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Abstract

The goal of this paper is to study finite groups admitting a pseudo-
complemented subgroup lattice (PK-groups) or a pseudocomplemen-
ted normal subgroup lattice (PKN-groups). In particular, we obtain
a complete classification of finite PK-groups and of finite nilpotent
PKN-groups. We also study groups with a Stone normal subgroup
lattice, and we classify finite groups for which every subgroup has a
Stone normal subgroup lattice. Finally, we obtain a complete classifi-
cation of finite groups for which every subgroup is monolithic.
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1 Introduction

It is an interesting question in group theory in how far the structure of the
subgroup lattice of a group determines the structure of the group itself. This
question in its pure form is quite old [11, 2], and M. Suzuki spent his early
research years on this problem [14, 15]. Since then, many characterizations
and classifications have been obtained for groups for which the subgroup
lattice or normal subgroup lattice has certain lattice-theoretic properties.
The possibly most famous result in this direction is Ore’s result that a group
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is locally cyclic if and only if its lattice of subgroups is distributive [9]. We
refer to Suzuki’s book [17], Schmidt’s book [12] or the more recent book [21]
by the second author for more information about this theory.

In the current paper, we investigate (finite) groups which have a subgroup
lattice or normal subgroup lattice which is pseudocomplemented; these are
called PK-groups and PKN-groups, respectively. We obtain a complete clas-
sification of finite PK-groups and of finite nilpotent PKN-groups, thereby
vastly improving earlier results [5, 19]. We will also investigate groups with
the property that each subgroup is itself a PKN-group, and we will give
some results about groups for which the normal subgroup lattice is a so-
called Stone lattice. In particular, we will classify finite groups for which
the normal subgroup lattice of every subgroup is a Stone lattice, and as a
corollary, we obtain a complete classification of finite groups for which every
subgroup is monolithic.

Let (L,∧,∨) be a bounded lattice with top 1 and bottom 0, and let a ∈ L.
An element b ∈ L is called a complement of a if a∨ b = 1 and a∧ b = 0, and
the lattice L is called complemented if every element of L has a complement.
An element a∗ ∈ L is called a pseudocomplement of a if the following two
conditions are satisfied:

(i) a ∧ a∗ = 0 ;

(ii) a ∧ x = 0 (x ∈ L) implies x ≤ a∗ .

Any element of L can have at most one pseudocomplement. We say that L is
a pseudocomplemented lattice if every element of L has a pseudocomplement.
Note that the terminology is slightly misleading, since a complement is not
necessarily a pseudocomplement; in fact, a complement of an element need
not be unique.

In a pseudocomplemented lattice L the set S(L) = {x∗ | x ∈ L} forms
a lattice (called the skeleton of L), which is a ∧-subsemilattice of L and in
which the join is defined by x � y = (x ∨ y)∗∗ = (x∗ ∧ y∗)∗. The lattice
(S(L),∧,�) is in fact a boolean lattice [7, Theorem I.6.4]; this result was
first proved for complete distributive lattices by V. Glivenko [6].

A lattice L is called distributive if the identity

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
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holds for all a, b, c ∈ L. A pseudocomplemented distributive lattice L for
which the skeleton S(L) is a sublattice of L is called a Stone lattice.

Let (G, ·, e) be a group (where e denotes the identity of G). Then the set
L(G) consisting of all subgroups of G is a complete bounded lattice with top
G and bottom {e}, called the subgroup lattice of G. The normal subgroup
lattice N(G) of G is the modular sublattice of L(G) constituted by all normal
subgroups of G. Many classes of groups determined by different properties
of their subgroup lattices or normal subgroup lattices (such as modularity,
distributivity, complementation,. . . and so on) have been identified. In the
present paper our aim is to investigate the groups G for which the lattice
L(G) or N(G) is pseudocomplemented.

The paper is organized as follows. In Section 2 we study the class of finite
PK-groups, i.e. the groups with pseudocomplemented subgroup lattice. In
Section 3 we look at finite PKN-groups, i.e. the groups with pseudocomple-
mented normal subgroup lattice. Section 4 deals with groups for which all
subgroups have pseudocomplemented lattices of normal subgroups. In the fi-
nal section 5, finite groups whose normal subgroup lattices are Stone lattices
will be investigated.

Most of our notation is standard and will not be repeated here. Basic
definitions and results on lattices and groups can be found in [3, 7] and [1, 18],
respectively. For subgroup lattice concepts we refer the reader to [12, 17, 21].

We only mention that by a generalized quaternion group, we mean a group
of order 2t for some natural number t, defined by the presentation

Q2t = 〈a, b | a2t−2

= b2, a2t−1

= 1, b−1ab = a−1〉
and not the more general notion of groups of order 4n of the form Q4n =
〈a, b | an = b2, a2n = 1, b−1ab = a−1〉 which is used by some authors.

2 PK-groups

Definition 2.1. A group G is called a PK-group if its lattice of subgroups
L(G) is pseudocomplemented, and it is called a PKN-group if its lattice of
normal subgroups N(G) is pseudocomplemented.

PK-groups were introduced and studied in [19] and [20]. Our goal in this
section is to give a complete classification of finite PK-groups.
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Theorem 2.2. Let G be a finite group of order 2tm with m odd. Then G is
a PK-group if and only if it is cyclic or it is isomorphic to the direct product
of a cyclic group of order m and a generalized quaternion group of order 2t.

We start with the following easy but important lemma.

Lemma 2.3. (i) Every subgroup of a PK-group is again a PK-group;

(ii) every cyclic group is a PK-group;

(iii) a group of order p2, p prime, is a PK-group if and only if it is cyclic;

(iv) every generalized quaternion group is a PK-group.

Proof. (i) Let G be PK-group and let H ≤ G. Let A be an arbitrary
subgroup of H and denote its pseudocomplement in G by A∗. Then
A∗ ∩ H is a pseudocomplement of A in H .

(ii) Let G be a finite cyclic group, and let A be an arbitrary subgroup of
G. Let s be the largest divisor of |G| coprime to |A|, and let A∗ be the
unique subgroup of G of order s. Then A∗ is the pseudocomplement of
A in G.

Now let G be the infinite cyclic group (Z, +); then any two non-trivial
subgroups of G intersect non-trivially. So let A be an arbitrary subgroup
of G, then A∗ = {0} is a pseudocomplement of A in G.

(iii) Let G be a PK-group of order p2, and assume that G is not cyclic.
Then G ∼= Cp × Cp, hence G has p + 1 subgroups of order p. Take any
one of them, say A, and let A∗ be its pseudocomplement. Now take
two distinct subgroups B1, B2 ≤ G of order p different form A; then
A ∩ Bi = 1, hence by the definition of A∗ we have Bi ≤ A∗ implying
G = 〈B1, B2〉 ≤ A∗ and hence A ∩ A∗ = A 
= 1, a contradiction.

(iv) Let G be a generalized quaternion group. It is well known that such a
group contains a unique involution z; see, for example, [1, Chapter 8,
Exercise 3(7)]. But then every non-trivial subgroup A of G contains z,
and hence A∗ = 1 is a pseudocomplement for A in G. �

Corollary 2.4. Let G be a finite PK-group. Then every Sylow subgroup of
G is either cyclic or generalized quaternion.

Proof. Let p be any prime divisor of |G|, and let S be a Sylow p-subgroup
of G; by Lemma 2.3(i and iii), every subgroup of S of order p2 is cyclic.
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Equivalently, S has a unique subgroup of order p, since the center Z(S) of
S always contains a subgroup of order p. If p is odd, this implies that S
is cyclic, and if p = 2, this implies that S is either cyclic or generalized
quaternion; see, for example, [1, Chapter 8, Exercise 4]. �

Before we proceed, we show that the PK and PKN properties behave well
with respect to direct products of groups of coprime order.

Proposition 2.5. Let G ∼= G1 × · · · × Gn with gcd(|Gi|, |Gj|) = 1 for all
i, j ∈ {1, . . . , n} with i 
= j.

(i) G is a PK-group if and only if each Gi is a PK-group;

(ii) G is a PKN-group if and only if each Gi is a PKN-group.

Proof. We only prove (ii); the proof of (i) is similar. So assume first that G is
a PKN-group, let i ∈ {1, 2, . . . , n} and let N �Gi. Then N �G, hence N has
a pseudocomplement N∗ in G; it is clear that N∗∩Gi is a pseudocomplement
of N in Gi.

Conversely, assume that each Gi is a PKN-group, and let N � G; since
gcd(|Gi|, |Gj|) = 1 for all i, j ∈ {1, . . . , n} with i 
= j, we can write N =
N1 × · · · × Nn, where Ni � Gi, for all i ∈ {1, . . . , n}. For each i, let N∗

i be a
pseudocomplement of Ni in Gi. Then N∗ = N∗

1 × · · · × N∗
n is a pseudocom-

plement of N in G. �

Remark 2.6. It is clear from Lemma 2.3(iii) that the coprimeness condition
cannot be omitted.

To deal with non-solvable groups, we will make use of the following strong
result by M. Suzuki.

Theorem 2.7 (Suzuki [16]). Let G be a non-solvable finite group such that
every Sylow subgroup of G is either cyclic or generalized quaternion. Then G
contains a normal subgroup G1 such that [G : G1] ≤ 2 and G1

∼= Z×L, where
Z is a solvable group whose Sylow subgroups are all cyclic, and L ∼= SL(2, p)
for some odd prime p.

We are now ready to prove Theorem 2.2.
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Proof of Theorem 2.2. Assume first that G is either cyclic or isomorphic to
the direct product of a cyclic group of order m and a generalized quaternion
group of order 2t. Then it is clear from Lemma 2.3(ii and iv) together with
Proposition 2.5(i) that G is a PK-group.

Assume now that G is a PK-group, and suppose first that G is not solv-
able. By Suzuki’s Theorem 2.7, there is an odd prime p such that G contains
a subgroup L ∼= SL(2, p). By Lemma 2.3(i), L is a PK-group. We will show
that this leads to a contradiction. Indeed, let Z = Z(L) be the center of L;
then Z = {1,−1}. Assume that Z∗ is the pseudocomplement of Z in L. Now
let a be an arbitrary element of L of order p. Then 〈a〉∩Z = 1, hence a ∈ Z∗.
Since L is generated by its elements of order p — in fact L = 〈( 1 1

0 1 ) , ( 1 0
1 1 )〉

— we obtain L ≤ Z∗ and hence Z ∩ Z∗ = Z 
= 1, a contradiction.

Hence G is solvable. By Corollary 2.4, every Sylow subgroup of G is either
cyclic or generalized quaternion. It is now sufficient to verify that every Sylow
subgroup of G is normal, since it then follows that G is the direct product
of its Sylow subgroups, from which the statement in the theorem follows.

So suppose that G has a Sylow p-subgroup S which is not normal, and
let SG be the core of S in G. Since SG is a normal subgroup of G, we have
SG 
= S.

Case 1. SG 
= 1.

Let S∗
G be a pseudocomplement of SG. We claim that

gcd(|SG|, |S∗
G|) = 1 . (2.1)

Indeed, if p | |S∗
G|, then there exists an M ≤ S∗

G with |M | = p. Let x ∈ G
be such that M ≤ Sx. Thus M is the unique subgroup of order p in Sx.
Hence M ≤ SG and so M ≤ SG ∩S∗

G = 1, a contradiction. We conclude that
equation (2.1) holds.

Since G is solvable, it follows from (2.1) that G has a Hall p′-subgroup
H such that S∗

G ≤ H . On the other hand, SG ∩ H = 1, and hence H ≤ S∗
G;

so S∗
G = H . Now let a ∈ G. Since SG is a p-group and Ha is a p′-group,

we have SG ∩ Ha = 1; this implies Ha ≤ S∗
G = H for all a ∈ G, and hence

H = S∗
G is a normal Hall p′-subgroup of G.

Let H∗ be a pseudocomplement of H . Since H ∩ H∗ = 1 and H is the
unique Hall p′-subgroup, H∗ must be a p-subgroup of G. So there is some
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x ∈ G such that H∗ ≤ Sx. Because H∩Sx = 1, we also have Sx ≤ H∗; hence
Sx = H∗. However, for every a ∈ G, we have H ∩ (H∗)a = 1 as well, hence
(H∗)a ≤ H∗. We conclude that H∗ is normal and therefore S is normal, a
contradiction.

Case 2. SG = 1.

We have 1 = SG =
⋂

x∈G Sx =
⋂

x∈G(S ∩ Sx). Since S has a unique
subgroup of order p, this implies that there is an x ∈ G with S ∩ Sx = 1.
Hence Sx ≤ S∗, where S∗ is a pseudocomplement of S. Now let H be
an arbitrary Hall p′-subgroup of G; then S ∩ H = 1, therefore H ≤ S∗.
We conclude that G = 〈Sx, H〉 ≤ S∗, hence S∗ = G. This contradicts
S ∩ S∗ = 1. �

3 PKN-groups

In contrast to the situation of PK-groups, a (normal) subgroup of a PKN-
group is not necessarily a PKN-group. For example, the dihedral group D8

of order 8 is a PKN-group, but has a normal subgroup C2 ×C2, which is not
a PKN-group. This simple fact makes the study of PKN-groups considerably
harder.

We start with an easy but useful observation.

Proposition 3.1. Let G be a finite PKN-group. Then the center Z(G) of G
is cyclic.

Proof. Let H ≤ Z(G) be arbitrary; then H � G, so it has a pseudocom-
plement H∗ in N(G). It is clear that Z(G) ∩ H∗ is a pseudocomplement
of H in L(Z(G)). Hence Z(G) is a PK-group; the result now follows from
Theorem 2.2 since Z(G) is abelian. �

Proposition 2.5(ii) shows that the PKN property behaves well with re-
spect to direct products of coprime order. For arbitrary direct products, we
still have the following facts.

Lemma 3.2. Let G = G1 × · · · × Gn be a PKN-group. Then

(i) each Gi is a PKN-group;
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(ii) if N � G is such that N ∩ Gi = 1 for all i, then N = 1.

Proof. (i) Let i ∈ {1, 2, . . . , n} and let N � Gi. Then N � G, hence N has
a pseudocomplement N∗ in G; it is clear that N∗ ∩Gi is a pseudocom-
plement of N in Gi.

(ii) Let N∗ be the pseudocomplement of N in G. Since N ∩ Gi = 1, we
have Gi ≤ N∗ for all i, hence N∗ = G and since N∩N∗ = 1 this implies
N = 1. �

Remark 3.3. By a well-known result of J. Wiegold [24], a group has a
complemented lattice of normal subgroups (such a group is called an nD-
group – see [22]) if and only if it is a direct product of simple groups. So an
nD-group is not always a PKN-group. A sufficient condition for a direct pro-
duct G of simple groups to become a PKN-group is that no two its minimal
abelian factors are isomorphic. In this case N(G) is a boolean lattice (see
[23, Lemma 1]) and hence a pseudocomplemented lattice.

In any normal subgroup lattice N(G) we have 1∗ = G and G∗ = 1.
A special type of PKN-groups G is obtained when the skeleton S(N(G))
only contains the subgroups 1 and G.

Definition 3.4. We say that a PKN-group G is elementary if S(N(G)) =
{1, G}.

A characterization of finite elementary PKN-groups is given by the fol-
lowing result.

Proposition 3.5. A finite group G is an elementary PKN-group if and only
if it is a monolithic group, i.e. a group with a unique minimal normal sub-
group.

Proof. Suppose that G is an elementary PKN-group and assume that it has
at least two minimal normal subgroups M1 and M2. Because M1 ∩ M2 = 1,
it follows that M2 ≤ M∗

1 and therefore M∗
1 
= 1, a contradiction. Conversely,

suppose that G is a monolithic group and let M be its unique minimal normal
subgroup. Then for every H � G with H 
= 1, we have M ≤ H . This shows
that H∗ = 1. Hence G is an elementary PKN-group. �
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Remark 3.6. This result is no longer true for infinite groups, since an infinite
group may have no minimal normal subgroups at all. For example, the
infinite cyclic group (Z, +) is elementary PKN, but has no minimal normal
subgroups.

Remark 3.7. Using Proposition 3.5, many classes of elementary PKN-
groups can be obtained. For example, any group whose normal subgroup
lattice is a chain is an elementary PKN-group. In particular, simple groups,
symmetric groups, cyclic p-groups or finite groups of order pnqm (p, q distinct
primes) with cyclic Sylow subgroups and trivial center [12, Exercise 3, p. 497]
are all elementary PKN-groups; see also Theorem 5.9 and Theorem 5.12 be-
low. We also mention that any proper semidirect product of type G = 〈a〉M ,
where M is a maximal normal subgroup of G having a fully ordered lattice
of normal subgroups, is an elementary PKN-group.

Obviously, elementary PKN-groups G have the property that the lattice
S(N(G)) is a sublattice of N(G). Our next result gives a characterization of
finite PKN-groups for which this property holds.

Proposition 3.8. For a finite PKN-group G, the following two properties
are equivalent:

(a) S(N(G)) is a sublattice of N(G);

(b) G is a direct product of elementary PKN-groups.

Proof. For each normal subgroup N � G, we will denote its pseudocomple-
ment in G by N∗. We claim that (a) is equivalent with the condition

(A ∩ B)∗ = A∗B∗ for all A, B ∈ S(N(G)) . (3.1)

Indeed, observe that S(N(G)) = {A � G | A∗∗ = A}. If S(N(G)) is a
sublattice of N(G), then for all A, B ∈ S(N(G)), we have AB = A � B =
(A∗ ∩ B∗)∗, so by replacing A with A∗ and B with B∗ we obtain (3.1).
Conversely, if (3.1) holds, then for all A, B ∈ S(N(G)), we have AB =
A∗∗B∗∗ = (A∗ ∩ B∗)∗ ∈ S(N(G)), so S(N(G)) is a sublattice of N(G).

(a)⇒(b). To prove (b), we will use induction on |G|. Let M1, M2, . . . , Ms

be the minimal normal subgroups of G. If s = 1, then G itself is an
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elementary PKN-group, so we may assume s ≥ 2. Then M∗
1 ∩M∗∗

1 = 1,
and by equation (3.1),

G = 1∗ = (M∗
1 ∩ M∗∗

1 )∗ = M∗∗
1 M∗∗∗

1 = M∗∗
1 M∗

1 ,

hence G is the direct product of M∗∗
1 and M∗

1 . In particular, every
minimal normal subgroup of M∗∗

1 is also a minimal normal subgroup
of G.

Now Mi ≤ M∗
1 , for all i ∈ {2, . . . , s}, hence Mi ∩ M∗∗

1 = 1. Therefore
M∗∗

1 has a unique minimal normal subgroup, namely M1, and hence
M∗∗

1 is an elementary PKN-group.

By Lemma 3.2(i), M∗
1 is again a PKN-group. It remains to show that

S(N(M∗
1 )) is a sublattice of N(M∗

1 ), since the result will then follow
by the induction hypothesis. We have

S(N(M∗
1 )) = {K∗ ∩ M∗

1 | K ∈ N(G)} = {A ∩ M∗
1 | A ∈ S(N(G))} .

For any two elements A ∩ M∗
1 and B ∩ M∗

1 of S(N(M∗
1 )), we have

(A ∩ M∗
1 ) ∩ (B ∩ M∗

1 ) = (A ∩ B) ∩ M∗
1 ∈ S(N(M∗

1 )) ,

(A ∩ M∗
1 )(B ∩ M∗

1 ) = (AB) ∩ M∗
1 ∈ S(N(M∗

1 )) ,

where we have used the fact that S(N(G)) is a distributive lattice. This
shows that S(N(M∗

1 )) is a sublattice of N(M∗
1 ), as claimed.

(b)⇒(a). Let G = G1 × · · · × Gn, where each Gi is an elementary PKN-
group. Let K ∈ S(N(G)) be arbitrary, and let i ∈ {1, . . . , n}. Since
K ∩ Gi ∈ S(N(Gi)) = {1, Gi}, we have either K ∩ Gi = 1 (and then
Gi ≤ K∗) or Gi ≤ K (and then K∗ ∩ Gi = 1). Let

X = {i ∈ {1, . . . , n} | K ∩ Gi = 1} = {i ∈ {1, . . . , n} | Gi ≤ K∗} ,

Y = {i ∈ {1, . . . , n} | K∗ ∩ Gi = 1} = {i ∈ {1, . . . , n} | Gi ≤ K} ,

and write A =
∏

i∈X Gi and B =
∏

i∈Y Gi. Then G = A × B; by
Lemma 3.2(i), both A and B are PKN-groups. Observe that B ≤ K.
By the modular law,

K = K ∩ G = K ∩ (AB) = B(K ∩ A) .

However, by Lemma 3.2(ii) applied on the PKN-group A, we have
K ∩ A = 1. Hence K = B =

∏
i∈Y Gi.
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Now take K1, K2 ∈ S(N(G)); then there are subsets Y and Z of
{1, . . . , n} such that K1 =

∏
i∈Y Gi and K2 =

∏
i∈Z Gi. Since S(N(G))

is always a ∧-subsemilattice of N(G), we have K1 ∩ K2 ∈ S(N(G))
(in fact K1 ∩ K2 =

∏
i∈Y ∩Z Gi). On the other hand, it is obvious that

K1K2 =
∏

i∈Y ∪Z Gi ∈ S(N(G)). Hence S(N(G)) is a sublattice of
N(G). �

Remark 3.9. If the equivalent properties of Proposition 3.8 are satisfied,
then S(N(G)) is in fact a direct product of chains of length 1; this follows
from the proof of (b)⇒(a).

A complete classification of finite PKN-groups seems to be out of reach
at this point, but we are able to classify all finite nilpotent PKN-groups.

Theorem 3.10. Let G be a finite nilpotent group. Then G is a PKN-group
if and only if its center Z(G) is cyclic.

Proof. If G is a PKN-group, then Z(G) is cyclic by Proposition 3.1. So
assume that G is a finite nilpotent group with cyclic center. Then G is
isomorphic to the direct product of its Sylow subgroups, G ∼= ∏k

i=1 Gi, where
each Gi is a pi-group with cyclic center. By Proposition 2.5(ii), G is a PKN-
group if and only if each Gi is a PKN-group.

So we may assume without loss of generality that G is a p-group with
cyclic center Z(G). But then the unique subgroup A of Z(G) of order p is
in fact the unique minimal normal subgroup of G. By Proposition 3.5, G is
a PKN-group (in fact an elementary PKN-group). �
Corollary 3.11. Let G be a finite nilpotent PKN-group. Then

(i) G is the direct product of elementary PKN-groups;

(ii) S(N(G)) is a sublattice of N(G).

Proof. Part (i) follows from the fact that a PKN-p-group is elementary PKN;
part (ii) then follows from Proposition 3.8. �

4 PKN∗-groups

As we have observed, the class of PKN-groups is not closed under (normal)
subgroups. It therefore makes sense to introduce the following class of groups.
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Definition 4.1. A group G is called a PKN∗-group if all of its subgroups are
PKN-groups.

Our goal in this section is to study finite PKN∗-groups; in particular, we
will classify finite solvable PKN∗-groups.

Theorem 4.2. Let G be a finite solvable group. Then G is a PKN∗-group
if and only if all Sylow subgroups of G of odd order are cyclic and all Sylow
2-subgroups of G are cyclic or generalized quaternion.

Proof. Assume first that G is a PKN∗-group; then every subgroup of order
p2 (with p prime) is itself a PKN-group, and hence such a subgroup is cyclic
by Lemma 2.3(iii). As in the proof of Corollary 2.4, it follows that every
Sylow subgroup of G is either cyclic or generalized quaternion.

Conversely, suppose that G is a solvable group such that all Sylow sub-
groups are either cyclic or generalized quaternion. Let |G| = pα1

1 pα2
2 · · ·pαk

k be
the decomposition of |G| as product of prime factors. For each i ∈ {1, . . . , k},
let Hi be a Sylow pi-subgroup of G. We claim that for every two normal sub-
groups U, V � G, the equivalence

U ∩ V = 1 ⇐⇒ gcd(|U |, |V |) = 1 (4.1)

holds. Indeed, write |U | =
∏k

i=1 pβi
i and |V | =

∏k
i=1 pγi

i , and denote the
Sylow pi-subgroups of U and V by Ui and Vi, respectively. Of course, if
gcd(|U |, |V |) = 1, then U ∩ V = 1. Assume gcd(|U |, |V |) 
= 1, then there
is an index i ∈ {1, . . . , k} such that βi ≥ 1 and γi ≥ 1. Then there exist
x, y ∈ G such that Ux

i ≤ Hi and V y
i ≤ Hi. Thus Ux

i ∩ V y
i ≤ Hi. Since

Hi is either cyclic or generalized quaternion, it has exactly one subgroup of
order pi. This implies that Ux

i ∩ V y
i 
= 1 and so U ∩ V 
= 1. This proves the

equivalence (4.1).

Now, suppose without loss of generality that βi 
= 0 for all i ∈ {1, . . . , s}
and βs+1 = βs+2 = · · · = βk = 0. Since G is solvable, it contains a sub-
group W of order

∏k
i=s+1 pαi

i ; let U∗ = coreG(W ). Then by (4.1), U∗ is a
pseudocomplement of U in G. �

Remark 4.3. The ZM-groups, i.e. the groups with all Sylow subgroups
cyclic, are always solvable, and hence it follows from Theorem 4.2 that all
ZM-groups are PKN∗-groups. Another important (lattice theoretical) prop-
erty of the ZM-groups is that these groups are exactly the finite groups whose
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poset of conjugacy classes of subgroups forms a distributive lattice [4, The-
orem A].

Not all PKN∗-groups are solvable. We will show that the group SL(2, p)
with p prime is always a PKN∗-group. We start with a lemma.

Lemma 4.4. Let G = SL(2, p) for some prime p, and let H be a non-solvable
subgroup of G. Then H ∼= SL(2, 5).

Proof. Let Z be the center of G, then |Z| = 2 and G/Z ∼= PSL(2, p). From
Dickson’s list of subgroups of PSL(2, q) (see, for example, [8, II, Haupt-
satz 8.27]), we deduce that the only possible non-solvable subgroup of PSL(2, p)
is Alt(5), hence HZ/Z ∼= Alt(5). In particular, |H| ∈ {60, 120}. Recall that
SL(2, p) contains a unique involution, so |H| = 60 would imply Z ≤ H and
|HZ/Z| = 30; hence |H| = 120. However, of the three non-solvable groups
of order 120 —SL(2, 5), Sym(5) and C2 × Alt(5)— only SL(2, 5) contains a
unique involution. �

Theorem 4.5. Let G = SL(2, p) for some prime p. Then G is a PKN∗-group.

Proof. For p ∈ {2, 3}, it is easy to check directly that G is a PKN∗-group; so
we may assume p ≥ 5. Then G contains a unique non-trivial normal proper
subgroup (namely its center), and hence it is an (elementary) PKN-group.

Now let H < G be an arbitrary proper subgroup. It is well known that
the Sylow subgroups of SL(2, p) are either cyclic or generalized quaternion
—see, for example, [8, II, Satz 8.10(a)]— and hence the same is true for H .
If H is solvable, then it follows from Theorem 4.2 that H is a PKN-group.
If H is non-solvable, then Lemma 4.4 implies H ∼= SL(2, 5), and by the first
paragraph of the proof, H is a PKN-group. �

5 Groups whose normal subgroup lattices are

Stone lattices

In this final section we present some results concerning finite groups G for
which the lattice N(G) is a Stone lattice, i.e. a distributive pseudocomple-
mented lattice such that S(N(G)) is a sublattice of N(G).
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We mention that the structure of groups with distributive lattices of nor-
mal subgroups, the so-called DLN-groups, is not known, but there are some
characterizations of these groups (see [10] or [12, §9.1]). We only mention
the following theorem, which is a generalization of [10, Theorem 4.1].

Theorem 5.1. Let G = G1 × · · · × Gk be a finite group. Then G is a
DLN-group if and only if each direct factor Gi is a DLN-group and for all
i 
= j, there are no central chief factors in Gi and in Gj the orders of which
coincide.

We are now able to establish the following characterization of finite groups
whose normal subgroup lattice is a Stone lattice.

Theorem 5.2. Let G be a finite group. Then N(G) is a Stone lattice if and
only if G is a direct product G = G1 × · · · × Gk of monolithic DLN-groups
Gi, and for all i 
= j, there are no central chief factors in Gi and in Gj the
orders of which coincide.

Proof. Assume first that N(G) is a Stone lattice. Then G is a PKN-group
and S(N(G)) is a sublattice of N(G), so by Proposition 3.8, G is a direct
product of monolithic groups: G = G1 × · · · × Gk. Since G is a DLN-group,
the conclusion now follows from Theorem 5.1.

Conversely, assume that G = G1×· · ·×Gk, where each Gi is a monolithic
DLN-group, and for all i 
= j, there are no central chief factors in Gi and
in Gj the orders of which coincide. Then by Theorem 5.1, N(G) is a dis-
tributive lattice. We now claim that G is a PKN-group. Indeed, let N � G.
By distributivity of N(G), we have N =

∏k
i=1(N ∩ Gi). Without loss of

generality, we may assume that N ∩Gi 
= 1 for i ∈ {1, . . . , s} and N ∩Gi = 1
for i ∈ {s + 1, . . . , k}; in particular, N ≤ ∏s

i=1 Gi. Let N∗ =
∏k

i=s+1 Gi;
we claim that N∗ is a pseudocomplement of N in N(G). Indeed, we clearly
have N ∩ N∗ = 1. Assume that A � G is such that N ∩ A = 1. For each
i ∈ {1, . . . , s}, the group Gi is monolithic, so since N ∩Gi 
= 1 we must have
A ∩ Gi = 1. But then by distributivity, A =

∏k
i=1(A ∩ Gi) ≤ N∗, which

proves that N∗ is a pseudocomplement of N as claimed. It now follows from
Proposition 3.8 that S(N(G)) is a sublattice of N(G), and hence N(G) is a
Stone lattice. �

Remark 5.3. The structure of finite monolithic DLN-groups is not known
either. This class of groups obviously includes the cyclic p-groups, but there
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exist a lot of non-cyclic groups which are monolithic DLN-groups (for exam-
ple, the non-cyclic elementary PKN-groups presented in Remark 3.7). Nev-
ertheless, it is easy to see that the cyclic p-groups are the only finite p-groups
that are monolithic DLN-groups. Moreover, because a direct product of k
cyclic p-groups is a PKN-group if and only if k = 1, the cyclic p-groups are
also the only finite p-groups G for which N(G) is a Stone lattice.

The previous remark allows us to classify finite nilpotent groups whose
normal subgroup lattice is a Stone lattice.

Corollary 5.4. Let G be a finite nilpotent group. Then N(G) is a Stone
lattice if and only if G is cyclic.

Proof. Since G is nilpotent, it can be written as a direct product of its Sylow
subgroups: G = G1 × · · · × Gk. If G is cyclic, then each of the groups
Gi is a cyclic pi-group, and hence a monolithic DLN-group; it follows from
Theorem 5.2 that N(G) is a Stone lattice.

Conversely, assume that N(G) is a Stone lattice. Since the orders of the
Sylow subgroups are coprime, Theorem 5.2 implies that each of the lattices
N(Gi) is a Stone lattice; by Remark 5.3, each Gi is cyclic. Hence G is also
cyclic. �

We will now investigate finite groups for which the normal subgroup lat-
tice of every subgroup is a Stone lattice. We start with a reduction; let us
first recall the following definition which we have encountered in Remark 4.3.

Definition 5.5. A finite group G is called a Zassenhaus metacyclic group,
or ZM-group for short, if all Sylow subgroups of G are cyclic.

Proposition 5.6. Let G be a finite group. Then the following two properties
are equivalent:

(a) N(H) is a Stone lattice for all subgroups H of G;

(b) G ∼= G1 × · · · × Gk, where the Gi are monolithic ZM-groups of coprime
orders, with the property that N(Hi) is a Stone lattice for all subgroups
Hi of Gi.

Proof. (a)⇒(b). Let H be a Sylow subgroup of G. Then N(H) is a Stone
lattice and therefore, by Corollary 5.4, H is cyclic. Thus G is a ZM-
group. Since N(G) is a Stone lattice, Theorem 5.2 implies that G

15



can be written as a direct product of monolithic DLN-groups Gi, i ∈
{1, . . . , k}. Since every subgroup of a ZM-group is itself a ZM-group,
the Gi are in fact ZM-groups. Suppose that there are i 
= j such
that |Gi| and |Gj | have a common prime divisor p. Then there are a
subgroup Mi or order p in Gi, and a subgroup Mj of order p in Gj . By
our hypothesis, the normal subgroup lattice of H = Mi×Mj

∼= Cp×Cp

is a Stone lattice, a contradiction.

(b)⇒(a). Let H be an arbitrary subgroup of G. Since the direct factors Gi

have coprime orders, H ∼= H1×· · ·×Hk for certain subgroups Hi ≤ Gi.
Clearly H is a ZM-group, so by Remark 4.3 it is a DLN-group. Since
N(Hi) is a Stone lattice for each i, Proposition 3.8 implies that each Hi

is a direct product of elementary PKN-groups, and hence the same is
true for H . Moreover, each Hi is a PKN-group, and since the Hi have
coprime orders, Proposition 2.5(ii) implies that H is a PKN-group. We
conclude that N(H) is a Stone lattice. �

In view of Proposition 5.6(b), we will now digress on monolithic ZM-
groups. The structure of ZM-groups has been completely determined by
Zassenhaus.

Definition 5.7. A triple (m, n, r) satisfying the conditions

gcd(m, n) = gcd(m, r − 1) = 1 and rn ≡ 1 (mod m)

will be called a ZM-triple, and the corresponding group

〈
a, b | am = bn = 1, b−1ab = ar

〉

will be denoted by ZM(m, n, r).

Theorem 5.8 (Zassenhaus). Let G be a ZM-group. Then there exists a ZM-
triple (m, n, r) such that G ∼= ZM(m, n, r). We have |G| = mn and G′ = 〈a〉
(so |G′| = m), and G/G′ is cyclic of order n.

Conversely, every group isomorphic to ZM(m, n, r) is a ZM-group.

Proof. See, for example, [8, IV, Satz 2.11]. �

We can now determine the structure of monolithic ZM-groups.
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Theorem 5.9. Let G ∼= ZM(m, n, r) be a ZM-group. Then the following
properties are equivalent:

(a) G is monolithic;

(b) either m = 1 and n is a prime power, or m is a prime power and rd 
≡ 1
(mod m) for all 1 ≤ d < n;

(c) either |G| is a prime power, or |G′| is a prime power and Z(G) = 1.

Proof. (a)⇒(b). Assume that G ∼= ZM(m, n, r) is monolithic. If m = 1, then
G is cyclic of order n; for each prime divisor p of n, G has a minimal
normal subgroup of order p; hence n is a prime power.

So assume that m 
= 1, and let p be a prime divisor of m. By the
defining relations of G in Definition 5.7, we see that every subgroup
of 〈a〉 is normalized by b and thus is a normal subgroup of G. In
particular, G has a minimal normal subgroup of order p.

Hence m can have only one prime divisor, i.e. m is a prime power; let N
be the minimal normal subgroup contained in 〈a〉. Suppose now that
there is some d < n such that rd ≡ 1 (mod m). Since rn ≡ 1 (mod m)
as well, we may in fact assume that d | n; assume furthermore that n/d
is prime. Let H = 〈bd〉; this is a subgroup of G of prime order. By the
defining relation ab = bar, we get

abd = bdard

= bda

since rd ≡ 1 (mod m); this shows that bd ∈ Z(G), so in particular H
is a minimal normal subgroup of G, different from N . This contradicts
the fact that G is monolithic.

(b)⇒(c). If m = 1 and n is a prime power, then |G| = mn is a prime power.
So assume that m = |G′| is a prime power and rd 
≡ 1 (mod m) for all
1 ≤ d < n. Let g = bsat with 0 ≤ s ≤ n − 1 and 0 ≤ t ≤ m − 1 be an
arbitrary element of G; we compute

[g, a] = a1−rs

, [g, b] = at(r−1) .

Assume now that g ∈ Z(G); then we must have rs ≡ 1 (mod m) and
m | t(r−1). Our assumption rd 
≡ 1 (mod m) for all 1 ≤ d < n implies
s = 0; the fact that gcd(m, r − 1) and t < m implies t = 0. Hence
Z(G) = 1.
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(c)⇒(a). If |G| is a prime power, then G is a cyclic group of prime power
order and hence it is monolithic. So assume that |G′| is a prime power
and Z(G) = 1. Then G′ has a unique subgroup P of prime order,
which is therefore a minimal normal subgroup of G. Let N � G be
an arbitrary non-trivial normal subgroup of G; it is sufficient to show
that N ∩ G′ 
= 1, since this will imply that P ≤ N . So suppose that
N∩G′ = 1. Then [N, G] = 1, and hence N ≤ Z(G). But now Z(G) = 1
implies N = 1, a contradiction. �

We now claim that every monolithic ZM-group has the property that the
normal subgroup lattice of any subgroup is a Stone lattice. This statement
is obvious when the group is cyclic of prime power order, so we only consider
non-abelian ZM-groups.

Theorem 5.10. Let G ∼= ZM(m, n, r) be a monolithic non-abelian ZM-group
with m = pk for some prime p and some k ≥ 1. Then

(i) n | p − 1;

(ii) the order of each element of G is a divisor of m or a divisor of n;

(iii) N(H) is a Stone lattice for each subgroup H of G. More precisely, every
subgroup of G is either cyclic or monolithic.

Proof. Let G ∼= ZM(m, n, r) be a monolithic ZM-group with generators a
and b as in Definition 5.7. By Theorem 5.9, m = pk for some prime p and
some number k ≥ 1 since we assume G to be non-abelian.

(i) By Theorem 5.9(b), the order of r modulo pk is precisely n. In particu-
lar, n | φ(pk) = pk−1(p− 1), where φ is the Euler totient function; since
gcd(n, p) = 1, we have n | p − 1.

(ii) By the defining relations in Definition 5.7, it is not very hard to com-
pute, using induction on d, that

(bsat)d = bsd at(1+rs+r2s+···+r(d−1)s) , (5.1)

for all natural numbers s, t, d. Suppose that G contains an element
g = bsat of order pq, where q is a prime dividing n. Then bs must have
order q, hence we have s = c · n/q for some c ∈ {1, . . . , q − 1}. Let
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x = rs; then the order of x modulo pk is q. We have

gq = at(1+x+x2+···+x(q−1)) , gpq = at(1+x+x2+···+x(pq−1)) .

Since g has order pq, this implies

t
(
1 + x + x2 + · · ·+ x(q−1)

) 
≡ 0 (mod pk) , (5.2)

t
(
1 + x + x2 + · · ·+ x(pq−1)

) ≡ 0 (mod pk) . (5.3)

Also observe that by (i), we have q | p − 1, so in particular xp ≡ x
(mod pk). Let y = 1 + x + · · · + xp−1; then y(x − 1) = xp − 1 ≡ x − 1
(mod pk), hence pk | (y − 1)(x − 1). However, x 
≡ 1 (mod pk), and
therefore p | y − 1. In particular, gcd(y, p) = 1.

Since xp ≡ x (mod pk), we have

1 + x + x2 + · · ·+ x(pq−1)

=
(
1 + x + x2 + · · · + x(p−1)

) (
1 + xp + x2p + · · ·+ x(q−1)p

)

≡ y
(
1 + x + x2 + · · · + x(q−1)

)
(mod pk) ;

since gcd(y, p) = 1, this implies the equivalence

t
(
1 + x + x2 + · · · + x(pq−1)

) ≡ 0 (mod pk)

⇐⇒ t
(
1 + x + x2 + · · · + x(q−1)

) ≡ 0 (mod pk) .

This contradicts equations (5.2) and (5.3), and (ii) follows.

(iii) Let H be an arbitrary subgroup of G. If H is abelian, then it is cyclic,
so Corollary 5.4 implies that N(H) is a Stone lattice. So we may assume
that H is non-abelian; in particular, the derived subgroup H ′ is non-
trivial, and since H ′ ≤ G′ = 〈a〉, this implies that g = apk−1 ∈ H , and
therefore p | |H|. If p were the only prime dividing |H|, then H would
be cyclic, contradicting the fact that H is non-abelian; hence there is
some prime q | n with q | |H|. Let h ∈ H be an element of order q.

Suppose that Z(H) 
= 1. If Z(H) contains an element x of order p, then
xh has order pq, contradicting (ii). If Z(H) does not contain elements
of order p, then it must contain an element y of order q′ for some
prime q′ | n, but then yg has order pq′, again contradicting (ii). We
conclude that Z(H) = 1, and hence by Theorem 5.9, H is a monolithic
ZM-group; in particular, N(H) is a Stone lattice. �
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We now obtain the complete classification of all groups with the property
that each subgroup has a Stone normal subgroup lattice as an easy corollary.

Theorem 5.11. Let G be a finite group. Then the following two properties
are equivalent:

(a) N(H) is a Stone lattice for all subgroups H of G;

(b) G ∼= G1 × · · · × Gk, where the Gi are monolithic ZM-groups of coprime
orders.

Proof. This follows immediately from Proposition 5.6 and Theorem 5.10. �

We end this section by classifying all finite groups such that every sub-
group is monolithic.

Theorem 5.12. Let G be a finite group; then the following two properties
are equivalent:

(a) every subgroup of G is monolithic;

(b) either G is a cyclic group of order pk, or G is a ZM-group of order pkq�

with Z(G) = 1, where p, q are distinct primes.

Proof. (a)⇒(b). Assume that every subgroup of G is monolithic. Then every
Sylow subgroup of G is cyclic, hence G is a monolithic ZM-group, say
G ∼= ZM(m, n, r). Assume that |G| is not a prime power; then by
Theorem 5.9, Z(G) = 1 and m is a prime power pk. On the other
hand, the group 〈b〉 is a cyclic group of order n; such a group can only
be monolithic if n is a prime power q�.

(b)⇒(a). If G is a cyclic group of prime power order, then each of its sub-
groups is monolithic; so assume that G is a ZM-group of order pkq�

with Z(G) = 1. By Theorem 5.9, G is monolithic. Now let H be an
arbitrary subgroup of G. Then by Theorem 5.10(iii), H is cyclic or
monolithic. If it is monolithic, we are done, so assume H is cyclic. By
Theorem 5.10(ii), the order of each element is either a power of p or a
power of q, so it follows that H is a cyclic p-group or a cyclic q-group.
In both cases, H is monolithic. �
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