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Abstract

SDPS-sets are very nice sets of points in dual polar spaces which
themselves carry the structure of dual polar spaces. They were intro-
duced in [8] because they gave rise to new valuations and hyperplanes
of dual polar spaces. In the present paper, we show that the symplec-
tic dual polar space DW (4n− 1, q), n ≥ 2, has up to isomorphisms a
unique SDPS-set.
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1 Introduction

1.1 Basic definitions and properties

Let Π be a non-degenerate polar space of rank n ≥ 2. With Π there is
associated a point-line geometry ∆ whose points are the maximal singular
subspaces of Π, whose lines are the next-to-maximal singular subspaces of Π
and whose incidence relation is reverse containment. We call ∆ a dual polar
space. By Shult and Yanushka [17] and Cameron [3] (see also De Bruyn
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[4]), ∆ is a near polygon which means that for every point p and every
line L, there exists a unique point on L nearest to p. The distance d(x, y)
between two points x and y of ∆ is measured in the point or collinearity
graph of ∆. For every point x, for every nonempty subset X of the point-
set P of ∆ and for every i ∈ N, we define ∆i(x) := {y ∈ P | d(x, y) = i},
∆∗

i (x) := {y ∈ P | d(x, y) ≤ i}, x⊥ := ∆∗
1(x), d(x, X) = min{d(x, y) | y ∈

X}, ∆i(X) = {y ∈ P | d(y, X) = i} and ∆∗
i (X) = {y ∈ P | d(y, X) ≤ i}.

If X1 and X2 are two nonempty sets of points, then we define d(X1, X2) :=
min{d(x1, x2) |x1 ∈ X1 and x2 ∈ X2}.

We will denote a dual polar space by putting a “D” in front of the name
of the corresponding polar space. The dual polar spaces we will meet in
this paper are the symplectic dual polar space DW (2n − 1, q) related to
a symplectic polarity of the projective space PG(2n − 1, q), the hermitian
dual polar space DH(k, q2) related to a non-singular hermitian variety in
PG(k, q2) and the orthogonal dual polar space DQ−(2n + 1, q) related to a
non-singular elliptic quadric in PG(2n + 1, q).

There exists a bijective correspondence between the nonempty convex
subspaces of a dual polar space ∆ of rank n ≥ 2 and the possibly empty
singular subspaces of the associated polar space Π: if α is a singular subspace
of Π, then the set of all maximal singular subspaces containing α is a convex
subspace of ∆. Conversely, every convex subspace of ∆ is obtained in this
way. The maximal distance between two points of a convex subspace A is
called the diameter of A and is denoted by diam(A). The convex subspaces
of diameter 0 and 1 are the points and lines of ∆. The convex subspaces
of diameter 2, 3, respectively n− 1, are called the quads, hexes, respectively
maxes, of ∆. The convex subspaces through a given point x of ∆ determine a
projective space of dimension n−1. If x and y are two points of ∆, then 〈x, y〉
denotes the smallest convex subspace containing x and y, i.e. 〈x, y〉 is the
intersection of all convex subspaces containing x and y. More generally, we
will use the notation 〈∗1, ∗2, . . . , ∗k〉 to denote the smallest convex subspace
containing the objects ∗1, ∗2, . . . , ∗k (which can be points, lines, quads, etc.).
If x is a point and A is a nonempty convex subspace of ∆, then A contains a
unique point πA(x) nearest to x and d(x, y) = d(x, πA(x)) + d(πA(x), y) for
every point y of A. We call πA(x) the projection of x onto A. If F1 and F2

are two convex subspaces of ∆ of respective diameters δ1 and δ2, then either
F1 ∩ F2 = ∅ or (F1 ∩ F2 6= ∅ and diam(F1 ∩ F2) ≥ δ1 + δ2 − n).

A hyperplane of a dual polar space ∆ is a proper subspace meeting each
line (necessarily in a unique point or the whole line). Since ∆ is a near
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polygon, the set Hx of points at non-maximal distance from a given point x
is a hyperplane of ∆, called the singular hyperplane with deepest point x.

A function f from the point-set of a dual polar space ∆ to N is called a
valuation of ∆ if it satisfies the following properties (we call f(x) the value
of x):

(V1) there exists at least one point with value 0;
(V2) every line L of ∆ contains a unique point xL with smallest value

and f(x) = f(xL) + 1 for every point x of L different from xL;
(V3) every point x of ∆ is contained in a necessarily unique convex sub-

space Fx such that the following properties are satisfied for every y ∈ Fx: (i)
f(y) ≤ f(x); (ii) if z is a point collinear with y such that f(z) = f(y) − 1,
then z ∈ Fx.

Valuations were introduced in De Bruyn and Vandecasteele [7] in the con-
text of general near polygons. They are important structures for the fol-
lowing purposes: (1) classification of near polygons; (2) study of isometric
embeddings between near polygons; (3) construction of hyperplanes of near
polygons, in particular of dual polar spaces; (4) characterizations of classes
of hyperplanes of dual polar spaces. The construction of hyperplanes from
valuations is explained in the following proposition:

Proposition 1.1 (Proposition 2 of [8]) Let f be a valuation of a dual po-
lar space ∆ and let M denote the maximal value attained by f . Then the set
of points with value at most M − 1 is a hyperplane Hf of ∆.

Let ∆ be a thick dual polar space of rank 2n, n ≥ 0. (We take the
following convention: a dual polar space of rank 0 is a point and a dual polar
space of rank 1 is a line.) A set X of points of ∆ is called an SDPS-set (SDPS
= sub dual polar space) of ∆ if it satisfies the following properties:

(1) No two points of X are collinear in ∆.
(2) If x, y ∈ X such that d(x, y) = 2, then X ∩ 〈x, y〉 is an ovoid of the

quad 〈x, y〉.
(3) The point-line geometry ∆̃ whose points are the elements of X and

whose lines are the quads of ∆ containing at least two points of X (natural
incidence) is a dual polar space of rank n.

(4) For all x, y ∈ X, d(x, y) = 2 · δ(x, y). Here, d(x, y) and δ(x, y) denote

the distances between x and y in the respective dual polar spaces ∆ and ∆̃.
(5) If x ∈ X and if L is a line of ∆ through x, then L is contained in a

quad of ∆ which contains at least two points of X.

3



SDPS-sets in thick dual polar spaces of rank 2n were introduced by De Bruyn
and Vandecasteele [8] for general n, and independently (although not using
this terminology) by Pralle and Shpectorov [15] for n = 2. Note that condi-
tion (5) is only implicitly in [8]. In [8], we only considered finite dual polar

spaces and the possibilities for (∆, ∆̃) listed there force condition (5) to hold.
All the proofs mentioned in [8] are still valid in the infinite case (after a slight
modification) if one assumes that the extra condition (5) holds, see Sections
5.8, 5.9 and 5.10 of De Bruyn [4].

Proposition 1.2 (Theorem 4 of De Bruyn and Vandecasteele [8])
Let X be an SDPS-set of a thick dual polar space ∆ of rank 2n ≥ 0. For
every point x of ∆, we define f(x) := d(x, X). Then f is a valuation of ∆.

By Propositions 1.1 and 1.2, with every SDPS-set of a thick dual polar space
∆, there is associated a hyperplane of ∆. For a characterization of these
hyperplanes, we refer to De Bruyn [5].

An SDPS-set of a dual polar space of rank 0 consists of the unique point of
this dual polar space. An SDPS-set of a thick generalized quadrangle Q is an
ovoid of Q. The dual polar spaces DQ−(4n + 1, q) and DW (4n− 1, q) admit
SDPS-sets for every n ≥ 2, see De Bruyn and Vandecasteele [8] or Pralle and
Shpectorov [15]. The following proposition has been proved in De Bruyn [4,
Theorem 5.31], but its proof relies very much on Pralle and Shpectorov [15]:

Proposition 1.3 ([4], [15]) If X is an SDPS-set of a finite thick dual polar

space ∆ of rank 2n ≥ 4 and if ∆̃ denotes the associated dual polar space of
rank n, then one of the following cases occurs:

(1) ∆ ∼= DW (4n− 1, q) and ∆̃ ∼= DW (2n− 1, q2) for some prime power
q. If Q is a quad containing two points of X, then Q∩X is a classical ovoid
of Q, i.e. an elliptic quadric Q−(3, q) in Q ∼= Q(4, q).

(2) ∆ ∼= DQ−(4n + 1, q) and ∆̃ ∼= DH(2n, q2) for some prime power q.
If Q is a quad containing two points of X, then Q∩X is a classical ovoid of
Q, i.e. a unital H(2, q2) in Q ∼= H(3, q2).

1.2 The Main Theorem of this paper

SDPS-sets of thick dual polar spaces are important objects because of their
connection with valuations and hyperplanes of dual polar spaces. They are
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also handy to describe isometric embeddings of the symplectic dual polar
space DW (2n−1, q) into the hermitian dual polar space DH(2n−1, q2), see
De Bruyn [6]. In the finite case, there are only two possibilities by Proposition
1.3, and although quite much is already known about the structure of the
respective SDPS-sets, the uniqueness questions were not yet settled. In this
paper, we will prove the uniqueness for one of the two cases.

Main Theorem. The dual polar space DW (4n− 1, q), n ≥ 2, admits up to
isomorphisms a unique SDPS-set.

We will end this section with a construction of the unique SDPS-set of
DW (4n − 1, q), n ≥ 2. Consider the finite field Fq2 with q2 elements and
let Fq denote the unique subfield of order q of Fq2 . Let η denote an ar-
bitrary element of Fq2 \ Fq. Then Fq2 = {x1 + x2η |x1, x2 ∈ Fq}; define
τ : Fq2 → Fq, x1 + x2η 7→ x1. Consider the following bijection φ between the
vector spaces F4n

q and F2n
q2 :

φ(x1, x2, . . . , x4n) = (x1 + ηx2, . . . , x4n−1 + ηx4n).

If 〈·, ·〉 is a non-degenerate symplectic form of F2n
q2 , then τ(〈φ(·), φ(·)〉) is

a non-degenerate symplectic form in F4n
q . If α is a totally isotropic n-

dimensional subspace of F2n
q2 , then φ−1(α) is a 2n-dimensional totally isotropic

subspace of F4n
q . In this way we obtain an “embedding” of DW (2n − 1, q2)

in DW (4n− 1, q), giving rise to an SDPS-set of DW (4n− 1, q).

2 The SDPS-sets of DW (3, q)

The conclusion of the Main Theorem does not hold if n = 1. The SDPS-sets
of DW (3, q) are precisely the ovoids of Q(4, q). Several classes of non-classical
ovoids of Q(4, q) exist:

• For each prime power q = ph, p odd prime power and h ≥ 2, there is a
class of non-classical ovoids of Q(4, q) due to Kantor [9].

• For each prime power q = 22n+1, n ≥ 1, there is a class of non-classical
ovoids in Q(4, q) due to Tits [19].

• For each prime power q = 32n+1, n ≥ 1, there is a class of non-classical
ovoids of Q(4, q) due to Kantor [9].
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• For each prime power q = 3h, h ≥ 3, there is a class of non-classical
ovoids of Q(4, q) due to Thas and Payne [18].

• The generalized quadrangle Q(4, 35) has a class of non-classical ovoids
due to Penttila and Williams [14].

For several prime powers q it is known that all ovoids of Q(4, q) are classical.

Proposition 2.1 • ([2], [12]) Every ovoid of Q(4, 4) is classical.

• ([10], [11]) Every ovoid of Q(4, 16) is classical.

• ([1]) Every ovoid of Q(4, q), q prime, is classical.

3 Proof of the Main Theorem

3.1 Some lemmas

We first prove some lemmas will be important during the proof of the Main
Theorem.

Lemma 3.1 Let F be a convex subspace of a dual polar space ∆ of rank n ≥
2 and let x1 and x2 be two collinear points of ∆. Then d(πF (x1), πF (x2)) ≤ 1.

Proof. Straightforward, see e.g. De Bruyn [4, Theorem 1.9]. �

Lemma 3.2 Let ∆ be a dual polar space of rank n ≥ 2 and let F1 and F2 be
two convex subspaces of diameter δ ∈ {0, . . . , n} of ∆ which lie at maximal
distance n − δ from each other. Then the map F1 → F2; x 7→ πF2(x) defines
an isomorphism from F1 to F2.

Proof. Straightforward, see e.g. De Bruyn [4, Theorem 1.10]. �

Lemma 3.3 Let ∆ be a dual polar space of rank n ≥ 2. Let F denote a
convex subspace of diameter δ ∈ {0, . . . , n} of ∆, let x1, x2 be points of F at
maximal distance δ from each other and let Fi, i ∈ {1, 2}, denote a convex
subspace of diameter n− δ through xi such that F ∩Fi = {xi}. Then F1 and
F2 lie at maximal distance δ from each other.
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Proof. Since diam(F1) = diam(F2) = n − δ, d(x, F2) ≤ δ for every point x
of F1. Let y1 ∈ F1 and y2 ∈ F2 with d(y1, y2) as small as possible. For every
i ∈ {1, 2}, the point πF (yi) is contained on a shortest path between yi and xi

and hence is contained in F ∩ Fi = {xi}. This proves that πF (y1) = x1 and
πF (y2) = x2. Considering a shortest path between y1 and y2 and applying
Lemma 3.1, we obtain δ = d(x1, x2) ≤ d(y1, y2). On the other hand, we
already knew that d(y1, y2) = d(F1, F2) ≤ δ. This proves that d(F1, F2) = δ.
�

Lemma 3.4 Let M1 and M2 be two maxes of a dual polar space ∆ of rank
n ≥ 2 which meet each other. Then there exists a max M3 of ∆ which is
disjoint from M1 and M2.

Proof. Let y ∈ M1∩M2 and let x ∈ ∆1(y) not contained in M1∪M2. Then
any max through x not containing the line xy is disjoint from M1 and M2. �

Lemma 3.5 Let Γ denote the graph on the line set of DW (2n−1, q), n ≥ 2,
with two vertices of Γ adjacent whenever the corresponding lines are disjoint
and contained in a quad of DW (2n− 1, q). Then Γ is connected.

Proof. Let L1 and L2 denote two arbitrary lines of DW (2n− 1, q). We will
prove by induction on d(L1, L2) that there exists a path in Γ connecting L1

and L2.
Suppose first that d(L1, L2) = 0. If L1 = L2, then we are done. So,

suppose L1 6= L2. Then L1 and L2 are contained in a quad Q ∼= Q(4, q). If
L3 is a line of Q disjoint from L1 and L2, then (L1, L3, L2) is a path in Γ.

Suppose next that d(L1, L2) ≥ 1 and let x1 ∈ L1 and x2 ∈ L2 such that
d(x1, x2) = d(L1, L2). Let x3 be a point of ∆1(x2) at distance d(L1, L2) − 1
from x1. Let L3 denote a line through x3 contained in the quad 〈x3, L2〉, but
different from x3x2. Then L2 and L3 are adjacent in Γ. By the induction
hypothesis, there exists a path in Γ connecting L1 and L3. Hence, there also
exists a path in Γ connecting L1 and L2. �

Lemma 3.6 Let M1 and M2 be two disjoint maxes of the dual polar space
DW (2n − 1, q), n ≥ 2. Then there exists a unique set {M1, M2, . . . ,Mq+1}
of mutually disjoint maxes with the property that every line meeting M1 and
M2 also meets Mi, i ∈ {3, . . . , q + 1}. If z is a point of DW (2n − 1, q) not
contained in M1 ∪M2 ∪ · · · ∪Mq+1, then there exists a unique quad through
z which intersects each Mi, i ∈ {1, . . . , q + 1}, in a line.
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Proof. Let xi, i ∈ {1, 2}, denote the point of the polar space W (2n −
1, q) corresponding with Mi. Since M1 and M2 are disjoint, the points x1

and x2 are contained in a hyperbolic line {x1, x2, . . . , xq+1}. Let Mi, i ∈
{3, . . . , q+1}, denote the max of DW (2n−1, q) corresponding with xi. Then
{M1, M2, . . . ,Mq+1} is a set of mutually disjoint maxes with the property that
every line meeting M1 and M2 also meets Mi, i ∈ {3, . . . , q + 1}.

Let u and v be two opposite points of M1 and put L1 = 〈u, πM2(u)〉 and
L2 = 〈v, πM2(v)〉. Then by Lemma 3.3, L1 and L2 lie at maximal distance
n − 1 from each other. There are now at most q + 1 maxes which meet
every line connecting a point of M1 with a point of M2, namely the q + 1
maxes 〈w, πL2(w)〉, where w ∈ L1. This proves the uniqueness of the set
{M1, M2, . . . ,Mq+1}.

Now, let z denote a point of DW (2n− 1, q) not contained in M1 ∪M2 ∪
· · · ∪ Mq+1. Let z1 denote the unique point of M1 collinear with z and let
z2 denote the unique point of M2 collinear with z1. Since z is not contained
in M1 ∪ M2 ∪ · · · ∪ Mq+1, zz1 6= z1z2. Obviously, the quad 〈zz1, z1z2〉 is the
unique quad through z meeting M1 and M2 (necessarily in lines). This quad
also meets Mi, i ∈ {3, . . . , q + 1} in a line since z1z2 ∩Mi 6= ∅. �

Lemma 3.7 A (q + 1) × (q + 1)-subgrid G of the generalized quadrangle
Q(4, q) is a maximal subspace of Q(4, q). In other words, the graph on the
set Q(4, q) \G induced by the collinearity graph of Q(4, q) is connected.

Proof. By Payne and Thas [13, 2.3.1], any subspace of Q(4, q) containing
G induces a subquadrangle of Q(4, q). Now, the only proper subquadrangle
of Q(4, q) containing G is G itself, proving the lemma. �

Definition. Let X be an SDPS-set of ∆ ∼= DW (4n− 1, q), n ≥ 1, and let ∆̃
denote the dual polar space isomorphic to DW (2n − 1, q2) associated with
X. A convex subspace F of ∆ is called X-special if it is of the form 〈x1, x2〉
for two points x1 and x2 of X. Since d(x1, x2) = 2 · δ(x1, x2), where δ(·, ·)
denotes the distance function in ∆̃, every X-special convex subspace of ∆
has even diameter. If F is an X-special convex subspace, then by De Bruyn
and Vandecasteele [8, Lemma 7], F ∩X is an SDPS-set of F and is a convex

subspace of ∆̃ whose diameter is half the diameter of F regarded as convex
subspace of ∆. Also, by De Bruyn and Vandecasteele [8, Lemma 4] no two
distinct X-special quads can intersect in a line.
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Lemma 3.8 Let X be an SDPS-set of ∆ ∼= DW (4n−1, q), n ≥ 1, let x be a
point of X and let F be an X-special convex subspace of ∆. Then πF (x) ∈ X.

Proof. Let ∆̃ denote the dual polar space isomorphic to DW (2n − 1, q2)
associated with X. Let 2d denote the diameter of F in ∆. Let d(·, ·), respec-

tively δ(·, ·), denote the distance function in ∆, respectively ∆̃. Since F∩X is

a convex subspace of ∆̃, there exists a unique point y in F∩X nearest to x (in

∆̃). Let z denote a point of F ∩X such that δ(y, z) = d. Then d(y, z) = 2d.
So, y and z are opposite points of F . Since δ(x, z) = δ(x, y) + δ(y, z), we
have that d(x, z) = d(x, y) + d(y, z). Since d(y, z) attains its maximal value
2d, we necessarily have πF (x) = y ∈ X. This proves the lemma. �

Lemma 3.9 Let M denote a max of the dual polar space ∆ = DH(2n −
1, q2), n ≥ 2. Then there exists a group G of automorphisms of ∆ satisfying
the following properties:

(i) every element of G fixes M point-wise and every line meeting M set-
wise;

(ii) if L is a line meeting M in a unique point x, then G acts regularly
on L \ {x}.

Proof. Let V denote a 2n-dimensional vector space over Fq2 equipped with
a non-degenerate hermitian form (·, ·) which is linear in the first argument
and semi-linear in the second. Let H(2n− 1, q2) and DH(2n− 1, q2) denote
the corresponding polar and dual polar space. Let 〈x̄M〉 denote the point of
H(2n − 1, q2) corresponding with the max M . For every k ∈ Fq2 satisfying
kq + k = 0, the linear map ȳ 7→ ȳ − k(ȳ, x̄M)x̄M defines an automorphism of
H(2n − 1, q2). The corresponding automorphism θk of DH(2n − 1, q2) fixes
M point-wise and every line meeting M set-wise. It is straightforward to
verify that G := {θk | k ∈ Fq2 with kq + k = 0} is a group of automorphisms
of DH(2n − 1, q2) acting regularly on each set L \ {x}, where L is a line of
∆ meeting M in a unique point x. �

3.2 Upper bound for the number of SDPS-sets

Definition. An SDPS-set X of DW (4n − 1, q), n ≥ 1, is called classical if
Q ∩X is a classical ovoid of Q for every X-special quad Q. By Proposition
1.3, every SDPS-set of DW (4n− 1, q) is classical if n ≥ 2. Let λ(n), n ≥ 1,
denote the number of classical SDPS-sets of DW (4n− 1, q). The number of
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classical ovoids of the generalized quadrangle Q(4, q) is equal to

λ(1) =
q2(q2 − 1)

2
.

Lemma 3.10 The number of classical SDPS-sets containing two given op-
posite points of DW (4n− 1, q), n ≥ 1, is equal to

λ(n)

(q + 1)(q3 + 1) · · · (q2n−1 + 1) · qn2 .

Proof. The automorphism group of DW (4n − 1, q) acts transitively on
the set of pairs of opposite points of DW (4n − 1, q). Hence, there exists
a constant λ′(n) such that every two opposite points of DW (4n − 1, q) are
contained in precisely λ′(n) classical SDPS-sets. Counting in two different
ways the number of triples (X, x1, x2), where x1 and x2 are two opposite
points of DW (4n− 1, q) and where X is a classical SDPS-set containing the
points x1 and x2 gives

(q + 1)(q2 + 1) · · · (q2n + 1) · q1+2+...+2n · λ′(n)

= λ(n) · (q2 + 1)(q4 + 1) · · · (q2n + 1) · q2+4+···+2n.

(The dual polar space DW (4n − 1, q) contains (q + 1)(q2 + 1) · · · (q2n + 1)
points and there are q1+2+···+2n points in DW (4n − 1, q) which are opposite
to a given point of DW (4n − 1, q). Recall also that X carries the structure
of a dual polar space DW (2n− 1, q2).) The lemma now readily follows. �

Lemma 3.11 Let Q1 and Q2 be two quads of DW (7, q) at maximal distance
2 from each other, let x ∈ Q1 and put Q3 := 〈x, πQ2(x)〉. Let Q4 denote a
quad through x such that Q4 ∩ Q1 = Q4 ∩ Q3 = {x}. Let O1 be a classical
ovoid of Q1 containing the point x. Then there exists at most one (classical)
SDPS-set X of DW (7, q) satisfying:

(1) Q1 ∩X = O1;

(2) the quads Q2, Q3 and Q4 are X-special.

Proof. Let X1 and X2 denote two SDPS-sets of DW (7, q) satisfying the
above conditions. Let Si, i ∈ {1, 2}, be the generalized quadrangle isomor-
phic to DW (3, q2) ∼= Q(4, q2) defined on the set Xi by the Xi-special quads
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of DW (7, q). By Lemma 3.3 applied to the triple (F, F1, F2) = (Q3, Q2, Q4),
Q2 and Q4 lie at maximal distance 2 from each other. By Lemma 3.2,
O2 := πQ2(O1) is a classical ovoid of Q2 and O4 := πQ4(O2) is a classical
ovoid of Q4. By Lemma 3.8, O2∪O4 ⊆ X1∩X2. Now, let V denote the set of
quads of DW (7, q) which intersect Q1 in a point of O1 and Q2 in a point of
O2. Then Q3 ∈ V and d(Q,Q4) = 2 for every Q ∈ V\{Q3} by Lemma 3.3 ap-
plied to the triple (F, F1, F2) = (Q1, Q4, Q). As before we can conclude that
OQ := πQ(O4) is a classical ovoid of Q contained in X1∩X2. Now, let Q5 be an
arbitrary quad of V \{Q3}. Then d(Q5, Q3) = 2 by Lemma 3.3 applied to the
triple (F, F1, F2) = (Q1, Q3, Q5). So, OQ3 := πQ3(OQ5) is a classical ovoid of
Q3 which is contained in X1∩X2. Now, put Y :=

⋃
Q∈V OQ. Then Y defines

a (q2 +1)× (q2 +1)-subgrid in both the generalized quadrangle S1
∼= Q(4, q2)

and S2
∼= Q(4, q2). Let y denote an arbitrary point of O4 \ {x} and let R

and R′ be two distinct elements of V . Since y ∈ X1 ∩ X2, πR(y) ∈ X1 ∩ X2

by Lemma 3.8. Applying Lemma 3.3 to the triple (F, F1, F2) = (Q1, R, R′),
we find d(R,R′) = 2. So, there exists a unique quad R′′ through πR(y) in-
tersecting R′ in a unique point. Since Y defines a (q2 + 1)× (q2 + 1)-subgrid
of Si, i ∈ {1, 2}, this quad is Xi-special. Since no two special Xi-quads can
intersect in a line, R′′ ∩ 〈y, πR(y)〉 = {πR(y)}. By Lemma 3.3 applied to the
triple (F, F1, F2) = (R′′, 〈y, πR(y)〉, R′), d(R′, 〈y, πR(y)〉) = 2. As before, it
follows that π〈y,πR(y)〉(OR′) is a classical ovoid of 〈y, πR(y)〉 which is contained
in X1 ∩ X2. The set π〈y,πR(y)〉(OR′) corresponds with a line of Si, i ∈ {1, 2},
meeting the (q2 + 1) × (q2 + 1)-subgrid Y . By Lemma 3.7, it now readily
follows that X1 = X2. This proves the lemma. �

Lemma 3.12 Let x be a point of DW (4n − 1, q), n ≥ 2. Let Q1 and Q2

denote two quads through x and let F denote a convex subspace of diameter
2n − 2 through x such that Q1 ∩ Q2 = Q1 ∩ F = Q2 ∩ F = {x}. Let y
denote a point of DW (4n − 1, q) at distance 2n from x and let Y denote
a classical SDPS-set of F such that x, πF (y) ∈ Y and 〈Q1, Q2〉 ∩ F is a
Y -special quad. Then there exists at most one (classical) SDPS-set X in
DW (4n− 1, q) satisfying:

(i) x, y ∈ X;

(ii) Q1 and Q2 are X-classical;

(iii) X ∩ F = Y .
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Proof. Let Ω denote the set of all SDPS-sets which satisfy the above con-
ditions. Let X∗ be an arbitrary element of Ω and let I be the intersection
of all SDPS-sets of Ω. Then I ⊆ X∗. We will now also show that X∗ ⊆ I,
i.e. X∗ is contained in each SDPS-set X of Ω. Since both X∗ and X carry
the structure of a dual polar space isomorphic to DW (2n − 1, q2), we then
necessarily have that X∗ = X.

By Lemma 3.8 the point πQ2(y) belongs to I. Since d(x, y) = 2n,
d(y, πQ2(y)) = 2n − 2. The convex subspace 〈πQ2(y), y〉 is X-special for
every X ∈ Ω. Since 〈y, πQ2(y)〉 ∩ Q2 = {πQ2(y)}, F2 := 〈y, πQ2(y)〉 and
F1 := F lie at maximal distance 2 from each other by Lemma 3.3. By Lem-
mas 3.2 and 3.8, Y2 := πF2(Y ) is an SDPS-set of F2 which is contained in I,
in other words X ∩ F2 = Y2 for every X ∈ Ω. With a similar reasoning as
in the proof of Lemma 3.3, we know that every point of Q1 lies at maximal
distance 2 from F2. By Lemma 3.8, Q′

1 := πF2(Q1) is Y2-special. So, Q′
1 ∩ Y2

is a classical ovoid of Q′
1. Put O1 := πQ1(Q

′
1 ∩ Y2). By Lemma 3.8, O1 ⊆ I.

By Lemma 3.3, Q1 and 〈y, πF (y)〉 lie at maximal distance 2n− 2 from each
other and by Lemma 3.8, O′ := π〈y,πF (y)〉(O1) is a classical ovoid of 〈y, πF (y)〉
which is contained in I. Similarly, Q2 and 〈y, πF (y)〉 lie at maximal distance
2n−2 from each other and O2 := πQ2(O

′) is a classical ovoid of Q2 contained
in I.

Now, let V denote the set of all convex subspaces of diameter 2n − 2
containing a point of O2 and a point of O′. Then every convex subspace of
V is X-special for every X ∈ Ω. Notice also that by Lemma 3.3, every two
distinct elements of V lie at maximal distance 2 from each other.

Now, for every G ∈ V , put YG := πG(Y ). Also put Z :=
⋃

G∈V YG. By
Lemma 3.8, Z ⊆ I.

We will now show that X∗ ⊆ I. Let ∆∗ denote the dual polar space
isomorphic to DW (2n−1, q2) defined on the set X∗ by the X∗-special quads.
The convex subspaces of V define a set V ′ of q2 + 1 maxes of ∆∗ in the sense
of Lemma 3.6, i.e. every line of ∆∗ meeting two distinct maxes of V ′ meets
every max of V ′. In order to show that X∗ ⊆ I, we must show that every
quad of ∆∗ meeting every max of V ′ in a line is contained in I. By Lemma
3.5, the following two steps are sufficient to prove this claim:

• Step 1: We show that Q∗ ⊆ I for a particular quad Q∗ of ∆∗ which
meets every max of V ′ in a line.

• Step 2: Suppose Q1 and Q2 are two mutually disjoint quads of ∆∗
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which are contained in a hex of ∆∗ and which meet every max of V ′ in
a line. We show that if Q1 ⊆ I, then also Q2 ⊆ I.

We first prove Step 1. For every X ∈ Ω, Q1 and Q2 are X-special and hence
also 〈Q1, Q2〉 is X-special since Q1 and Q2 intersect in a unique point (of
X). Since the convex subspace 〈Q1, Q2〉 is X∗-special and meets F1 and F2

in X∗-special quads, it follows that Q∗ := 〈Q1, Q2〉 ∩ X∗ is a quad of ∆∗

which meets every element of V ′ in a line. For every X ∈ Ω, the quads
Q1, Q2, 〈Q1, Q2〉 ∩ F1 and 〈Q1, Q2〉 ∩ F2 of DW (4n − 1, q) are X-special.
Moreover, 〈Q1, Q2〉 ∩ F1 ∩X = 〈Q1, Q2〉 ∩ F1 ∩ Y = 〈Q1, Q2〉 ∩ F1 ∩X∗. By
Lemma 3.11, Q∗ = 〈Q1, Q2〉 ∩X∗ = 〈Q1, Q2〉 ∩X. Hence, Q∗ ⊆ I.

We prove Step 2. Let Q1 and Q2 be two mutually disjoint quads of
∆∗ which are contained in a hex of ∆∗ and which meet every max of V ′

in a line. Let d(·, ·), respectively δ(·, ·), denote the distance function in
DW (4n − 1, q), respectively ∆∗. Let x1 and y1 be two points of Q1 such
that δ(x1, y1) = 2. Let x2 and y2 be the unique points of Q2 such that
δ(x1, x2) = δ(y1, y2) = 1. Then δ(x2, y2) = 2 and δ(x1, y2) = δ(x2, y1) = 3.
Hence, d(x1, y1) = d(x2, y2) = 4, d(x1, x2) = d(y1, y2) = 2 and d(x1, y2) =
d(y1, x2) = 6. If 〈x1, x2〉 and 〈x1, y1〉 meet in a line L, then d(x2, y1) ≤
d(x2, πL(x2)) + d(πL(x2), y1) ≤ 1 + 4 = 5, a contradiction. Hence, 〈x1, x2〉
and G1 := 〈x1, y1〉 intersect in the singleton {x1}. Similarly, 〈x1, x2〉 and
G2 := 〈x2, y2〉 intersect in the singleton {x2}. By Lemma 3.3, G1 and G2 lie
at maximal distance 2 from each other. If Q1 ⊆ I, then we also have that
πG2(Q1) = Q2 ⊆ I by Lemma 3.8.

This proves the lemma. �

Lemma 3.13 For every n ≥ 2, λ(n) ≤ q4n−2(q4n−2 − 1) · λ(n− 1).

Proof. We count in two different ways the number of tuples (x, y, Q1, Q2, F,
Y,X) which satisfy the conditions of Lemma 3.12.

Step 1: There are α1 = (q + 1)(q2 + 1) · · · (q2n + 1) possibilities for x.
Proof. This is precisely the number of points of ∆ = DW (4n− 1, q).

Step 2: For given x, there are α2 = q1+2+···+2n possibilities for y.
Proof. This is precisely the number of points of ∆ = DW (4n − 1, q)
opposite to x.

Step 3: For given x and y, there are α3 = (q2n−1)(q2n−q)
(q2−1)(q2−q)

possibilities for F .

Proof. Recall that Res∆(x) is isomorphic to PG(2n − 1, q). The convex
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subspace F corresponds with a (2n − 3)-dimensional subspace of Res∆(x).

So, there are precisely α3 = (q2n−1)(q2n−q)
(q2−1)(q2−q)

possibilities for F .

Step 4: For given x, y and F , there are α4 = q4n−4 possibilities for Q1.
Proof. Reason again in the projective space Res∆(x) ∼= PG(2n − 1, q).
The number of possibilities for Q1 is equal to the number of lines of Res∆(x)
disjoint with a given (2n − 3)-dimensional subspace. This number is equal
to q4n−4.

Step 5: For given x, y, F and Q1, there are

α5 · λ(n− 1) :=
λ(n− 1)

(q + 1)(q3 + 1) · · · (q2n−3 + 1)q(n−1)2

possibilities for Y .
Proof. The SDPS-set Y of F must contain x and πF (y). By Lemma 3.10,
there are

λ(n− 1)

(q + 1)(q3 + 1) · · · (q2n−3 + 1)q(n−1)2

possibilities for Y .

Step 6: For given x, y, F , Q1 and Y , there are α6 = q2n−2−1
q2−1

(q2 − 1)(q2 − q)
possibilities for Q2.
Proof. Since Q1 and Q2 are X-special quads and intersect in a point of
X, the convex suboctagon 〈Q1, Q2〉 is also X-special and hence intersects
F in an X-special quad. This quad is necessarily Y -special. The set of Y -
special quads of F through y is equal to the number of lines of DW (2n−3, q2)

through a given point of DW (2n−3, q2), i.e. equal to q2n−2−1
q2−1

. If 〈Q1, Q2〉∩F

is known, then also 〈Q1, Q2〉 is known, since 〈Q1, Q2〉 = 〈Q1, 〈Q1, Q2〉 ∩ F 〉.
Now, suppose U is a convex suboctagon through Q1 intersecting F in a

quad. We count the number of quads of U through x which have no line in
common with Q1 and F ∩ U . This number is equal to the number of lines
of PG(3, q) which are disjoint with the union of two given mutually disjoint
lines of PG(3, q). This number equals (q2 − 1)(q2 − q).

In conclusion, we can say that there are precisely α6 = q2n−2−1
q2−1

(q2−1)(q2−
q) possibilities for Q2.

Step 7: For given x, y, F , Q1, Y and Q2, there is at most one possibility
for X.
Proof. This is precisely Lemma 3.12.
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By Steps 1 till 7, there are at most

λ(n− 1) ·
6∏

i=1

αi

possible tuples (x, y, Q1, Q2, F, Y, X). Via a second counting we will calculate
the precise number of such tuples.

Step 8: There are λ(n) possibilities for X.
Proof. By definition of λ(n).

Step 9: For given X, there are α7 = (q2 +1)(q4 +1) · · · (q2n +1) possibilities
for x.
Proof. This is precisely the number of points of DW (2n− 1, q2).

Step 10: For given X and x, there are α8 = q2+4+···+2n possibilities for y.
Proof. This is precisely the number of points of DW (2n− 1, q2) which are
opposite to a given point of DW (2n− 1, q2).

Step 11: For given X, x and y, there are precisely α9 = q2n−1
q2−1

·q2n−2 ·(q2n−2−
1) possibilities for (F, Q1, Q2).
Proof. Let DW (2n−1, q2) denote the dual polar space associated with the
SDPS-set X. The convex subspaces of DW (2n − 1, q2) through x define a
projective space isomorphic to PG(n − 1, q2). F corresponds with a hyper-
plane of this projective space and Q1 and Q2 correspond with two distinct
points of this projective space not contained in that hyperplane. It follows
that there are α9 = q2n−1

q2−1
· q2n−2 · (q2n−2 − 1) possibilities for (F, Q1, Q2).

Step 12: For given X, x, y, F , Q1 and Q2, there is only one possibility for
Y .
Proof. This follows from the fact that Y = F ∩X.

Summarizing, we can say that there are λ(n) ·
∏9

i=7 αi possible tuples
(x, y, Q1, Q2, F,X). By the first discussion, we know that

λ(n) ·
9∏

i=7

αi ≤ λ(n− 1) ·
6∏

i=1

αi.

It follows that

λ(n) ≤
∏6

i=1 αi∏9
i=7 αi

· λ(n− 1) = q4n−2 · (q4n−2 − 1) · λ(n− 1).
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Since λ(1) = q2(q2−1)
2

, we have:

Corollary 3.14 There are at most 1
2
q2n2

(q2 − 1)(q6 − 1) · · · (q4n−2 − 1) clas-
sical SDPS-sets in the dual polar space DW (4n− 1, q), n ≥ 1.

3.3 Subtended SDPS-sets

We mention the following two propositions which we take from De Bruyn [6]
(Theorems 1.5 and 1.6).

Proposition 3.15 ([6]) Up to isomorphism, there exists a unique isometric
embedding of DW (2n− 1, q) into DH(2n− 1, q2) (n ≥ 2).

Proposition 3.16 ([6]) Let ∆ be a dual polar space isomorphic to DW (2n−
1, q), n ≥ 2, which is isometrically embedded into the dual polar space ∆′ =
DH(2n− 1, q2). Then the following holds:

(i) max{d(x, ∆) |x ∈ ∆′} = bn
2
c;

(ii) if d(x, ∆) = δ, then ∆δ(x) ∩ ∆ is an SDPS-set in a convex subspace
of diameter 2δ of ∆;

(iii) if n is even, then the set of points of ∆′ at distance at most n
2
− 1

from ∆ is a hyperplane of ∆′;
(iv) if n is even, then the complement of the hyperplane defined in (iii)

has q
n2

2 (q2 − 1)(q6 − 1) · · · (q2n−2 − 1) points.

Now, let the dual polar space ∆ = DW (4n−1, q), n ≥ 1, be isometrically
embedded into DH(4n−1, q2) and let H be the hyperplane of DH(4n−1, q2)
which consists of all points of DH(4n− 1, q2) at distance at most n− 1 from
∆. If x belongs to the complement H of H, then ∆n(x) ∩∆ is an SDPS-set
of DW (4n− 1, q) by Proposition 3.16 (ii). We call any SDPS-set which can
be obtained in this way a subtended SDPS-set.

Lemma 3.17 Any two subtended SDPS-sets of ∆ = DW (4n− 1, q), n ≥ 1,
are isomorphic.

Proof. By Shult [16, Lemma 6.1], the complement H of the hyperplane H
is connected. Hence, it suffices to show the following: if x1 and x2 are two
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collinear points of H, then ∆n(x1)∩∆ and ∆n(x2)∩∆ are isomorphic SDPS-
sets of ∆. Let y denote the unique point of the line x1x2 at distance n−1 from
∆ = DW (4n−1, q). Then ∆n−1(y)∩∆ is an SDPS-set in a convex subspace
F of diameter 2n− 2 of ∆. Let M denote an arbitrary max of ∆ containing
F . Let F (respectively M) denote the unique convex subspace of diameter
2n−2 (respectively 2n−1) of DH(4n−1, q2) containing F (respectively M).
Notice that y ∈ F since by Proposition 3.16 (ii) y is contained on a shortest
path between two points of ∆n−1(y) ∩ ∆ at maximal distance 2n − 2 from
each other. Now, the embedding of M into M is isometric. By Proposition
3.16 (i), it follows that the maximal distance from a point of M to M is equal
to n − 1. This implies that x1x2 ∩ M = y. By Lemma 3.9, there exists an
automorphism θ of DH(2n− 1, q2) satisfying the following properties:

(1) θ fixes M point-wise and every line meeting M set-wise;
(2) θ(x1) = x2.
Now, since M is a max of DW (4n−1, q), there exist a collection of lines of

DW (4n−1, q) meeting M which cover the whole point-set of DW (4n−1, q).
Each line of this collection is fixed by θ. Hence, θ(∆) = ∆. It follows that
θ(∆n(x1) ∩∆) = ∆n(x2) ∩∆. This is precisely what we needed to show. �

The question which one can ask now is whether that there exist two
points x1 and x2 in H such that ∆n(x1) ∩ ∆ = ∆n(x2) ∩ ∆. The answer
is affirmative for the case n = 1. If one looks to the case of an isometric
embedding of Q(4, q) into Q(5, q), then every classical ovoid of Q(4, q) is
subtended by precisely two points of Q(5, q) \ Q(4, q). We will prove that a
similar property holds for every n ≥ 2. In Section 3.4, we prove the following:

Lemma 3.18 (Section 3.4) If X is an SDPS-set of ∆ = DW (4n − 1, q),
n ≥ 1, then there are at most 2 points x ∈ H such that ∆n(x) ∩∆ = X.

Corollary 3.19 There are at least |H|
2

= 1
2
q2n2

(q2 − 1)(q6 − 1) · · · (q4n−2 − 1)
subtended SDPS-sets in DW (4n− 1, q), n ≥ 1.

Combining this with Corollary 3.14, we find that

Theorem 3.20 (1) There are precisely 1
2
q2n2

(q2 − 1)(q6 − 1) · · · (q4n−2 − 1)
classical SDPS-sets in DW (4n− 1, q), n ≥ 1.

(2) Every classical SDPS-set of DW (4n− 1, q), n ≥ 1, is subtended.
(3) All classical SDPS-sets of DW (4n− 1, q), n ≥ 1, are isomorphic.
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3.4 Proof of Lemma 3.18

Lemma 3.21 Let DW (4n − 1, q), n ≥ 1, be isometrically embedded into
DH(4n − 1, q2). Let x be a point of DH(4n − 1, q2) at distance n from
DW (4n−1, q) and let X be the SDPS-set ∆n(x)∩DW (4n−1, q) of DW (4n−
1, q). For every line L of DH(4n− 1, q2) through x, let yL denote the unique
point of L at distance n−1 from DW (4n−1, q) and let FL denote the unique
convex subspace of diameter 2n − 2 of DW (4n − 1, q) containing all points
of ∆n−1(yL) ∩DW (4n− 1, q). Then the map L 7→ FL is a bijection between
the set of lines of DH(4n− 1, q2) through x and the set of X-special convex
subspaces of diameter 2n− 2 of DW (4n− 1, q).

Proof. Since there are as many lines in DH(4n− 1, q2) through x as there
are X-special convex subspaces of diameter 2n−2 in DW (4n−1, q), namely
1 + q2 + . . . + q4n−2 = (1 + q2n)(1 + q2 + · · · + q2n−2), it suffices to show
injectivity.

For every X-special convex subspace F of diameter 2n− 2 of DW (4n−
1, q), the unique convex subspace F of diameter 2n − 2 of DH(4n − 1, q2)
containing F only contains points at distance at most n − 1 from F (and
hence also from DW (4n− 1, q)) by Proposition 3.16 (i). Hence, there exists
at most one line through x meeting F . If L is a line through x such that
FL = F , then by Proposition 3.16 (ii), yL is contained on a shortest path
between two points of F ∩ ∆n−1(yL) at maximal distance 2n − 2 from each
other. It follows that yL ∈ F , i.e. L meets F . The injectivity now readily
follows. �

Lemma 3.22 Let DW (4n− 1, q), n ≥ 1, be isometrically embedded into the
dual polar space DH(4n − 1, q2) and let X be an SDPS-set of DW (4n −
1, q). Let F1 and F2 be two X-special convex subspaces of diameter 2n− 2 of
DW (4n− 1, q) such that (F1 ∩X)∩ (F2 ∩X) = ∅. Let Fi, i ∈ {1, 2}, denote
the unique convex subspace of diameter 2n− 2 of DH(4n− 1, q2) containing
Fi. Then F1 and F2 lie at maximal distance 2 from each other.

Proof. Let DW (2n−1, q2) denote the dual polar space defined on the set X
by the X-special quads and let d(·, ·), respectively δ(·, ·), denote the distance
function in DH(4n−1, q2), respectively DW (2n−1, q2). Let x1 and y1 be two
points of F1 ∩X such that δ(x1, y1) = n− 1 and let x2 and y2 be the unique
points of F2 ∩X such that δ(x1, x2) = δ(y1, y2) = 1. Then δ(x2, y2) = n− 1,
δ(x1, y2) = n and δ(x2, y1) = n. It follows that d(x1, y1) = d(x2, y2) = 2n−2,
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d(x1, x2) = d(y1, y2) = 2 and d(x1, y2) = d(x2, y1) = 2n. If 〈x1, x2〉 ∩ F2 is a
line L, then d(x1, y2) ≤ d(x1, πL(x1))+d(πL(x1), y2) ≤ 1+(2n−2) = 2n−1,
a contradiction. Hence, 〈x1, x2〉 ∩F2 = {x2}. Similarly, 〈x1, x2〉 ∩F1 = {x1}.
So, the triple (〈x1, x2〉, F1, F2) satisfies the conditions of Lemma 3.3. It follows
that F1 and F2 lie at maximal distance 2 from each other. �

The following lemma is precisely Lemma 3.18.

Lemma 3.23 Let DW (4n − 1, q), n ≥ 1, be isometrically embedded in
DH(4n − 1, q2) and let X be a classical SDPS-set of DW (4n − 1, q). Then
there exist at most two points x in DH(4n−1, q2) at distance n from DW (4n−
1, q) such that ∆n(x) ∩DW (4n− 1, q) = X.

Proof. We will prove this by induction on n. As already remarked above
the lemma holds for n = 1 since every classical ovoid of Q(4, q) is subtended
by precisely two points of Q(5, q) \ Q(4, q). So, suppose n ≥ 2 and that the
lemma holds for smaller values of n.

Let F ∗ denote a given X-special convex subspace of diameter 2n − 2 of
DW (4n − 1, q) and let F ∗ denote the unique convex subspace of diameter
2n− 2 of DH(4n− 1, q2) containing F ∗. Then by the induction hypothesis,
there exists at most two and hence precisely two (see the end of Section 3.3)
points x1 and x2 in F ∗ at distance n− 1 from F ∗ such that ∆n−1(x1)∩F ∗ =
∆n−1(x2) ∩ F ∗ = F ∗ ∩X. By Lemma 3.21, if x is a point of DH(4n− 1, q2)
at distance n from DW (4n − 1, q) such that ∆n(x) ∩ DW (4n − 1, q) = X,
then x is collinear with either x1 or x2. So, it suffices to show the following:

(∗) there exists at most one point x in DH(4n−1, q2) at distance
n from DW (4n−1, q) such that ∆n(x)∩DW (4n−1, q) = X and
x is collinear with x1.

Now, for every X-special convex subspace F of diameter 2n−2 of DW (4n−
1, q), we construct a point xF of the unique convex subspace F of diameter
2n− 2 of DH(4n− 1, q2) containing F . If F = F ∗, then we define xF = x1.
If F is disjoint from F ∗, then xF denotes the unique point of F at distance 2
from x1 (see Lemma 3.22). If F 6= F ∗ and F ∗ meet, then take an X-special
convex subspace F ′ of diameter 2n−2 of DW (4n−1, q) disjoint from F and
F ∗ (cf. Lemma 3.4) and let xF denote the unique point of F at distance 2
from xF ′ (see Lemma 3.22). Let U denote the set of all points xF , where F
is an X-special convex subspace of diameter 2n− 2 of DW (4n− 1, q).
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Suppose x is a point of DH(4n− 1, q2) at distance n from DW (4n− 1, q)
such that ∆n(x) ∩ DW (4n − 1, q) = X and x is collinear with x1. If F is
an X-special convex subspace of diameter 2n − 2 of DW (4n − 1, q) disjoint
from F ∗, then the unique point of F collinear with x has distance 2 from
x1 and hence coincides with xF . Now, let F 6= F ∗ be an X-special convex
subspace of diameter 2n − 2 of DW (4n − 1, q) meeting F ∗ and take F ′ as
above. We already know that xF ′ is collinear with x. Now, the unique point
of F collinear with x (see Lemma 3.21) has distance 2 from xF ′ and hence
coincides with xF .

Hence, we can say the following: if x is a point of DH(4n − 1, q2) at
distance n from DW (4n− 1, q) such that ∆n(x)∩DW (4n− 1, q) = X and x
is collinear with x1, then x is collinear with every point of U . So, in order to
establish (∗), it suffices to show that there is at most one point at distance
n from DW (4n− 1, q) which is collinear with all points of U . Notice that if
such a point exists, then U consists of points at mutual distance 2 from each
other. Let u1 and u2 be two arbitrary distinct points of U . Then we may
suppose that d(u1, u2) = 2. Let Q be a quad of 〈u1, u2〉. Since |U | is equal
to the number of lines of DH(2n− 1, q2) through x, i.e. 1 + q2 + . . . + q4n−2,
not all points of U are contained in Q. Let u3 be a point of U \ Q. Then x
(if it exists) necessarily coincides with the unique point of Q collinear with
u3. [Notice that x must be contained in Q since it is collinear with u1 and
u2.] �
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