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Abstract

It is known that every blocking set of Q(4, q), q > 2 even, with less than q2 +1+
√

q
points contains an ovoid, and hence Q(4, q) has no minimal blocking set B with
q2 + 1 < |B| < q2 + 1 +

√
q. In contrast to this, it is even not known whether

or not Q(4, q), q odd, has minimal blocking sets of size q2 + 2. In this paper, the
non-existence of a minimal blocking set of size q2 + 2 of Q(4, q), q an odd prime,
is shown. Strong geometrical information is obtained using an algebraic description
of W (3, q). Geometrical and combinatorial arguments complete the proof.
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1 Introduction

Consider the non-singular parabolic quadric Q(4, q) in the 4-dimensional pro-
jective space PG(4, q). It is known that (q2 + 1)(q + 1) points and the same
number of lines of PG(4, q) are contained in Q(4, q), and that no higher di-
mensional subspaces of PG(4, q) are completely contained in it. This quadric
is also an example of a finite classical generalized quadrangle if we consider it
as a pure point-line geometry.
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An ovoid of Q(4, q) is a set O of points of Q(4, q), such that every line of
Q(4, q) meets O in exactly one point, necessarily, |O| = q2 + 1. A blocking set
is a set B of points of Q(4, q), such that every line of Q(4, q) meets B in at
least one point, necessarily |B| ≥ q2 + 1 with equality if and only if B is an
ovoid. A blocking set B is called minimal if B \ {p} is not a blocking set for
any point p ∈ B. A multiple line of B is a line of Q(4, q) meeting B in at least
two points.

It is a well known fact that the dual of the generalized quadrangle Q(4, q), i.e.,
the point-line geometry obtained by interchanging the role of the points and
the lines, is isomorphic to the generalized quadrangle W (3, q), which is the
generalized quadrangle with as pointset the points of PG(3, q), and as lineset
the totally isotropic lines with respect to a symplectic polarity of PG(3, q).
For more details we refer to [6].

An ovoid of Q(4, q) translates under the duality to a spread of W (3, q), this
is a set of lines of W (3, q) partitioning the pointset. A blocking set of Q(4, q)
translates to a cover of W (3, q), this is a set of lines C, such that every point
of W (3, q) lies on at least one line of C. A multiple point of C is a point of
W (3, q) lying on at least two lines of C.

It is known that Q(4, q) has always an ovoid. Every elliptic quadric Q−(3, q)
contained in Q(4, q) is an example. Considering minimal blocking sets of
Q(4, q), q even, the following result is known.

Result 1 (Eisfeld et al. [5]) Let B be a blocking set of the quadric Q(4, q),
q even. If q ≥ 32 and |B| ≤ q2 + 1 +

√
q, then B contains an ovoid of Q(4, q).

If q = 4, 8, 16 and |B| ≤ q2 + 1 + q+4
6

, then B contains an ovoid of Q(4, q).

No analogue theorem is known for q odd. It is even not known whether or
not Q(4, q), q odd, has a minimal blocking set of cardinality q2 + 2, that is a
blocking set of size q2 + 2 that does not contain an ovoid. It is probably a bit
unexpected but this problem seems to be quite hard. Using a combination of
geometrical and algebraic methods we are able to solve the problem when q
is an odd prime. Our result is as follows.

Theorem 2 If q is an odd prime, then Q(4, q) does not have a minimal block-
ing set of size q2 + 2.

We remark that this was proved earlier for q = 5 and q = 7, see [3].

Recently, it was proved that all ovoids of Q(4, q), q odd prime, are elliptic
quadrics Q−(3, q), [2]. In the proof, one considers an ovoid O of Q(4, q), q = ph,
p an odd prime. Then it is proved that all hyperplanes of PG(4, q) intersect
O in 1 mod p points. When q = p, combinatorial arguments prove that O is
necessarily an elliptic quadric. The 1 mod p result is proved using polynomial
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techniques. In an earlier paper, [1], the 1 mod p result is obtained using an
algebraic description of the generalized quadrangle W (3, q) in the field GF(q4).
Using this description of W (3, q) and the structure of the multiple points,
we obtain comparable results for minimal blocking sets of Q(4, q), q odd, of
size q2 + 2. When q is a prime, these results, together with geometrical and
combinatorial arguments, exclude the existence of such a blocking set.

In Section 2, we will adapt the algebraic approach from [1] to obtain a t mod p
result. In Section 3 we will derive some combinatorial properties of a blocking
set of size q2 + 2 of Q(4, q). In the last section, we will exclude the existence
of a minimal blocking set of size q2 +2 of Q(4, q), q an odd prime, using again
geometrical and combinatorial arguments.

2 The intersection numbers

We make use of the fact that Q(4, q) and W (3, q) are dually isomorphic. Under
this duality blocking sets of Q(4, q) translates to covers of W (3, q). In this
section we prove a theorem on covers of W (3, q) that have the property that the
multiple points (the points covered more than once) form a sum of symplectic
lines, see the next section for more details. By assigning the weight w(L) = −1
to these lines one is in the situation of the following theorem.

Theorem 3 Consider W (3, q) in PG(3, q), q = ph, p a prime. Suppose that
w is a function from the lineset L of W (3, q) to GF(p) such that for every
point v we have

∑
L∈L: L3v

w(L) = 1 (1)

Let F be a regular spread of PG(3, q) consisting of lines of W (3, q). Then∑
L∈F

w(L) = 1.

Before we start with the proof we summarize a description of W (3, q) in GF(q4)
that was used in [1]. The points of W (3, q) are the points of PG(3, q) and
are represented by the solutions u ∈ GF(q4) of the equation uq3+q2+q+1 =
1. The symplectic space is described using an alternating bilinear form b :
V (4, q) × V (4, q) → GF(q). Therefore a constant Γ ∈ GF(q4) is chosen such
that Γq2−1 = −1. The bilinear form is defined as

b(X, Y ) = ΓY q2

X + ΓqY q3

Xq − ΓY Xq2 − ΓqY qXq3
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We emphasize that X,Y are not points of PG(3, q) here, but vectors of V (4, q).
From this it can be derived that two points that are represented by u and v
are perpendicular if and only if

γuq+1 − γvq+1 + qq2+q+1v − uvq2+q+1 = 0 (2)

Here γ := Γ1−q.

The lines of W (3, q), identified with their pointsets, are represented by two
types of equations; the q + 1 solutions of such an equation are exactly the
representants of the points constituting the pointset of the line. Type (i) lines
are represented by the equation

dU q+1 + U − γdq = 0,

where d ∈ D := {x ∈ GF(q4) | xq3+q − γ−1xq2+1 + 1 = 0}. Type (ii) lines are
represented by the equation

U q+1 + e = 0,

where e ∈ E := {x ∈ GF(q4) | xq2+1 = 1}. It is also proved in [1] that the
q2 + 1 lines of type (ii) constitute a regular spread of W (3, q).

Remark. Since the coefficient of U q in the equation of a symplectic line is zero,
we find

∑
v∈L v = 0 for any symplectic line L. This implies that

∑
v∈π v = 0

for every plane π, since the π is the union of the q + 1 symplectic lines on the
point u := π⊥.

Proof of Theorem 3. The lines L ∈ L are represented by elements d ∈ D
or e ∈ E and we denote by wd or we the weight w(L) of L. Without loss of
generality we may assume that the regular spread F consists of the symplectic
lines represented by the elements of E . Consider a point of u ∈ W (3, q). All
symplectic lines on u lie in u⊥ and all symplectic lines in u⊥ pass through u.
Consider a symplectic line not passing through u. Then L meets u⊥ in a point
v. If L has type (i), represented by d ∈ D, then, using equation (2), one can
prove

vq = −u(duq+1 + u− γdq)q−1. (3)

If L has type (ii), represented with parameter e ∈ GF(q4), then, using equation
(2) it is proved that

vq = γ−1ue(uq+1 + e)q−1. (4)

This was also used in [1]. It follows that

−
∑
L∈L

wL

∑
v∈L∩u⊥

vq =
∑
d∈D

wdu(duq+1 + u− γdq)q−1 −
∑
e∈E

weγ
−1ue(uq+1 + e)q−1.
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In fact, every symplectic line appears on the left and the right hand side. We
show that the contribution on both sides is equal for every line L of F . If L is
not contained in u⊥, so that L meets u⊥ in a unique point v, then this follows
from (3) and (4). Now consider the case when L is contained in u⊥. Then the
contribution on the left hand side is wL(

∑
v∈L v)q, which is zero by the remark

of this section. The contribution on the right side is also zero, because then L
is a symplectic line on u, so u satisfies the equation of L.

The left hand side of the equation is zero, since

∑
L∈L

∑
v∈L∩u⊥

wLvq =
∑

v∈u⊥

vq =

 ∑
v∈u⊥

v

q

= 0q = 0.

The first equality sign follows from the hypothesis in Theorem 3, and the third
equality sign follows from the remark in this section. Consider the polynomial

f(U) :=
∑
d∈D

wdU(dU q+1 + U − γdq)q−1 −
∑
e∈E

weγ
−1Ue(U q+1 + e)q−1.

This polynomial has degree at most q2 and by the previous arguments, f(u) =
0 for all points u. As there are q3 + q2 + q + 1 points, it follows that f(U) is
identically zero. Looking at the coefficient of U q in f(U), we conclude that∑

d∈D
wd = 0.

Hypothesis (1) shows that

(q + 1)
∑
L∈L

w(L) =
∑
u

∑
L∈L:L3u

w(L) =
∑
u

1 = q3 + q2 + q + 1.

As this is a calculation in GF(p), then
∑

L∈L w(L) = 1. Hence the sum of∑
d∈D wd and

∑
e∈E we is also one, so

∑
e∈E we = 1. Because the e ∈ E represent

the lines of the spread F , this proves the theorem. 2

3 The structure of the multiple points

Suppose that B is a blocking set of size q2 + 1 + r of Q(4, q). A line of Q(4, q)
is called a multiple line or an excess line of B when it contains at least two
points of B. The excess eL of a line L of Q(4, q) is by definition |L ∩ B| − 1.
Counting pairs (u, L) with lines L ∈ B and points u ∈ Q(4, q) with u ∈ L, one
finds that the sum of the excesses over all lines of Q(4, q) is r(q +1). Consider
a line L of Q(4, q). Every point of L ∩ B lies on q + 1 lines of Q(4, q) while
the points of B that are not on L lie on a unique line of Q(4, q) that meets L.
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Hence, if M is the set consisting of the q2 + q + 1 lines of Q(4, q) that meet
L, then ∑

M∈M
(1 + eM) = (1 + eL) · (q + 1) + (|B| − 1− eL) · 1.

As |M| = q2 + q + 1, this gives∑
M∈M

eM = |B| − q2 − 1 + eLq.

Now suppose that |B| = q2 + 2. Then the right hand side is equal to eLq + 1.
As the sum of the excesses over all lines of Q(4, q) is r(q + 1) = q + 1, it
follows that eL ≤ 1. Furthermore, if L is a multiple line, then eL = 1 and
L meets every other multiple line. It follows that there exist q + 1 multiple
lines and that they mutually meet. Hence, for |B| = q2 + 2, there exists a
point m ∈ Q(4, q) with the property that the q + 1 lines of Q(4, q) on m are
the multiple lines; they meet B in two points while every other line of Q(4, q)
meets B in a unique point. We remark that this property can also be derived
from a general theorem in [5].

Consider a solid (3-space) of the ambient projective space PG(4, q) of Q(4, q).
Then S ∩ Q(4, q) is either a quadric Q+(3, q), a quadric Q−(3, q) or a cone
with a point vertex over a Q(2, q); we say that S has hyperbolic, elliptic or
parabolic type in the respective cases.

If S is a hyperbolic solid, then the existence of m shows that |S ∩B| = q +2 if
m ∈ S, and |S ∩ B| = q + 1, if m /∈ S. If S is a parabolic solid, then similarly
m ∈ S implies that |S ∩ B| ∈ {2, q + 2} if m ∈ S, and |S ∩ B| ∈ {1, q + 1} if
m /∈ S. Hence, for hyperbolic and parabolic solids S we have that

|S ∩ B| ≡

 2 mod q, if m ∈ S,

1 mod q, if m /∈ S.
(5)

In the forth section we shall see that if (5) also holds for the elliptic solids,
then B is the union of a point and an elliptic quadric. For odd primes we can
show that this always holds:

Lemma 4 Suppose that B is a blocking set of size q2 + 2 of Q(4, q), q an odd
prime. Then (5) holds for the elliptic solids.

Proof. We recall that exactly q + 2 lines are blocked twice by B and that all
these lines pass through a point m of Q(4, q). We now use that Q(4, q) and
W (3, q) are dual. Under the duality the blocking set B corresponds to a cover
C of W (3, q), and the point m translates to a symplectic line M . Every point
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of W (3, q) is covered by exactly one line of C, except for the points of M which
are covered by two lines of C. Define a function w from the set consisting of
the lines of W (3, q) to the field GF(q) as follows. If M /∈ C put w(L) = 1
for L ∈ C, w(M) := −1, and w(L) = 0 for the remaining symplectic lines.
If M ∈ C put w(L) = 1 for L ∈ C \ {M} and w(L) = 0 for the remaining
symplectic lines. Then hypothesis (1) of Theorem 3 is satisfied.

As the regular spreads of PG(3, q) consisting of symplectic lines correspond
under the duality to solids of PG(4, q) meeting Q(4, q) in an elliptic quadric
Q−(3, q), the assertion follows from Theorem 3. 2

Remarks. (1) If |B| = q2 + 2, then we have proved above the existence of
a point m lying on all multiple lines. We mention that m ∈ B if and only if
B \ {m} is an ovoid of Q(4, q).

(2) Consider a blocking set B of Q(4, q) with |B| = q2 +1+r. We also consider
the corresponding cover C of W (3, q) ⊆ PG(3, q). If r is not too large, then it
was shown in [5], then there exists r lines M1, . . . ,Mr of PG(3, q) (repeated
lines are allowed) with the following property. The number of lines of C on
a point v of W (3, q) is one plus the number of lines Mi on v. Here the lines
Mi can be symplectic but need not to be symplectic. However, if they are all
symplectic, then the technique of Section 2 can be applied. In that case, going
back to B in Q(4, q) one obtains points m1, . . . ,mr of Q(4, q) corresponding
to M1, . . . ,Mr, and the intersection of a solid with B is modulo p congruent
to one plus the number of points Mi in such a solid.

If a line Mi is not symplectic, then the translation to Q(4, q) gives a regulus
consisting of multiple lines, and then the opposite regulus will also have only
multiple lines.

(3) S. De Winter [4] has constructed a minimal blocking set of Q(4, q) of size
q2 + 3 for q = 5. If one analyzes the structure of the multiple lines in his
example, one sees that the multiple lines are the 2(q + 1) lines of a hyperbolic
quadric Q+(3, q).

4 The final step

In this section, B denotes a blocking set of Q(4, q) of size q2 + 2. It has been
shown in Section 3 that there exists a point m of Q(4, q) with the property
that the q + 1 lines of Q(4, q) on m meet B in two points while every other
line of Q(4, q) meets B in a unique point. If q is a prime, we have also seen
that for every solid S we have
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|S ∩ B| ≡

 2 mod q, if m ∈ S,

1 mod q, if m /∈ S.
(6)

We shall not assume in this section that q is a prime, but we shall assume that
(6) holds for all solids. We also assume that q is odd. Our goal is to show that
B is not minimal. This will also prove Theorem 2.

We proceed in an indirect way and assume for the rest of the section that B
is minimal. This implies that m /∈ B, since the special properties of m imply
otherwise that B \ {m} is also a blocking set. We shall derive a contradiction
in a series of lemmas.

Lemma 5 If ti is the number of solids meeting B in precisely i points, then
tq+2 ≥ 1

2
q(q2 + q) and t2 ≤ 1

2
(q2 + q + 2)(q − 1).

Proof. Only solids through m can meet B in two or q + 2 points. The solid
m⊥ meets B in 2q + 2 points. Every other solid S on m meets m⊥ in a plane.
Note that m⊥ ∩Q(4, q) is a cone with vertex m over a Q(2, q).

There are (q2 + q)/2 planes π of m⊥ on m that meet Q(4, q) in the union of
two lines; these meet B in four points. From (6) it follows that every solid S
with S 6= m⊥ on such a plane π contains at least q − 2 more points of B. As
|B| = q2 + 2 = (2q + 2) + q(q − 2), it follows that every solid S 6= m⊥ on π
meets B in precisely q + 2 points. Hence tq+2 ≥ 1

2
q(q2 + q).

Apart from the planes just considered, there are (q2 + q + 2)/2 other planes π
of m⊥ on m. These meet Q(4, q) either in one line or just in the point m, so
they meet B either in no or two points. As |B| = q2 +2 is an odd number, not
all solids different from m⊥ on such a plane can meet B in exactly two points.
This implies that t2 ≤ 1

2
(q2 + q + 2)(q − 1). 2

For the rest of the section we use iS := |S ∩ B| with S any solid of PG(4, q),

and θn := qn+1−1
q−1

= qn + qn−1 + . . . + q + 1 for any integer n ≥ 0.

Lemma 6 Put c := 1
2
(q2 + 1). Then

∑
S

(iS − 1)(iS − q − 1)(iS − c) ≥ 1

2

(
q5 + 4q4 + q3 + 7q2 + 3

)
.

Here the sum runs over all solids of PG(4, q).

Proof. Put b := |B| = q2 + 2. Standard counting arguments show∑
S

iS = bθ3 and
∑
S

iS(iS − 1) = b(b− 1)θ2.
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We know that every line of the quadric meets B in one or two points. Hence,
any three points of B span a plane. Therefore∑

S

iS(iS − 1)(iS − 2) = b(b− 1)(b− 2)θ1.

It follows that

∑
S

(iS − 1)(iS − q − 1)(iS − c) =

∑
S

(
iS(iS − 1)(iS − 2)− iS(iS − 1)(c + q − 1) + iSc(q + 1)− c(q + 1)

)
=

b(b− 1)(b− 2)θ1 − (c + q − 1)b(b− 1)θ2 + c(q + 1)bθ3 − c(q + 1)θ4 =
1

2

(
q5 + 4q4 + q3 + 7q2 + 3

)
.

This is the claim. 2

Lemma 7 There exists a solid S 6= m⊥ meeting B in more than (q2 + 1)/2
points.

Proof. Again put c = (q2 + 1)/2. Recall that q is odd, which implies that
q ≥ 3 and c− q − 2 ≥ 0. We already know that every solid meets B in one or
two modulo q points. Hence, a solid meets B in 1, 2, q + 1 or at least q + 2
points. Recall that m⊥ is a solid that meets B in 2q + 2 points. If L′ is the set
consisting of all solids S with S 6= m⊥ and |S ∩B| > q +2, then the preceding
lemma implies that

∑
S∈L′

(iS − 1)(iS − q − 1)(iS − c)

≥ 1

2

(
q5 + 4q4 + q3 + 7q2 + 3

)
+ tq+2(q + 1)(c− q − 2)

−t2(q − 1)(c− 2)− (2q + 1)(q + 1)(2q + 2− c)

Using the bounds for tq+2 and t2, a calculation shows that the right hand side
is positive. Thus, some solid of L′ meets B in more than 1

2
(q2 + 1) points. 2

Lemma 8 The final contradiction.

Proof. Let S be a solid meeting B in more than 1
2
(q2 + 1) points. As lines of

the quadric meet B in at most two points, and lines of the quadric with two
points pass through m, it follows that all parabolic solids different from m⊥

and all hyperbolic solids meet B in at most q +2 points. Hence S is an elliptic
solid, that is S ∩ Q(4, q) is a Q−(3, q). Denote by α the number of points of
S ∩Q(4, q) that are not in B. Then B′ := B \ (B ∩ S) contains α + 1 points.
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Assume that the Q−(3, q) contains a conic C such that no point of this conic
belongs to B. We count pairs (u, v) ∈ C × B′ for which uv is a line of the
quadric. A point u ∈ C lies on q + 1 lines of the quadric, which meet B and
thus B′. Hence each u ∈ C occurs in q + 1 such pairs. Thus, the number of
such pairs is at least (q + 1)2. A point v ∈ B′ can be perpendicular to zero,
one, two or q + 1 points of C. However, as the quadric Q(4, q) has only two
points that are perpendicular to all points of the conic C, there are at most
two points v in B′ that occur in q + 1 pairs (u, v). Hence, the number of pairs
is at most

2(q + 1) + (|B′| − 2)2 = 2α + 2q.

It follows that 2α + 2q ≥ (q + 1)2, that is α ≥ 1
2
(q2 + 1). Then |S ∩ B| =

q2 + 1− α ≤ 1
2
(q2 + 1), and this is a contradiction. Hence, every conic of the

elliptic quadric S ∩Q(4, q) meets B.

Count pairs (u, v) with perpendicular points u and v where u ∈ S ∩ Q(4, q),
u /∈ B and v ∈ B′. For v ∈ B′, the subspace v⊥ ∩ S is a plane that meets the
quadric in a conic, and we have just seen that at most q points of such a conic
do not lie in B. Hence, each point v ∈ B′ occurs in at most q such pairs. Each
point u ∈ S∩Q(4, q) with u /∈ B, lies on q +1 lines of the quadric, which meet
B and hence which meet B′. Thus, every such point u occurs in at least q + 1
such pairs. It follows that α(q + 1) ≤ |B′|q. As |B′| = α + 1, this gives α ≤ q.

Hence |S∩B| ≥ q2 +1−q and at most q+1 points of B do not lie in S. As the
global assumption in this section is that B is minimal, it is not possible that
all points of S ∩ Q(4, q) = Q−(3, q) lie in B. Let u be a point of S ∩ Q(4, q)
does not lie in B. We have just seen that the q + 1 lines of the quadric on u
meet B′. Hence |B′| ≥ q + 1. As |S ∩ B| + |B′| = |B| = q2 + 2, it follows that
|S∩B| = q2 +1−q and |B′| = q+1. The argument also shows that each of the
q points u of S ∩Q(4, q) that is not in B is perpendicular to each point of B′.
But q points of S ∩Q(4, q) span at least a conic-plane and thus have at most
two common perpendicular points in Q(4, q). This is a contradiction. 2
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