
line L, then d(z1,y2) < d(xq1, mp(x1)) +d(7mp(x1),2) < 14+ (2n—2) = 2n—1,
a contradiction. Hence, (1, 29) N Fy = {x5}. Similarly, (z1,29) N F} = {x1}.
So, the triple ((x1, 72), Fy, Fy) satisfies the conditions of Lemma 3.3. It follows

that F, and Fy lie at maximal distance 2 from each other. n
The following lemma is precisely Lemma 3.18.

Lemma 3.23 Let DW(4n — 1,q), n > 1, be isometrically embedded in
DH(4n —1,¢%) and let X be a classical SDPS-set of DW (4n — 1,q). Then

there exist at most two points x in DH (4n—1,¢*) at distance n from DW (4n—
1,q) such that A, (x) " DW (4n —1,q) = X.

Proof. We will prove this by induction on n. As already remarked above
the lemma holds for n = 1 since every classical ovoid of (4, q) is subtended
by precisely two points of Q(5,¢q) \ Q(4,¢q). So, suppose n > 2 and that the
lemma holds for smaller values of n.

Let F* denote a given X-special convex subspace of diameter 2n — 2 of
DW (4n — 1,q) and let F* denote the unique convex subspace of diameter
2n — 2 of DH(4n — 1,¢?*) containing F*. Then by the induction hypothesis,
there exists at most two and hence precisely two (see the end of Section 3.3)
points z; and x5 in F* at distance n — 1 from F* such that A, _(z1) N F* =
A, 1(z) N F* = F*N X. By Lemma 3.21, if z is a point of DH (4n — 1, ¢?)
at distance n from DW (4n — 1,¢q) such that A, (z) " DW(4n —1,q) = X,
then z is collinear with either x; or x5. So, it suffices to show the following:

(%) there exists at most one point x in DH (4n—1, ¢*) at distance
n from DW (4n —1, q) such that A, (z)NDW(4n—1,q) = X and
x is collinear with z;.

Now, for every X-special convex subspace F' of diameter 2n — 2 of DW (4n —
1,q), we construct a point 2 of the unique convex subspace F of diameter
2n — 2 of DH(4n — 1,¢*) containing F. If F' = F* then we define rr = ;.
If F is disjoint from F*, then 2 denotes the unique point of F at distance 2
from z; (see Lemma 3.22). If F' # F* and F* meet, then take an X-special
convex subspace F” of diameter 2n — 2 of DW (4n —1, ¢q) disjoint from F' and
F* (cf. Lemma 3.4) and let 25 denote the unique point of F' at distance 2
from xp (see Lemma 3.22). Let U denote the set of all points zr, where F’
is an X-special convex subspace of diameter 2n — 2 of DW (4n — 1, q).
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Suppose z is a point of DH (4n — 1, ¢?) at distance n from DW (4n —1,q)
such that A, (x) N DW(4n — 1,q) = X and x is collinear with x;. If F' is
an X-special convex subspace of diameter 2n — 2 of DW (4n — 1, q) disjoint
from F*, then the unique point of F collinear with z has distance 2 from
x1 and hence coincides with zp. Now, let F # F* be an X-special convex
subspace of diameter 2n — 2 of DW (4n — 1, ¢q) meeting F* and take F’ as
above. We already know that zp is collinear with . Now, the unique point
of F collinear with z (see Lemma 3.21) has distance 2 from z and hence
coincides with zp.

Hence, we can say the following: if z is a point of DH(4n — 1,¢?) at
distance n from DW (4n —1, q) such that A, (z)NDW(4n—1,q) = X and z
is collinear with x1, then x is collinear with every point of U. So, in order to
establish (%), it suffices to show that there is at most one point at distance
n from DW (4n — 1, q) which is collinear with all points of U. Notice that if
such a point exists, then U consists of points at mutual distance 2 from each
other. Let w; and us be two arbitrary distinct points of U. Then we may
suppose that d(uj,us) = 2. Let @ be a quad of (uy,us). Since |U| is equal
to the number of lines of DH(2n — 1, ¢*) through z, i.e. 1+¢*+ ...+ ¢ 2,
not all points of U are contained in Q). Let ug be a point of U \ Q). Then z
(if it exists) necessarily coincides with the unique point of @ collinear with
ug. [Notice that z must be contained in @ since it is collinear with u; and
Ug.] ]
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