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Abstract

We study codewords of small weight in the codes arising from De-
sarguesian projective planes. We first of all improve the results of K.
Chouinard on codewords of small weight in the codes arising from PG(2, p),
p prime. Chouinard characterized all the codewords up to weight 2p in
these codes. Using a particular basis for this code, described by Moor-
house, we characterize all the codewords of weight up to 2p + (p− 1)/2 if
p ≥ 11. We then study the codes arising from PG(2, q = q3

0). In particu-
lar, for q0 = p prime, p ≥ 7, we prove that the codes have no codewords
with weight in the interval [q+2, 2q−1]. Finally, for the codes of PG(2, q),
q = ph, p prime, h ≥ 4, we present a discrete spectrum for the weights of
codewords with weights in the interval [q + 2, 2q − 1]. In particular, we
exclude all weights in the interval [3q/2, 2q − 1].
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1 Introduction

We define the incidence matrix A = (aij) of the projective plane PG(2, q),
q = ph, p prime, h ≥ 1, as the matrix whose rows are indexed by lines of the
plane and whose columns are indexed by points of the plane, and with entry

aij =
{

1 if point j belongs to line i,
0 otherwise.

The p-ary code C of the projective plane PG(2, q), q = ph, p prime, h ≥ 1,
is the Fp-span of the rows of the incidence matrix A. The references [1] and [11]
contain a lot of information on codes from planes.

In particular, in [1], it is proven that the scalar multiples of the incidence
vectors of the lines are the codewords of minimal weight q+1 in the code arising
from PG(2, q). Chouinard [3] proved that for the code arising from PG(2, p), p
prime, there are no codewords of weight in the interval [p + 2, 2p− 1] and that
the only codewords of weight 2p are the scalar multiples of the differences of the
incidence vectors of two distinct lines.

We will improve the result of Chouinard by characterising the codewords up
to weight 2p + (p − 1)/2, for p ≥ 11. We show that the only possible non-zero
weights are p+1, 2p, and 2p+1, and prove that codewords of weight 2p+1 are a
linear combination of two incidence vectors of lines, with the linear combination
non-zero in the intersection point of the two lines.

To obtain these results, we will use a particular basis for the code C, found
by E. Moorhouse, see [7].

We then concentrate on the codes arising from PG(2, q), q = q3
0 , q0 = ph,

p prime, h ≥ 1. For h = 1 and p ≥ 7, we prove that there are no codewords
having weight in the interval [q + 2, 2q − 1]. For h > 1 and p ≥ 7, we exclude
the possible weights q + q2/3 + 1 and q + q2/3 + q1/3 + 1 for the codewords.

For arbitrary Desarguesian projective planes, we give a discrete spectrum for
the possible weights of the codewords in the interval [q + 2, 3q/2] and exclude
all codewords with weight in the interval [3q/2, 2q − 1]. For all the new results,
we rely on links with blocking sets in PG(2, q).

Acknowledgement The authors thank the referees and Simeon Ball for
the detailed reading of the article and their helpful suggestions in writing the
final version.

2 The Moorhouse basis for AG(2, p), p prime

The rank of the p-ary linear code of the projective plane PG(2, p), p prime,
is

(
p+1
2

)
+ 1 and the rank of the p-ary linear code of the affine plane AG(2, p),

p prime, is
(
p+1
2

)
. In [7], Moorhouse gives an easy construction for a basis for

AG(2, p), p prime, which can be seen as the projective plane PG(2, p), with one
line M and its points omitted.
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Consider the (p2 + p + 1)× (p2 + p + 1) incidence matrix A of PG(2, p) with
the line M as the first row:

A =


1 . . . 1 0 . . . 0
∗ . . . ∗
...

... B
∗ . . . ∗

 .

The (p2 + p)× p2 matrix B, obtained by deleting the first row and the first
p + 1 columns of A, is the incidence matrix of AG(2, p). Moorhouse gives the
following basis for the row space of B, in which r0, r1, . . . , rp are the points of M :

for i ∈ N, 0 ≤ i ≤ p− 1, take p− i random affine lines through ri.

These, in total,
(
p+1
2

)
lines form a basis for the row space of B. When we also

add the line M , we obtain a basis for the code C of PG(2, p).
This basis will play a crucial role in our arguments. We will refer to this

particular basis as the Moorhouse basis of AG(2, p).
We present this basis in the next figure. The full lines denote the lines

forming the basis of the code C of PG(2, p), while the dotted lines are lines
through the points r0, . . . , ri, . . ., that are not taken as lines for the basis of the
code C of PG(2, p).

... ...

M r1 ri−1 ri

... ...

p lines p− 1 lines p− i + 1 lines

r0

Figure 1: the basis of Moorhouse

We will also use a slight variation on this basis. Inspired by the results of a
computer search, we found the following result.

Theorem 1. The vector space generated by the affine lines of the Moorhouse
basis through r0, r1, and r2, can also be generated by choosing p− 1 affine lines
through each of the points r0, r1, and r2, with the restriction that the three
non-selected affine lines are not concurrent.
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Proof: Select the affine lines of the Moorhouse basis through the three
points r0, r1, and r2. Let M1 be the non-selected affine line through r1. Let M2

and M3 be the non-selected affine lines through r2. We first show that we can
select M1, M2, and M3 without loss of generality.

We use elations with center r0 and axis M to select M1 without loss of
generality. Let r = M1 ∩M2, we then use elations with center r1 and axis M
to fix the point r on M2 without loss of generality. We finally use homologies
with center r and axis M to select M3 without loss of generality. We now work
affinely with coordinates (x, y). We can assume without loss of generality that:

• M is the line at infinity,

• r0 is the point at infinity of the vertical lines X = x,

• r1 is the point at infinity of the horizontal lines Y = y,

• r2 is the point at infinity of the diagonal lines Y = X + y − x, i.e. lines
with slope 1.

From the preceding paragraphs, we can assume that the non-selected affine
lines through r1 and r2 for the Moorhouse basis are M1 : Y = 0, M2 : Y = X,
and M3 : Y = X + 1.

We now want to write the incidence vector of the line M2 as a linear combi-
nation of the vertical lines, the horizontal lines (except for M1) and the diagonal
lines (except for M2 and M3). The point (0, 0) belongs to M2, so has coefficient
1. Since we cannot use the lines M1 and M2, the line X = 0 has coefficient 1 in
the linear combination defining M2. This implies that the point (0, 1) already
has coefficient 1, but it should have coefficient 0 because it does not belong
to M2. We can only use the horizontal line Y = 1 (M3 is forbidden), so Y = 1
has coefficient −1 in the linear combination defining M2.

Continuing in this way for the points (1, 1) and (1, 2), X = 1 has coefficient
2 and Y = 2 has coefficient −2. In general, Y = i has coefficient −i and
X = j has coefficient j + 1 in the linear combination defining M2. Then the
point (i, i) has coefficient −i + (i + 1) = 1. The point (a, b) belongs to the
line Y = X + b − a; we give this line the coefficient b − a − 1. If we use all
horizontal, vertical, and diagonal lines for (a, b), then (a, b) gets the coefficient
(a + 1) + (−b) + (b − a − 1) = 0. But we do not use M2, so the points of M2

have coefficient −i + (i + 1) = 1. We do not use M1 and M3 since both have
coefficient 0.

We conclude that to write M2 as a linear combination, we use all vertical
lines, lines through r0, except for the line X = −1 intersecting M1 and M3 in
the same point (equivalently, we use all affine lines through r0 except for the
line r0r, with {r} = M1 ∩ M3) and we use all affine lines through r1 and r2

which are lines of the Moorhouse basis.
Let N1, . . . , Np−1 be the affine lines through r0 except for r0r. We write M2

as
∑p−1

i=1 εiNi +R, where R is a linear combination of other lines through r1 and
r2, different from M1 and M3. As thus Nj = (M2 −R −

∑p−1
i=1,i 6=j εiNi)/εj . So
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if we remove Nj from the basis and add M2 to it, we still have a vector space
of dimension 3(p− 1) generated by these lines.

3 Improved results for PG(2, p), p prime

We study from now on codewords in the code arising from PG(2, q). Since
PG(2, q) is self-dual, we can describe the incidence matrix A of PG(2, q) in
either of the following two ways:

• the columns of the incidence matrix A of PG(2, q) correspond to the points
of PG(2, q) and the rows correspond to the lines of PG(2, q),

• the columns of the incidence matrix A of PG(2, q) correspond to the lines
of PG(2, q) and the rows correspond to the points of PG(2, q).

In this section, we will use the second correspondence. The following theorem
links nicely the non-zero positions in codewords to a rank problem regarding
the incidence matrix A of PG(2, q).

Theorem 2. Let C be the linear code generated by a matrix A.
Let A′ be the matrix obtained from A by deleting a set D of columns of A

and let r be the rank of the subspace of codewords of C whose non-zero positions
only appear in the columns of D, then rk(A)− rk(A′) = r.

Consequently, if a set of columns is deleted from A, then the rank of A
decreases if and only if there is a non-zero codeword in C with its non-zero
positions contained in the set of the deleted columns of A.

Proof: Consider the projection ϕ : C → CT , where T is the complement of
D in the set of columns of A. Then CT is the code C punctured at D, that is,
with the coordinates in D deleted. Then A′ is a generator matrix for CT .

The kernel of the projection ϕ is the set {c ∈ C|supp(c) ⊆ D}, so rk(A) −
rk(A′) = r, with r = rk({c ∈ C|supp(c) ⊆ D}).

We will use this theorem to improve the results of Chouinard who charac-
terized all the codewords in the code of PG(2, p), p prime, of weight at most 2p
[3].

Since we let the columns of the incidence matrix A correspond to the lines
of PG(2, p) and the rows to the points of PG(2, p), deleting columns from the
incidence matrix A then corresponds to deleting a set B of lines of PG(2, p).
The rank of A only decreases when it is not possible to reconstruct a basis for
the column space of A by using the non-deleted lines of PG(2, p).

A possible way for constructing a basis for the column space of A is by
trying to construct a Moorhouse basis for an affine space contained in PG(2, p)
by using the lines not in B, and then by finding a last line which extends this
basis of AG(2, p) to a basis of PG(2, p).

This is the method we will apply.
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All codewords of weight up to 2p in the code arising from PG(2, p), p prime,
are known by the results of Assmus and Key [1], and Chouinard [3]. We char-
acterize all codewords c, with 2p + 1 ≤ wt(c) ≤ 2p + (p− 1)/2, by induction on
the weight of the codewords.

In the induction hypothesis, we assume that the codewords of weight smaller
than wt(c) are already classified as being either:

1. a codeword of weight p+1 which is, up to a scalar multiple, the incidence
vector of all lines through one point r,

2. a codeword of weight 2p which is, up to a scalar multiple, the difference
of the incidence vectors of all lines through two points r and r′,

3. a codeword of weight 2p+1 which is a linear combination αc1 +βc2 of the
incidence vectors c1 and c2 of all lines through two points r and r′, with
α + β 6= 0.

We also rely on a result of Ball and Blokhuis on dual double blocking sets.

Definition 1. A dual double blocking set of PG(2, q) is a set B of lines such
that each point of PG(2, q) belongs to at least two lines of B.

Theorem 3. (Ball and Blokhuis [2]) A double blocking set in PG(2, p), p prime,
has at least size (5p + 5)/2.

Suppose now that c is a codeword with wt(c) = 2p+i, with i ∈ [1, p−1
2 ], where

we assume that there are no codewords of weight in the interval [2p+2, 2p+i−1].
The non-zero positions in such a codeword define a set B of lines such that if the
columns in A corresponding to these lines are deleted, the rank of A decreases
(Theorem 2).

We now study all cases in which we delete at most 2p + (p− 1)/2 lines cor-
responding to the set of non-zero positions of a codeword c of C. The set of
deleted lines is denoted by B.

Case 1: Suppose that there is a point r0 on zero lines of B.

If at most 2p+(p− 1)/2 lines are deleted, we can select and delete two lines
through r0, then at most 2p + (p + 3)/2 lines are deleted. So there remains
a point r1 on at most one deleted line since a dual double blocking set in
PG(2, p) has at least (5p + 5)/2 lines (Theorem 3).

Let M = r0r1 and let M be the line at infinity of the corresponding affine
plane AG(2, p) of PG(2, p). Note that M /∈ B. Let r0, . . . , rp be the points of
M . We check whether we can reconstruct the Moorhouse basis for AG(2, p).
Using the notations of the beginning of Section 2, through the point ri, there
need to pass p− i affine lines of the Moorhouse basis.

The p affine lines through r0 and the p− 1 affine lines through r1 which are
necessary for the Moorhouse basis are indeed available. By induction on the
index i for ri, we can select p− i affine lines through a point ri, 2 ≤ i ≤ p, of M
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for the Moorhouse basis if (2p+(p− 1)/2)/(p− i+1) < i+1 since then there is
a point in the set {ri, . . . , rp} lying on less than i + 1 lines in B. The previous
condition is equivalent to i + 1 + (p− 1)/(2(i− 1)) < p.

This is satisfied for all i ≤ p− 2 when p > 5.
Problems arise when all lines through rp−1 and rp, different from the line rp−1rp =

M , belong to B since we need one affine line through rp−1 for the Moorhouse
basis.

If all affine lines through rp−1 and rp are deleted, then this means that in
the corresponding codeword c, the positions corresponding to these 2p lines all
have non-zero entries. So two out of the p deleted lines through rp−1 have the
same non-zero entry. We rescale c so that at least these two entries are equal
to 1, i.e.

c = ( 0︸︷︷︸
line rp−1rp

, 1, 1, ∗, . . . , ∗︸ ︷︷ ︸
p affine lines through rp−1

, ∗, . . . , ∗︸ ︷︷ ︸
p affine lines through rp

, ∗, . . . , ∗).

The codeword c′ of weight 2p defined by the 2p affine lines through rp−1 and
rp is, up to a scalar multiple,

c′ = ( 0︸︷︷︸
line rp−1rp

, 1, . . . , 1︸ ︷︷ ︸
p affine lines through rp−1

, −1, . . . ,−1︸ ︷︷ ︸
p affine lines through rp

, 0, . . . , 0).

Then

c− c′ = ( 0︸︷︷︸
line rp−1rp

, 0, 0, ∗, . . . , ∗︸ ︷︷ ︸
p affine lines through rp−1

, ∗, . . . , ∗︸ ︷︷ ︸
p affine lines through rp

, ∗, . . . , ∗).

So wt(c−c′) < wt(c). By induction on wt(c), 2p+1 ≤ wt(c) ≤ 2p+(p−1)/2,
we can assume that c− c′ is already characterized as being either:

1. a codeword of weight p+1 which is, up to a scalar multiple, the incidence
vector of all lines through one point r,

2. a codeword of weight 2p which is, up to a scalar multiple, the difference
of the incidence vectors of all lines through two points r and r′,

3. a codeword of weight 2p+1 which is a linear combination αc1 +βc2 of the
incidence vectors c1 and c2 of all lines through two points r and r′, with
α + β 6= 0.

All three possibilities show that c can be written as a linear combination of
at most three codewords of weight p + 1, so a linear combination of at most
three incidence vectors of all lines through points r, r′, and r′′.

Now a linear combination of the incidence vectors of three lines has weight
at least 3p − 2 for p > 2. Namely, take three non-concurrent lines L1, L2 and
L3, then L1 − L2 + L3 has weight 3p − 2. Since wt(c) ≤ 2p + (p − 1)/2, we
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deduce that c is a linear combination of at most two such codewords of weight
p + 1. Hence, c is described as written in one of the three possibilities above.

Now we can assume that not all lines through rp−1, different from rp−1rp,
are deleted. We use one of them for the Moorhouse basis. Then select the line
r0r1 = M through rp to obtain a basis of size (p2 + p)/2 + 1 for the code of
PG(2, p).

In this latter case, we have reconstructed a basis for the column space of A.
The rank of A has not decreased, so the set B of deleted lines cannot correspond
to a codeword of the code of PG(2, p) (Theorem 2).

Case 2: Suppose that every point of PG(2, p) lies on at least one
line of B.

Then there is a point on exactly one deleted line, since a double blocking set
in PG(2, p), p prime, has size at least 2p + (p + 5)/2, see Theorem 3.

Case 2.1: Suppose that there is a line L ∈ B containing two points
lying on no other line of B.

Let r0, r1 be two points of L lying on no other line of B, thus L = r0r1.
We try to reconstruct the Moorhouse basis for the affine plane defined by

L. As in Case 1, problems only start to arise when all lines through rp−1

and rp belong to B, now including the line L. As in Case 1, we can reduce the
codeword c by the codeword c′, which corresponds to all affine lines through rp−1

and rp, to a codeword c − c′ of lower weight. So these codewords c − c′ are
classified, leading to the same characterization for c as in Case 1.

So we can assume that at least one affine line through rp−1 is not deleted.
Suppose that all lines through rp belong to B, then, the p + 1 positions

in c corresponding to the lines through rp are non-zero. At least two of those
positions have the same non-zero value; assume that this value is equal to 1.

Consider the codeword c′ = ( 1, . . . , 1︸ ︷︷ ︸
p+1 times

, 0, . . . , 0) with 1 in the positions cor-

responding to the lines through rp. Then c − c′ is a codeword of weight at
most wt(c)− 2. By induction on the weight, we can assume that the codeword
c is already characterized. So either we get a basis for the code C, or c − c′

is a codeword already characterized as being a linear combination of at most
two codewords of minimal weight p + 1. Then c is a codeword which is a lin-
ear combination of at most three codewords of minimal weight. In fact, since
wt(c) ≤ 2p + (p − 1)/2, c is a linear combination of at most two codewords of
minimal weight.

If not all lines through rp belong to B, we can select a line through rp, not
in B, as the last line for a basis of the code of PG(2, p), p prime. But this
then implies that the set B of deleted lines does not correspond to a codeword
(Theorem 2).
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Case 2.2: Suppose that there is a line L ∈ B containing at least
one point r0 lying on no other line of B and at least one point r1 lying
on exactly two lines of B.

This case is discussed in the same way as Case 2.1.

Case 2.3: Suppose that there is a line L ∈ B such that all points
of L belong to at least two lines of B, and containing three points
r0, r1, r2 lying on exactly two lines of B.

Let M0,M1,M2 be the lines, different from L, lying in B and passing through
respectively r0, r1, r2.

Let L be the line at infinity of the corresponding affine plane for which we
try to construct the Moorhouse basis.

Case 2.3.1: Suppose that M0,M1,M2 are not concurrent.

From Theorem 1, we know that the affine lines through r0, r1, and r2, not
belonging to B, generate the same vector space as the lines of the Moorhouse
basis through these points generate. We can find enough lines through the
points ri, i ∈ N, 3 ≤ i ≤ p, of L if (2p + (p− 9)/2)/(p− i + 1) < i + 1.

Note that M0, M1, M2 and L are not considered in this inequality.
As before, problems only start to arise if all affine lines through rp−1 and rp

belong to B. But then it is impossible that all points of L lie on at least two
lines of B. Hence, there are no problems to select an affine line through rp−1

for constructing the Moorhouse basis for AG(2, p).
If all lines through rp are deleted, as in Case 2.1, we can again reduce c to

a codeword of lower weight (known by induction on the weight).
If not all lines through rp are deleted, as in Case 2.1, we reconstruct a basis

for the code C to obtain the same contradiction.

Case 2.3.2: Suppose that M0,M1,M2 are concurrent in a point r.

Let c be the codeword corresponding to the set B of deleted lines. Let c′ be
the codeword corresponding to the p + 1 lines through r. Let c and c′ have the
same non-zero symbol in the coordinate position corresponding to the line r0r.
Then c− c′ is a new codeword of weight at most

2p +
p− 1

2︸ ︷︷ ︸
wt(c)

+ (p− 2)︸ ︷︷ ︸
lines rir ; i=3,...,p

−1.︸︷︷︸
line r0r is zero

So wt(c − c′) ≤ 3p + (p − 7)/2. When we remove the lines corresponding
to c − c′, we know that the point r0 is not on any deleted affine line, and that
the points r1 and r2 are on at most one deleted line.
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A point ri, i > 2, of L is on at most i deleted lines if

(3p + (p− 7)/2)/(p− i + 1) < i + 1 ⇐⇒ i + 2 +
p− 1

2(i− 2)
< p.

For i = p−3, this inequality reduces to p > 9. So if p > 9, all essential affine
lines for the Moorhouse basis of the affine plane with L as line at infinity can
be selected through the points ri of L for i ∈ N, 3 ≤ i ≤ p− 3.

We still need two affine lines through one of the points rp−2, rp−1, and rp,
and one affine line through one of the other points among rp−2, rp−1, and rp.
Suppose that at least p − 1 affine lines are deleted through each of the points
rp−2, rp−1, and rp, so at least 3(p − 1) affine lines are deleted through these
three points.

Since subtracting the codeword c′ from c only affects one line through each
of the points rp−2, rp−1, and rp, at least 3p−6 affine lines of B would necessarily
pass through rp−2, rp−1, and rp. But then |B| ≥ 3p− 6 + 1 + (p− 2) since also
the line L belongs to B and the points r0, . . . , rp−3 still belong to a second line
of B. For p > 3, this is false since |B| ≤ 2p + (p− 1)/2.

So it is possible to find a point rp−2 still lying on at least two affine lines not
in B, which then can be selected as lines through rp−2 for the Moorhouse basis.

We also need at least one affine line through rp−1 or rp for the Moorhouse
basis. Assume that all affine lines through rp−1 and rp have non-zero positions
in the codeword c − c′. Then at least 2p − 2 of the affine lines through rp−1

and rp have non-zero positions in c, so are lines of B. But then at most 2p +
(p − 1)/2 − 1 − (2p − 2) = (p + 1)/2 other affine lines in B remain. This then
contradicts the assumption that every point of L lies on a second line in B.

So we find the requested affine line through rp−1 for the construction of the
Moorhouse basis for AG(2, p).

If at least one line through rp has a zero position in c− c′, then this line can
be used as the last line for the basis of PG(2, p), but then c− c′ does not define
a codeword of the code of PG(2, p), so also c does not define a codeword of the
code of PG(2, p).

So assume that all lines through rp have non-zero coordinate values in c−c′.
Add a suitable scalar multiple of the codeword c′′ of weight p + 1 defined by
the lines through rp to c − c′ so that some line through rp has a zero position
in c − c′ + c′′. We have a new codeword of C. But at the same time, we can
construct a basis for the column space of A by using lines with zero positions
in c− c′+ c′′. For, we still can use the previously determined (p2 + p)/2 lines of
the Moorhouse basis since none of those lines passes through rp. We now can
select a line through rp having a zero position in c − c′ + c′′ as the final line
to construct a basis of the code of PG(2, p). This is however impossible since
c− c′ + c′′ is a codeword of C.

Summary: The preceding cases imply the following assumptions on the
lines in the set B, for the cases not yet discussed.
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• Every point of PG(2, p) belongs to at least one line of B (consequence of
Case 1).

• If a line L ∈ B contains a point r0 lying on exactly one line L of B, then
all other points of L lie on at least three lines of B (consequence of Cases
2.1 and 2.2).

• If all points of a line L ∈ B lie on at least two lines of B, and there is a
point r0 ∈ L on exactly two lines of B, then there is at most one other
point r1 ∈ L on exactly two lines of B. All other points of L lie on at least
three lines of B (consequence of Case 2.3).

The preceding cases imply that a line L of B has at most two points that
are on at most two lines of B. Let x be the number of points on one line of B,
let y be the number of points on two lines of B, then the second bullet implies
2(|B| − x) ≥ y. The number of incidences of the points of PG(2, p) with the
lines of B is at least 3(p2 + p + 1− x− y) + 2y + x, which implies (p + 1)|B| ≥
3p2 + 3p + 3− 2|B|, so (p + 3)|B| ≥ 3p2 + 3p + 3.

But |B| ≤ 2p + (p− 1)/2. This yields that

(p + 3)(2p + (p− 1)/2) ≥ 3p2 + 3p + 3,

which is false for p > 7.

This brings us to the following new theorem. We state the theorem in the
original setting where the rows of A correspond to the incidence vectors of the
lines of PG(2, p).

Theorem 4. The only codewords c, with 0 < wt(c) ≤ 2p + (p − 1)/2, in the
p-ary linear code C arising from PG(2, p), p prime, p ≥ 11, are:

• codewords with weight p + 1: the scalar multiples of the incidence vectors
of the lines of PG(2, p),

• codewords with weight 2p: α(c1 − c2), c1 and c2 the incidence vectors of
two distinct lines of PG(2, p),

• codewords with weight 2p + 1: αc1 + βc2, β 6= −α, with c1 and c2 the
incidence vectors of two distinct lines of PG(2, p).

Remark 1. In [3], the weight enumerators of the linear codes of the projective
planes PG(2, p) of order two, three, four, five and eight are listed.

We note that the codewords of smallest weight are equal to the scalar mul-
tiples of the incidence vectors of the lines [1], and those of weight 2p are equal
to the scalar multiples of the differences of the incidence vectors of two distinct
lines of PG(2, p) [1, Corollary 6.4.4] (see also Theorem 5).

The code of PG(2, p), p = 3, has codewords of weight 2p + 1 = 7 different
from a linear combination of two lines, which is in contrast with the results for
p ≥ 11 of the preceding theorem.
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Regarding the code of PG(2, p), p = 5, all codewords of weight 2p + 1 are
a linear combination of the incidence vectors of two lines, which coincides with
the results for p ≥ 11 of the preceding theorem. But the code of PG(2, p), p = 5,
has codewords of weight 2p + (p− 1)/2 = 2p + 2 = 12, which is in contrast with
the results for p ≥ 11 of the preceding theorem [3, 5].

4 Codewords of small weight in PG(2, q), q = q3
0

We now consider the p-ary linear code C arising from the projective plane
PG(2, q), q = q3

0 , q0 = ph, p prime, h ≥ 1.
Consider first of all the planes PG(2, p3), p ≥ 7 prime, h ≥ 1. To prove that

there are no codewords in C of weight between p3 +2 and 2p3−1, we first prove
that every codeword in the code of PG(2, q), q = ph, p prime, h ≥ 1, of weight
in [q + 2, 2q − 1] is a minimal blocking set intersecting every line in 1 (mod p)
points. The following theorem is Corollary 6.4.4 of [1].

Theorem 5. The codewords of minimal weight in C ∩ C⊥ have weight 2q and
are the scalar multiples of differences of incidence vectors of two distinct lines
of PG(2, q).

Lemma 1. A codeword c ∈ C\C⊥ with weight in [q + 2, 2q − 1] is a scalar
multiple of the incidence vector of a minimal blocking set of PG(2, q), q = ph,
p prime, h ≥ 1, intersecting every line in 1 (mod p) points.

Proof: The results of this lemma can also be found in [3]. We prove these
results again to make the article self-contained, and because this lemma plays
a crucial role in the remaining results of this article.

By Theorem 5, we know that the codewords of C, with weight in [q+2, 2q−1],
have to belong to C\C⊥. The scalar product (c, L), with c a codeword and L a
line, is constant for all lines L because (c, L1 − L2) ≡ 0 (mod p) for all distinct
lines L1, L2, since C ∩ C⊥ is generated by all the differences of two lines of
PG(2, q) [1, Theorem 6.3.1]. The codeword c ∈ C \ C⊥ defines via its non-zero
positions a blocking set B of PG(2, q) since (c, L) = a 6= 0, for all lines L of
PG(2, q).

We take a look at the points of the blocking set B defined by the non-zero
positions in the codeword c. By the results of T. Szőnyi [14, Section 3], we know
that every blocking set of PG(2, q) of size smaller than 2q can be reduced in
a unique way to a minimal blocking set, namely, by deleting all non-essential
points. Let r be an essential point of B, thus lying on a tangent line L to
B. We can rescale (c, L) to 1. Because c intersects the line L only in r, c
has to take value cr = 1 in the coordinate position corresponding to the point
r. Since every essential point of B lies on at least one tangent line to B, and
since (c, L) = 1 6= 0 for all lines L of PG(2, q), the coordinate positions in c
corresponding to all the essential points r of B have the value cr = 1.

Suppose that B is not minimal. Suppose that the point r′ is not essential
for the blocking set B. Then r′ lies on at least one line containing only 2 points
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r and r′ of B. Otherwise, the weight of c would be greater than or equal to
1 + 2(q + 1), a contradiction.

So there is a line intersecting B only in r and r′. Again, we know that every
blocking set of PG(2, q) of size smaller than 2q can be reduced in a unique way
to a minimal blocking set, namely by deleting all non-essential points. Because
r′ is not essential for B, r is an essential point for B. So the value cr of c in
the coordinate position of the point r is equal to cr = 1. But (rr′, c) = 1 =
cr + cr′ = cr′ + 1. We see that cr′ , the coordinate value in the position of r′,
has to be equal to zero, but then the point r′, which was not essential, is not a
point of B.

Hence, all points of B are essential points of B; the blocking set B is minimal.
Since we now know that B is minimal, the non-zero coordinate positions in

c all correspond to essential points of B, so are equal to 1. Since we also know
already that (c, L) = 1 for all lines L of PG(2, q), B necessarily intersects every
line in 1 (mod p) points.

Remark 2. The minimal blocking sets B of size q + 2 ≤ |B| ≤ 2q − 1 in
PG(2, q = p3), p prime, p ≥ 7, intersecting every line in 1 (mod p) points, have
been classified [8, 9, 10]. They are projectively equivalent to one of the following
two blocking sets (points given with homogeneous coordinates):

B1 =
{
(x, T (x), 1)|x ∈ Fp3

}
∪

{
(x, T (x), 0)|x ∈ Fp3\ {0}

}
,

with T : Fp3 → Fp : x 7−→ x + xp + xp2
, or

B2 =
{
(x, xp, 1)|x ∈ Fp3

}
∪

{
(x, xp, 0)|x ∈ Fp3\ {0}

}
.

Note that |B1| = p3 + p2 + 1 and |B2| = p3 + p2 + p + 1.

Lemma 2. [1, Lemma 6.6.1] Let C be the p-ary linear code defined by the plane
PG(2, q), q = ph, p prime, h ≥ 1.

A vector v, with constant non-zero symbols, is contained in C + C⊥ if and
only if |supp(v) ∩ L| (mod p) is independent of the line L of PG(2, q).

Lemma 3. [1, Lemma 6.6.2] Suppose that X is a codeword, with constant non-
zero symbols, of the code C of PG(2, q) and Y is a vector, with constant non-zero
symbols, of C + C⊥. Rescale X and Y so that every non-zero value is equal to
1. If |Y ∩ L| ≡ |X ∩ L| (mod p) for each line L, then |X ∩ Y | ≡ |X| mod p.

Theorem 6. In the p-ary linear code of PG(2, p3), p prime, p ≥ 7, there are
no codewords with weight in the interval [p3 + 2, 2p3 − 1].

Proof: By the preceding lemmas, we know that the only candidates for the
codewords with weight in the interval [p3 +2, 2p3−1] correspond, up to a scalar
multiple, to the incidence vectors of the minimal blocking sets with sizes in the
interval [p3 + 2, 2p3 − 1] that intersect every line in 1 (mod p) points.

By the classification results of Polverino and Storme (Remark 2), only two
types of blocking sets need to be checked. To show that the incidence vectors of
these blocking sets cannot define a codeword in C, Lemmas 1 and 3 show that
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it is sufficient to find a second blocking set B′ of one of the types described in
Remark 2 such that |B ∩B′| 6≡ 1 (mod p).

Note that if the incidence vector of a blocking set B defines a codeword of
C, then so does every projective image of B, since C is invariant under the
collineation group of PG(2, p3).

We have to distinguish between the two possibilities of Remark 2. We deal
with the case B = B1 first.

Case 1: The blocking set B1 does not define a codeword of C.

Here

B1 =
{
(x, T (x), 1)|x ∈ Fp3

}
∪

{
(x, T (x), 0)|x ∈ Fp3\ {0}

}
and

B′1 =
{
(x′, 1, T (x′))|x′ ∈ Fp3

}
∪

{
(x′, 0, T (x′))|x′ ∈ Fp3\ {0}

}
.

What is B1 ∩B′1? We check the different possibilities.
Case 1.1. If (x, T (x), 1) = (x′, 0, T (x′)), then T (x) = 0 and T (x′) 6= 0. Thus

(x, T (x), 1) = (x′/T (x′), 0, 1), so that x = x′/T (x′). But then as T (x′) ∈ Fp,
T (x) = T (x′)/T (x′) = 1 6= 0.

Case 1.2. Similarly, if (x, T (x), 0) = (x′, 1, T (x′)), we need T (x) 6= 0. Then
x/T (x) = x′ gives T (x′) = 1 6= 0.

Case 1.3 If (x, T (x), 0) = (x′, 0, T (x′)), then T (x) = T (x′) = 0, and we get
one common point (1, 0, 0).

Case 1.4 Suppose that (x, T (x), 1) = (x′, 1, T (x′)). Then none of the com-
ponents can be 0, and (x/T (x), 1, 1/T (x)) = (x′, 1, T (x′)). Thus x/T (x) = x′,
which makes T (x′) = 1; and then 1/T (x) = T (x′) makes T (x) = 1 also. So
x = x′. Hence, the points in B1 ∩B′1 of this form are the p2 points (x, 1, 1) for
which T (x) = 1.

It follows that |B1 ∩B′1| = p2 + 1, and the symmetric difference B1∆B′1 has
size 2p3. Suppose that B1 corresponds to a codeword b1, so that B′1 also corre-
sponds to a codeword b′1. Then because |B1 ∩L| ≡ |B′1 ∩L| ≡ 1 (mod p) for all
lines L, b1 − b′1 ∈ C ∩ C⊥. As b1 − b′1 has weight 2p3, it is a minimum weight
codeword of C ∩C⊥ and thus has the form L−L′ for two lines L and L′, by [1,
Corollary 6.4.4] (see also Theorem 5) and the fact that the non-zero coefficients
of b1 − b′1 are ±1. Now the line z = 0 meets B1\B′1 in p2 points, and y = 0
meets B′1\B1 in p2 points. Thus it could only be that L is the line z = 0 and
L′ is the line y = 0. But these lines don’t meet B1∆B′1 in the required p3 points.

Case 2: The blocking set B2 does not define a codeword of C.

For B2, the proof is analogous. We are looking for a blocking set B′2 such that
|B2∩B′2| 6≡ 1 (mod p). Set B′2 =

{
(ωx, ωxp, 1)|x ∈ Fp3

}
∪

{
(x, xp, 0)|x ∈ Fp3\ {0}

}
, ω ∈

Fp3\Fp. Then

(ωx, ωxp, 1) ∈ B2 ∩B′2
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m
ωxp = ωpxp

m
x = 0 or ωp−1 = 1.

It follows that |B2 ∩ B′2| = 1︸︷︷︸
(0,0,1)

+ p2 + p + 1︸ ︷︷ ︸
points(x,xp,0)

≡ 2 (mod p), so it is not

congruent to 1 (mod p).

Remark 3. The same arguments as given in the proof of the preceding theorem
eliminate the incidence vectors of the following minimal blocking sets

B1 =
{

(x, T (x), 1)|x ∈ Fq3
0

}
∪

{
(x, T (x), 0)|x ∈ Fq3

0
\ {0}

}
,

with T : Fq3
0
→ Fq0 : x 7−→ x + xq0 + xq2

0 , and

B2 =
{

(x, xq0 , 1)|x ∈ Fq3
0

}
∪

{
(x, xq0 , 0)|x ∈ Fq3

0
\ {0}

}
,

as codewords for the code arising from PG(2, q = q3
0), q0 = ph, p prime, p ≥ 7,

h ≥ 1.
Since also the Baer subplanes in PG(2, q), q square, are eliminated as possible

codewords in the code of PG(2, q) [1, Proposition 6.6.3], we obtain the following
result.

Theorem 7. The p-ary linear code C corresponding to the plane PG(2, q = q3
0),

q0 = ph, p ≥ 7 prime, h ≥ 1, does not have codewords of weight q3
0 + q2

0 + 1 or
of weight q3

0 + q2
0 + q0 + 1; and if q0 is a square, C has no codewords of weight

q3
0 + q

3/2
0 + 1.

Remark 4. The next minimal blocking sets of PG(2, q = q3
0), q0 = ph, p ≥ 7

prime, h ≥ 1, which need to be checked as possible codewords for the code
C are minimal blocking sets B intersecting every line in 1 (mod pe) points,
where e is the largest divisor smaller than h of 3h. This follows from the recent
classification results of Sziklai [13] who proved that all the minimal blocking
sets B of PG(2, q = pn), p prime, of size |B| < 3(q + 1)/2, intersect the lines of
PG(2, q = pn) in 1 (mod pe) points for some divisor e of n.

5 Codewords in PG(2, q = ph)

We know that a codeword c with weight in the interval [q + 2, 2q − 1] defines a
minimal blocking set of PG(2, q), q = ph, p prime, h ≥ 1, intersecting every line
in 1 (mod p) points (Lemma 1). We wish to exclude as many values as possible
as weights for the codewords in the general case q = ph, with p prime, h ≥ 4.

Consider a minimal blocking set B of size |B| < 2q in PG(2, q), q = ph, p
prime, h ≥ 1, intersecting every line in 1 (mod pe) points, with e the maximal
integer for which this is true. Let pe = E. Then we can derive the following
equations.
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∑
i≥0

τ1+iE =
q2+q+1∑

i=1

1 = q2 + q + 1,

∑
i≥0

(1 + iE)τ1+iE = |B|(q + 1) =
q2+q+1∑

i=1

xi, and

q2+q+1∑
i=1

xi(xi − 1) =
∑
i≥0

(1 + iE)iEτ1+iE = |B|(|B| − 1),

with xi = |Li ∩ B|, τ1+iE the number of lines intersecting B in 1 + iE points,
and L1, . . . , Lq2+q+1 the lines of PG(2, q), q = ph. We get the second equation
by counting the number of pairs (point r of B, line L), with r ∈ L, and the
third equation by counting the number of triples (r0, r1, L), r0 6= r1, r0, r1 ∈ B,
where L contains the points r0 and r1.

Since all lines intersect the blocking set B in 1 or in at least 1 + E points,
we have the following inequality:

q2+q+1∑
i=1

(xi − 1)(xi − 1− E) ≥ 0, or

q2+q+1∑
i=1

xi(xi − 1)− E
q2+q+1∑

i=1

xi −
q2+q+1∑

i=1

xi + (1 + E)
q2+q+1∑

i=1

1 ≥ 0.

Substituting the first three equations in the last inequality gives the following
quadratic inequality:

|B|(|B| − 1)− (E + 1)|B|(q + 1) + (1 + E)(q2 + q + 1) ≥ 0. (?)

Theorem 8. There are no codewords with weight in [3q/2, 2q − 1] in the p-
ary linear code of PG(2, q), q = ph, corresponding to a minimal blocking set
intersecting every line in 1 (mod E) points when E = pe ≥ 4.

Proof: If such a codeword exists, it corresponds to a minimal blocking set
B. We will prove that |B| < 3q/2 when |B| ≤ 2q − 1. We check, under certain
conditions, that when we substitute |B| = 3q/2 and |B| = 2q in the quadratic
inequality (?), the value is negative. Since the coefficient of |B|2 is positive, this
yields that |B| < 3q/2 or |B| > 2q.

For |B| = 3q/2, we get

q2(
7
4
− E

2
) + q(−2− E

2
) + E + 1.

This last value is smaller than 0 when 7/4 < E/2. So when we suppose that
E ≥ 4, we have the desired conclusion.

For |B| = 2q, we get

q2(3− E) + q(−3− E) + E + 1.

When E ≥ 4, the last expression is strictly smaller than 0.
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We excluded in Theorem 8 half of the interval [q+2, 2q−1]. Our goal is now
to find in the other half [q + 2, 3q/2] of the interval, smaller pairwise disjoint
intervals for the possible values for |B|. These intervals will depend on the
possible values for E = pe and, for p > 3, will be disjoint for different values of
e, further reducing the possibilities of the weights of codewords in [q +2, 2q−1].

From [14, Section 5], we get

q + 1 +
q

pe + 2
≤ |B| ≤ q +

9q

4pe
.

Note that the intervals are disjoint for distinct values of e if p 6= 2, 3. We
will now derive a different upper bound on |B|.

Since we know that the codewords correspond to minimal blocking sets of
PG(2, q), q = ph, h ≥ 1, p prime, of size smaller than 3(q + 1)/2, intersecting
every line in 1 (mod pe) points, we can use the results of Sziklai [13, Corollary
4.18] which state that the largest integer e for which this is true is equal to a
divisor of h. That is why we give the upper bound the form

|B| = q + a0
q
pe + a1

q
p2e + · · ·+ ah/e−2p

e + 1, with a0, . . . , ah/e−2 ∈ N.

Note that |B| = 1 (mod p), so the constant term will be equal to 1.
The two roots of the quadratic equation on the left hand side of (∗) are

qE

2
+

q

2
+

E

2
+ 1± qE

2

(
1− 2

E
− 3

E2
+

2
q

+
2

qE
+

1
q2

)1/2

.

Now |B| is at most equal to the smallest of the two roots. We also have that(
1− 2

E
− 3

E2
+

2
q

+
2

qE
+

1
q2

)1/2

≥ (1− 2
E
− 3

E2
)1/2 +

1
q
.

Hence,

|B| ≤ qE

2
+

q

2
+

E

2
+ 1− qE

2

{
(1− 2

E
− 3

E2
)1/2 +

1
q

}
.

From [12], sequence A001006,(
1− 2

E
− 3

E2

)1/2

= 1− 1
E
− 2

E2

+∞∑
n=0

an
1

En
,

where the coefficients an are the Motzkin numbers: a0 = 1, a1 = 1, a2 = 2, a3 =
4, a4 = 9, . . ..

Therefore,

|B| ≤ 1 + q +
q

E

+∞∑
n=0

an
1

En
,

which gives the upper bound
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|B| ≤ q + a0
q

pe
+ a1

q

p2e
+ · · ·+ ah/e−2p

e + 1

for large values of the prime number p.
As already indicated, the coefficients a0, . . . , ah/e−2 are known as the Motzkin

numbers [12]. The first eight Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127. For
these numbers an, we have in general that an+2−an+1 = a0an +a1an−1 + · · ·+
ana0. The general expression for an is known and equals

an =
1

n + 1

n+1∑
i=0

(−1)i

(
n + 1

i

)(
2n + 2− 2i

n− i

)
.

See [15] for this description.
Motzkin numbers appear in many combinatorial problems; we refer to [12]

for more references on the Motzkin numbers.
So we have proven the following result.

Theorem 9. When B is a minimal blocking set in PG(2, q = ph), p prime,
h ≥ 1, of size |B| ≤ 2q − 1, intersecting every line in 1 (mod pe) points with e
the maximal integer for which this is valid, then for large prime numbers p,

|B| ≤ q + a0
q

pe
+ a1

q

p2e
+ · · ·+ ah/e−2p

e + 1,

with ai the i-th Motzkin number.

6 Computer results

We investigated by computer which removal of columns of the incidence matrix
A reduces its rank. We use a standard backtracking algorithm in which any x
columns are removed recursively. The rank calculation is done by the explicit
construction of the vector space of the remaining columns. Adding a column
involves a time-consuming diagonalisation algorithm which adds the line inci-
dence vector to the vector space, so it determines if it increments the rank or
not.

We illustrate the behavior of our backtracking strategy by an example. Con-
sider the 13× 13 incidence matrix of PG(2, 3), with columns numbered from 1
up to 13. We remove 4 columns exhaustively, therefore we generate all ordered
removals (a, b, c, d), with a < b < c < d. Suppose that the algorithm removed
columns 1 and 4. Now we know that columns 2 and 3 will not be removed in
this part of the search, therefore we create the vector space V1 of columns 2 and
3. Suppose that we remove 8 in the next recursive step. We make a copy of V1

to V2 and add columns 5, 6 and 7 to V2. Finally, 10 is the last removed column,
therefore we copy V2 to V3 and add columns 9, 11, 12 and 13 to V3. This way
parts of the rank calculation are reused.

What about isomorph rejection? We use the well-known nauty software [6]
to calculate the orbits of the set of non-removed columns with respect to the set
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16 15 14 13 12
5 51, . . .

6 (p + 1) 51, . . . 61

7 51, . . . 61

8 51, . . . 61

9 52, . . . 61

10 (2p) 52, . . . 61, 52∗
11 (2p + 1) 52, . . . 61, 52∗ 62

12 . . . 61, 52∗, 43∗ 62

13 . . . 61, 52, . . . 62

14 . . . . . . 62, 61, 52∗
15 (3p) . . . . . . 62, 61, 49 63, 62, 53∗

16 . . . . . . 63, 62, 53∗, 412 63

Table 1: Exhaustive line removal in PG(2, 5), showing what pos-
sible rank (table columns) is left when removing a certain amount
(table rows) of lines. The meaning of the numbers is explained in
the text.

of removed columns. From each orbit in the set of non-removed columns, we
choose only one column to remove in the recursive step. To be compatible with
the generation method, we remove only the smallest column from each orbit
which is larger than the last removed column.

The results of this algorithm on the smallest PG(2, p)’s revealed some prop-
erties about the removed set of columns. From now on, we use the term “lines”
instead of “columns”. As an example, Table 1 shows what rank (table columns)
is left when removing a certain amount (table rows) of lines. An empty entry
indicates no such line removal leads to the rank. Otherwise, a value is the size
of the largest subset of concurrent lines of a certain removal, its subscript is the
number of such subsets. We use dots when more possibilities than the listed
ones are possible. A star (*) indicates the subsets of concurrent lines are dis-
joint. From the table, we see that when removing less than 2p lines, the rank
decreases if and only if we remove all lines through a point. Such a removal
corresponds to a codeword of weight p + 1. When removing 2p lines, the rank
can also decrease by removing all lines through two points, but not the joining
line. Such a removal corresponds to a codeword of weight 2p.

When removing all lines through three points, the rank sometimes decreases
by 3 and sometimes by 4. A closer look at all possibilities when removing all
lines through three points revealed the following result.

Theorem 10. If all lines of PG(2, p), p prime, through three collinear points
are deleted, then the rank of the incidence matrix decreases by four. If all lines
of PG(2, p), p prime, through three non-collinear points are deleted, then the
rank of the incidence matrix decreases by three.

Proof: We prove this by use of the Moorhouse basis. We use the notations
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of Section 2, i.e. r0, r1, . . . , rp are the points of the line M defining the affine
plane AG(2, p).

Case 1: We delete all lines through the points rp−2, rp−1, rp of M . For
i ∈ N, 0 ≤ i ≤ p − 3, take all lines (different from M) through ri. These lines
give a matrix of rank

∑p−3
i=0 (p − i) = (

(
p+1
2

)
+ 1) − 4. The rank decreased by

four.
Case 2: We delete all lines through the points rp−1, rp and r (r not on M).

For the point r0, we only have p−1 lines available for the Moorhouse basis (not
r0r). For i ∈ N, 1 ≤ i ≤ p− 2, we have p− i lines through ri available for the
Moorhouse basis. So the rank is at least (p− 1) +

∑p−1
i=2 i =

(
p+1
2

)
− 2.

Suppose that we have rank
(
p+1
2

)
− 1, then by results of Moorhouse [7, The-

orem 6.1], we have the net defined by the directions r0, . . . , rp−2, including the
line r0r. But it is impossible to have r0r as a linear combination of the other
chosen

(
p+1
2

)
− 2 lines, because r is not on any of those lines. So the rank is

(
(
p+1
2

)
+ 1)− 3. The rank decreased by three.

When removing 3(p − 1) lines, the rank can also be reduced by removing
p− 1 lines through three points. A closer look gave the following result.

Theorem 11. If in PG(2, p), p prime, p−1 lines through three collinear points
a, b and c, but not their joining line, are deleted, then the rank decreases if the
three non-removed lines M1, M2 and M3 (6= ab) through respectively a, b and c
are concurrent.

The unique codeword which corresponds to the removal of these lines is, up
to equivalence, given by

(1, 2, . . . , p− 1︸ ︷︷ ︸
lines through a

, 1, 2, . . . , p− 1︸ ︷︷ ︸
lines through b

, 1, 2, . . . , p− 1︸ ︷︷ ︸
lines through c

, 0, . . . , 0).

Proof: Let M = ab be the line at infinity of the corresponding affine plane
AG(2, p). Let a, b and c be the points at infinity of respectively the vertical,
horizontal, and diagonal lines. Suppose that M1,M2,M3 all pass through the
origin (0, 0).

We give the coordinate positions of the p− 1 remaining affine lines through
a, b and c the following values, and we prove that the constructed vector indeed
is a codeword.

In the coordinate positions of the lines X = α, we put the value α. In
the coordinate positions of the lines Y = β, we put the value −β, and in the
coordinate positions of the lines Y = X + β − α, we put the value β − α. All
other coordinate positions are zero. Note that the coordinate values of the lines
M1,M2 and M3 are indeed zero.

Let the incidence matrix A of PG(2, p) have rows corresponding to the points
of PG(2, p). We show first of all that the constructed vector c is orthogonal to
all the rows of A.

The vector c is orthogonal to the rows of A corresponding to the points a, b
and c, since

∑p−1
i=1 i ≡ 0 (mod p). The vector c is also orthogonal to the rows
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of A corresponding to the other points at infinity since these points lie on none
of the lines with non-zero coordinates.

An affine point (a, b) lies on the lines X = a, Y = b, and Y = X + b− a, so
the sum of the corresponding coordinate values is a− b + b− a = 0.

We have shown that c is orthogonal to all the rows of A, hence c ∈ C⊥.
But C⊥ ⊂ C. This is proven in the following way. The code C is a [p2 + p+

1, (p2 + p)/2 + 1]-code, so C⊥ is a [p2 + p + 1, (p2 + p)/2]-code. But Hull(C) =
C ∩C⊥ is a code of dimension (p2 + p)/2 [1, Theorem 6.3.1]. So this shows that
C⊥ ⊂ C. Hence, c ∈ C⊥ also implies c ∈ C.

This shows that there is a codeword of C with its non-zero positions in the
3(p− 1) positions of the deleted lines through a, b and c. So, by Theorem 2, the
rank of A decreases when deleting these 3(p− 1) columns from A.

Theorem 12. If in PG(2, p), p prime, p−1 lines through three collinear points
a, b and c, but not their joining line, are deleted, then the rank does not decrease
if the three non-removed lines M1, M2 and M3 (6= ab) through respectively a, b
and c are non-concurrent.

Proof: Let r0 be a point of the line ab, different from a, b and c. Let
{r1} = M1 ∩M2 and let M = r0r1. Let {r2} = M ∩M3.

We construct a Moorhouse basis for the affine plane defined by the line
M . Through r0, we have the p necessary lines for the affine Moorhouse basis.
Through r1, we have the p − 1 necessary affine lines for the Moorhouse basis
since the only line through r1 that cannot be used is the line r1c. Through r2,
we have the p− 2 necessary affine lines for the Moorhouse basis since only the
lines r2a and r2b cannot be used. Through all the remaining points of M , we
have p−3 affine lines available for the Moorhouse basis. Finally, M can be used
to construct the final line for the basis of the code of PG(2, p).

So the rank of the incidence matrix of PG(2, p) does not decrease, the 3(p−1)
deleted lines are not the non-zero positions of a codeword of the p-ary linear
code defined by PG(2, p).

Corollary 1. If in PG(2, p), p prime, p− 1 lines through three collinear points
a, b and c, but not their joining line, are deleted, then the rank decreases if and
only if the three non-removed lines M1, M2 and M3 (6= ab) through respectively
a, b and c are concurrent.

By a similar (easier) construction, we can show that the codeword corre-
sponding to the removal of p lines through 2 points a and b, but not their
joining line is

( 1, 1, . . . , 1︸ ︷︷ ︸
p lines through a

,−1,−1, . . . ,−1︸ ︷︷ ︸
p lines through b

, 0, . . . , 0).

Now we consider removing p−2 lines through 4 collinear points (but not their
joining line), in which the 8 non-removed lines can be partitioned in two disjoint
sets of concurrent lines. Here again, we assume the codeword is such that the
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linear combination of the incidence vectors of the corresponding removed lines
is the 0 vector. The unique codeword was found by an exhaustive computer
search for PG(2, p), p prime, p ≤ 23. The only remarkable thing about these
codewords is that, for every p− 2 lines through a point, we twice have (p− 3)/2
occurrences of the same value, and then once some other value.
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