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Abstract

Authentication codes were introduced by Simmons in [3]. Many
combinatorial structures can be used to construct authentication codes,
and interesting combinatorial bounds can be obtained, see e.g. [7], [8]
and [9]. We investigate authentication codes arising from generalized
quadrangles (GQs), which was first done in [1]. The use of intricated
techniques and constructions from the theory of GQs allows us to obtain
several systems of authentication codes, each with their own advantages.

1 Introduction and notation

This introduction is strongly based on the reference work [4], and a lot more
can be found there.

Authentication is very important in information security, when e.g. Alice
and Bob try to exchange messages. It provides protection against malicious
persons trying to change messages or to impersonate the sender of these mes-
sages. There are two main models:

• one where Alice and Bob trust each other, called A-codes;

• one where they do not, called A2-codes.

∗This author is a Postdoctoral Fellow of the Fund for Scientific Research — Flanders
(Belgium).
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In the latter case, an arbiter is needed.
We denote the set of all source states by S, the set of keys by K, the set

of encoding rules by E and the set of all possible encoded messages by M.
In the A-model, sender Alice and receiver Bob agree upon a secret private

key k. With each key there is associated a unique encoding rule e. Alice selects
a source state s and encodes s into a message m using the encoding rule e
corresponding with the chosen key k. After having received the message Bob
checks whether it lies in the range e(S). If it does, then the message is accepted
as authentic. Bob can recover the possible source states as the preimage of the
message under e. If this preimage is always unique, then we say the code is
Cartesian. So once the message is observed, one can retrack the corresponding
source state. Whence there is no secrecy involved here.

An opponent can try to construct a message lying in e(S) after observing
r valid messages. The probability of success of such a spoofing attack will be
denoted by Pr.

In the A2-model, we assume that Alice and Bob do not trust each other.
In this case, they do not agree upon an encoding rule. Instead, a trusted
person, the arbiter, is also involved in the scheme. Now Alice has a set of
encoding rules ET , and Bob a set of decoding rules ER. If Alice and Bob
want to communicate, Bob chooses a decoding rule f ∈ ER and sends it to
the arbiter. For every given f and given source state s there is a set of valid
messages M(s, f). On receipt of f the arbiter selects one message out of
M(s, f), hereby forming an encoding rule e ∈ ET , which he secretly sends to
Alice. In this case, the encoding rule e is valid for the decoding rule f . When
Bob receives a message he checks whether it is in some subset M(s, f). If so
he accepts it as a valid one and he can retreive the corresponding source state.
If there is a dispute between Alice and Bob about a message m, the arbiter
checks if m is valid for the encoding rule given to the transmitter.

Below, we define this attack probability more formal. As in [4] we will
use the “worst case definition”. Denote a set of r observed messages as mr.
Let P (mr) be the probability that one has observed mr after r messages.
Furthermore, let P (m|mr) be the probability that the message m is valid
given that mr has been observed. Then we define the attack probability of the
opponent POr as follows.

POr =
∑

mr∈Mr

P (mr)maxm∈MP (m|mr).

If we assume a uniform probability distribution for the messages, then we get

POr = maxm∈MP (m|mr).

Introduce the following notation:

E(mr) = {e ∈ E ‖ mi ∈ e(S), 1 ≤ i ≤ r}.

Denote by m′r the set of r + 1 messages mr and m′. Then
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POr =
|E(mr)|
|E(m′r)|

.

In the A2-model, three types of attacks have to be considered. The first
one is the spoofing attack by the opponent such as in the A-model. The other
two attacks are the spoofing attack T by Alice, sending a message and then
claiming not to have sent it, and the spoofing attack by Bob, claiming to have
received a message from Alice while this is not the case. One denotes the
corresponding probabilities by POr , PRr and PT respectively.

The opponent’s attack probability POr is defined as in the A-model.
Let P (f) denote the probability of a decoding rule f , and let P (m|f, mr)

denote the probability of the event that the message m could be valid for the
encoding rule used by the transmitter, given the decoding rule f and the first
r messages mr = (m1, . . . ,mr). The spoofing attack probability of the receiver
is then defined as

PRr =
∑
f∈ER

P (f)
∑

mr∈Mr

P (mr|f)maxm∈MP (m|f, mr).

Let P (e) denote the probability of an encoding rule e, and let P (m′|e)
denote the probability of the event that the message m′ ∈M′(e) is acceptable
by the receiver, given the encoding rule e. The spoofing attack probability of
the transmitter is then defined as

PT =
∑
e∈ET

P (e)maxm′∈M′(e)P (m′|e).

If we assume a uniform probability distribution on the messages, the
formulas reduce in the same way as for the A-codes.

2 Some combinatorics of generalized quadran-

gles

Finite Generalized Quadrangles. A (finite) generalized quadrangle (GQ)
of order (s, t) is a point-line incidence structure S = (P ,B, I) in which P and B
are disjoint (non-empty) sets of objects called points and lines respectively, and
for which I is a symmetric point-line incidence relation satisfying the following
axioms:

(i) each point is incident with t + 1 lines (t ≥ 1) and two distinct points are
incident with at most one line;

(ii) each line is incident with s + 1 points (s ≥ 1) and two distinct lines are
incident with at most one point;
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(iii) if p is a point and L is a line not incident with p, then there is a unique
point-line pair (q, M) such that p I M I q I L.

If s = t, then S is also said to be of order s. If s, t > 1, S is thick.

Point-Line Duality. There is a point-line duality for GQs of order
(s, t) for which in any definition or theorem the words “point” and “line” are
interchanged and also the parameters. (If S = (P ,B, I) is a GQ of order (s, t),
SD = (B,P , I) is a GQ of order (t, s).)

Collinearity/Concurrency/Regularity. Let p and q be (not nec-
essarily distinct) points of the GQ S; we write p ∼ q and call these points
collinear, provided that there is some line L such that p I L I q. Dually, for
L, M ∈ B, we write L ∼ M when L and M are concurrent.
For p ∈ P , put

p⊥ = {q ∈ P ‖ q ∼ p}

(and note that p ∈ p⊥). For a pair of distinct points {p, q}, we denote p⊥ ∩ q⊥

also by {p, q}⊥. Then |{p, q}⊥| = s + 1 or t + 1, according as p ∼ q or p 6∼ q,
respectively. For p 6= q, we define

{p, q}⊥⊥ = {r ∈ P ‖ r ∈ s⊥ for all s ∈ {p, q}⊥}.

Automorphisms. An automorphism of a GQ S = (P ,B, I) is a permu-
tation of P∪B which preserves P , B and I. The set of automorphisms of a GQ
S is a group, called the automorphism group of S, which is denoted by Aut(S).

SubGQs. A subquadrangle, or also subGQ, S ′ = (P ′,B′, I′) of a GQ
S = (P ,B, I) is a GQ for which P ′ ⊆ P, B′ ⊆ B, and where I′ is the restriction
of I to (P ′ × B′) ∪ (B′ × P ′).

The following results will sometimes be used without further reference.

Theorem 2.1 ([5], 2.2.1) Let S ′ be a proper subquadrangle of order (s′, t′)
of the GQ S of order (s, t). Then either s = s′ or s ≥ s′t′. If s = s′, then
each external point of S ′ is collinear with the st′ + 1 points of an ovoid of S ′;
if s = s′t′, then each external point of S ′ is collinear with exactly 1 + s′ points
of S ′.

Theorem 2.2 ([5], 2.2.2) Let S ′ be a proper subquadrangle of the GQ S,
where S has order (s, t) and S ′ has order (s, t′) (so t > t′). Then we have

(1) t ≥ s; if s = t, then t′ = 1.

(2) If s > 1, then t′ ≤ s; if t′ = s ≥ 2, then t = s2.
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(3) If s = 1, then 1 ≤ t′ < t is the only restriction on t′.

(4) If s > 1 and t′ > 1, then
√

s ≤ t′ ≤ s and s3/2 ≤ t ≤ s2.

(5) If t = s3/2 > 1 and t′ > 1, then t′ =
√

s.

(6) Let S ′ have a proper subquadrangle S ′′ of order (s, t′′), s > 1. Then
t′′ = 1, t′ = s and t = s2.

3 Previously known results

Combinatorial Bounds. If we denote |S| = k, |M| = v, and by Mr the
set of r-tuples of elements of M and if we have observed r messages, then we
have the following theorem [4, Proposition 3.3, pp. 36].

Theorem 3.1 We have

POr ≥
k − r

v − r
.

Equality holds if and only if

P (m|mr) =
k − r

v − r

is satisfied for any mr = (m1, . . . ,mr) ∈ Mr and any m ∈ M with m 6=
mi, 1 ≤ i ≤ r.

Naturally, the number of encoding and decoding rules is lower bounded
if one wants to construct good schemes.

For authentication without arbitration we have.

Theorem 3.2 If an authentication code has attack probabilities for the oppo-
nent POr = 1/ni (0 ≤ i ≤ l) then |E| ≥ n0 · · · · · nl.

If equality holds, the authentication code is called perfect.
We have the following lower bounds for the number of encoding and

decoding rules for a scheme with arbitration.

Theorem 3.3
|ER| ≥ (PO0PO1 · · ·POt−1PT )−1,

|ET | ≥ (PO0PO1 · · ·POt−1PR0PR1 · · ·PRt−1)
−1.
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If equality holds in both inequalities above, then we call the arbitration
scheme t-fold perfect.

A Scheme using GQs. The scheme below is due to De Soete [1].
Take a fixed point p in a GQ of order (s, t). Let the source states be the
t + 1 lines of the GQ passing through p, the encoding rules the points not
collinear with p, and the messages the points collinear with p but different
from p. The third axiom of GQs makes this scheme work. In this way, we get
a Cartesian authentication code with |S| = t + 1, |M| = (t + 1)s, |E| = ts2,
and P0 = P1 = 1/s.

Remark 3.4 It is due to the projection property that this scheme works well.
Our schemes below will exploit other more sophisticated projection properties
of generalized quadrangles.

A garden of examples exists, using GQ theory, which all have compara-
ble strength as the construction of De Soete. We are interested in stronger
schemes, leading us to use more intricated techniques in order to pursue our
goal.

4 Construction

Suppose S is a GQ of order (s, t). Suppose S ′ is a subGQ of S of order (s, t/s);
then an easy counting exercise shows that each line of S meets S ′ in either 1
or s + 1 points.

Let x be a point of S \ S ′; then the t + 1 points of S ′ which are collinear
with x (and which respectively correspond to the lines incident with x by the
previous property) are two by two non-collinear; since t + 1 = s · t/s + 1, this
means that these points form an “ovoid”, Ox, of S ′. An ovoid is a point set
meeting each line precisely once. This ovoid is “subtended” by x.

Now suppose {S1,S2, . . . ,Sr} is a set of r > 0 distinct subGQs of order
(s, t/s) of the GQ S of order (s, t), where s 6= 1 6= t but we allow t/s = 1. Let
Σ be the number of points in

r⋃
i=1

Si,

so that the number of points outside this union is

(s + 1)(st + 1)− Σ.

The Sj’s are the source states. The keys are the points of S \
⋃r

i=1 Si,
and the messages are the ovoids in the GQs Sj which are subtended by a point
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outside their union.

Let k be the maximal number of points outside
⋃r

i=1 Si that subtend the
same ovoid of some Sj. Then

P0 =
|E(m)|
|E|

=
k

(s + 1)(st + 1)− Σ
.

By [5, 1.4.1], we have

k ≤ s2

t
+ 1

so that

P0 ≤
s2/t + 1

(s + 1)(st + 1)− Σ
.

We want to focus on two particular situations that appear to yield satis-
fying results.

(1) Let t = s2 so that t/s = s. Then

P0 ≤
2

(s + 1)(s3 + 1)− Σ
.

Suppose now that in S we have the following situation: Γ is an (s +
1) × (s + 1)-grid (that is, a subGQ of order (s, 1)), and all the Sj’s contain
Γ — it follows easily then that Γ is precisely the pairwise intersection of any
two distinct Sj’s. Moreover, if z is a point outside the subGQ union, and
Sg,Sh 6= Sg are elements of {S1,S2, . . . ,Sr}, then z obviously subtends different
ovoids in Sg and Sh.

Whence

P0 ≤
2

(s + 1)(s3 + 1)− (s + 1)2 − r(s3 − s)
=

2

(s + 1)(s2 − s)(s + 1− r)
.

Note that we can choose the subGQs in such a way that the inequality
becomes strict.

(2) Let t = s, so that t/s = 1 and

P0 ≤
s + 1

(s + 1)(s2 + 1)− Σ
.

Also, let Γ be two distinct lines, and let all the Sj’s contain Γ — it follows
(again) that Γ is precisely the pairwise intersection of any two distinct Sj’s. If
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z is a point outside the union, and Sg,Sh 6= Sg are elements of {S1,S2, . . . ,Sr},
then z subtends different ovoids in Sg and Sh.

Whence

P0 ≤
s + 1

s(s2 + (1− r)s− 1)
.

Remark 4.1 The schemes described in this section are Cartesian. Further-
more, the scheme is perfect if every ovoid is subtended by the same number of
points. Examples of this situation are given below.

5 Examples

We first describe all known generalized quadrangles of order (s, s2) (for some
natural number s) that have at least one subGQ of order s.

First, we recall the description of some classical examples of GQs which
we will use further on.

Consider a nonsingular quadric Q of Witt index 2, that is, of projective
index 1, in PG(n, q), n ∈ {4, 5}. The points and lines of the quadric form
a generalized quadrangle which is denoted by Q(n, q) and has order (q, qn−3).
Next, let H be a nonsingular Hermitian variety in PG(3, q2). The points and
lines of H form a generalized quadrangle H(3, q2), which has order (q2, q).

Note that the variety H has the following canonical form:

Xq+1
0 + Xq+1

1 + · · ·+ Xq+1
d = 0.

Suppose O is an ovoid of PG(3, q), q any prime power. Then from O
one can construct a GQ of order (q, q2), denoted T3(O), always containing
subGQs of order q.

A flock of the quadratic cone in PG(3, q), the 3-dimensional projective
space over the finite field Fq, is a partition of the cone without its vertex into
q disjoint irreducible conics. The planes generated by the conics are the flock
planes. From any such flock F in even characteristic one can construct a GQ
S(F) of order (q2, q) whose dual always contains subGQs of order q.

Let F be a flock, derived [10, §4.8] from a semifield flock [10, §4.5] of the
quadratic cone in PG(3, q), q any prime power. Then a GQ S(F) of order
(q2, q) can be constructed from F which has the property that its dual S(F)D

has a point (∞) such that there exists an elementary abelian automorphism
group of S(F)D that fixes (∞) linewise while acting sharply transitively on
the points not collinear with (∞). This property has the advantage that from
S(F)D one can construct another GQ, the “translation dual” [10, §3.10], of

8



the same order, which has an automorphism group with similar properties as
the original one.

Consider the following sequence:

S(F)
D−→ S(F)D ∗−→ (S(F)D)

∗ D−→ [(S(F)D)
∗
]
D
.

(Here, the operation “∗” means that we take the translation dual.) Then
(S(F)∗)D is a GQ of order (q, q2) which has Q(4, q)-subGQs, with the follow-
ing features.

Classical/Even case. If F is classical (“linear” — the flock planes
share a line), then we have

H(3, q2) ∼= S(F)
D−→ Q(5, q) ∼= S(F)D ∗−→ Q(5, q) ∼= (S(F)D)

∗ D−→

H(3, q2) ∼= [(S(F)D)
∗
]
D
.

In Q(5, q), any Q(4, q)-subGQ has the property that each subtended
ovoid is subtended by precisely two distinct points (see, for instance, [12]). For
q even, we are necessary in the classical case.

Nonclassical case. Then q is odd. We distinguish two subcases.

• Kantor-Knuth. If F is nonlinear and derived from a Kantor-Knuth
flock (note that the term “derived” is abundant here, since all derived
flocks are isomorphic to the original semifield one [11]), (S(F)D)

∗ ∼=
S(F)D, and the latter contains two classes of Q(4, q)-subGQs of order q,
the union of which has size q3 + q2. In one class, each subtended ovoid is
subtended by two distinct points, in the other class this is not the case.

• Not Kantor-Knuth. A result of the second author [13] states that
no Q(4, q)-subGQ in (S(F)D)

∗
can be doubly subtended. As in the

Kantor-Knuth case, each such example contains q3+q2 subGQs of Q(4, q)
type.

As for the second specific scheme we described, we now introduce a class
of generalized quadrangles that contains all known GQs of order s (for some
natural number s) which have (s + 1)× (s + 1)-grids.

Suppose H = PG(3n − 1, q) is the finite projective (3n − 1)-space over
Fq, and let H be embedded in a PG(3n, q), say H ′. Now consider a set
O = O(n, n, q) of qn + 1 distinguished (n − 1)-dimensional subspaces of H,
denoted PG(n − 1, q)(i), so that (1) every three generate H; (2) for every
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i = 0, 1, . . . , qm, there is a subspace PG(2n− 1, q)(i) of H of dimension 2n− 1,
which contains PG(n− 1, q)(i) and which is disjoint from any PG(n− 1, q)(j)

if j 6= i.
Then O is called a pseudo-oval or an [n−1]-oval of PG(3n−1, q). (Note

that a [0]-oval of PG(2, q) is an oval of PG(2, q).)
From any such O = O(n, n, q) there arises a GQ T(n,m, q) = T(O), as

follows.

• The Points are of three types.

(1) A symbol (∞).

(2) The subspaces PG(2n, q) of H ′ which intersect H in a PG(2n −
1, q)(i).

(3) The points of H ′ \H.

• The Lines are of two types.

(a) The elements of O(n, n, q).

(b) The subspaces PG(n, q) of PG(3n, q) which intersect H in an ele-
ment of O.

• Incidence is defined as follows: the point (∞) is incident with all the
lines of Type (a) and with no other lines; a point of Type (2) is incident
with the unique line of Type (a) contained in it and with all the lines of
Type (b) which it contains (as subspaces); finally, a point of Type (3) is
incident with the lines of Type (b) that contain it.

Define

C+ = {T(O) ‖ O is a pseudo-oval in even characteristic}∪

{T(O)D ‖ O is a pseudo-oval in even characteristic},

and

C− = {T(O) ‖ O is a pseudo-oval in odd characteristic}.

Then every element of C+ ∪ C− is a GQ of order s for some natural s
which has an (s + 1)× (s + 1)-grid, and each known GQ with these properties
belongs to C+ ∪ C−.
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6 Authentication with arbitration: H-schemes

Consider the following situation. {S1,S2, . . . ,Sr} is a set of distinct Q(4, q)-
subGQs in a Q(5, q) (which, as above, can be chosen in a suitable position),
and let those subGQs be source states. Let x be a point of Q(5, q) outside
the union of the subGQs, which is chosen by Bob. For such a point x and for
each source state Sj, let Ox be the ovoid of Sj which is subtended by x. The
arbiter chooses a point cj of Sj on Ox.

We can now make a scheme with arbitration as follows. For the system
we choose a list H of subgroups of Aut(Q(5, q)), being O−(6, q)oGal(Fq2/Fp)
(q is a power of the prime p). Bob chooses a fixed subgroup H in H. Bob
hands H and his chosen point x to the arbiter. The subgroup H has different
orbits on Q(5, q). The arbiter hands cj and the H-orbit cj, denoted by cH

j , as
encoding rule to Alice for a given source state Sj. If Alice transmits a message
to Bob, then she picks a source state Sj and sends the triple (Sj, cj, c

H
j ) to

Bob.
When receiving a triple (a, b, c) Bob accepts it as valid if b is on the ovoid

of a and c is the H-orbit of b.
In case of a dispute concerning a triple (a, b, c), the arbiter checks if b is

the point he handed to Alice for the subGQ a and if c is the orbit under H of
b. If this is the case, then he decides Alice sent the message, otherwise that
she has not.

If Bob wants to cheat, he has to make a guess about the point cj.
If Alice wants to cheat, she has to make sure she gets the right orbit.

It is almost impossible for Alice to guess H from the orbits she sees, except
possibly by exhaustive search through all subgroups of Aut(Q(5, q)) if there
are only very few groups producing an orbit she observes. But the arbiter can
avoid this by choosing the appropriate points.

An opponent has to guess both cj and the group H, an even harder task.
We do not make calculations in detail, but once one has chosen the list

of allowed subgroups one can adapt the scheme to one’s own needs.
This scheme depends largely on the list H of subgroups we allow. By

choosing them appropriately, one can control the length of the orbits.

Remark 6.1 (i) Similar schemes can be built from other incidence geome-
tries, such as the natural embedding of Hermitian quadrangles H(3, q2) ⊂
H(4, q2).

(ii) We always assume that the points outside the union of subGQs are chosen
with equal probability. One could define a natural probability

P : S \ ∪iSi 7→]0, 1[

on this set by comparing, for a pre-chosen subgroup G of Aut(S)∪iSi
, the

size of the G-orbit G(x) that contains x, to |S \ ∪iSi|.
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7 Conclusion

In this paper, we have shown that using projection properties of GQs, one gets
a bunch of schemes, strongly dependent on parameters, such that the user has
some control to optimize the schemes to his own needs. Our goal was not to
give a complete overview of possible schemes based on GQs (since there are an
overwhelming number of possibilities), but rather to give the reader an idea
which ideas are behind such schemes.

The authors are preparing a paper [6] on construction theory of “alge-
braic” authentication code schemes, based on finite group theory.
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