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Abstract

The maximal and next-to-maximal subspaces of a nonsingular
parabolic quadric Q(2n, 2), n ≥ 2, which are not contained in a
given hyperbolic quadric Q+(2n− 1, q) ⊂ Q(2n, q) define a sub near
polygon In of the dual polar space DQ(2n, 2). It is known that every
valuation of DQ(2n, 2) induces a valuation of In. In this paper, we
show that also the converse is true: every valuation of In is induced
by a valuation of DQ(2n, 2). We will also study the structure of the
valuations of In.
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1 Introduction

1.1 Basic definitions

Let S be a dense near 2n-gon, i.e., S satisfies the following properties:

(i) For every point p and every line L, there exists a unique point on L

nearest to p. Here, distances d(·, ·) are measured in the point graph
or collinearity graph of S.

(ii) Every line of S is incident with at least three points.

(iii) Every two points of S at distance 2 from each other have at least two
common neighbours.

(iv) The maximal distance between two points of S is equal to n.
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A dense near 0-gon is a point, a dense near 2-gon is a line and a dense near
quadrangle is a generalized quadrangle ([9]). By Theorem 4 of [1], every two
points x and y of S at distance δ ∈ {0, . . . , n} from each other are contained
in a unique convex subspace 〈x, y〉 of diameter δ. These convex subspaces
are called quads, hexes, respectively maxes, if δ = 2, δ = 3, respectively
δ = n − 1. If X1 and X2 are two nonempty sets of points, then we denote
by d(X1,X2) the minimal distance between a point of X1 and a point of
X2. If X1,X2, . . . ,Xk are nonempty sets of points, then 〈X1,X2, . . . ,Xk〉
denotes the smallest convex subspace containing X1 ∪ X2 ∪ · · · ∪ Xk, i.e.,
〈X1,X2, . . . ,Xk〉 is the intersection of all convex subspaces containing X1∪
X2 ∪ · · · ∪ Xk. A convex subspace F of a dense near polygon S is called
classical in S if for every point x of S, there exists a unique point πF (x)
in F such that d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point y of F .
The point πF (x) is called the projection of x onto F . We refer to Chapter
2 of [2] for more background information on dense near polygons.

A function f from the point-set P of S to N is called a valuation of S
if it satisfies the following properties (we call f(x) the value of x):

(V1) there exists at least one point with value 0;

(V2) every line L of S contains a unique point xL with smallest value and
f(x) = f(xL) + 1 for every point x of L different from xL;

(V3) every point x of S is contained in a convex subspace Fx such that the
following properties are satisfied for every y ∈ Fx:

(i) f(y) ≤ f(x);

(ii) if z is a point collinear with y such that f(z) = f(y) − 1, then
z ∈ Fx.

One can show, see Proposition 2.5 of [4], that the convex subspace Fx in
property (V 3) is unique. If f is a valuation of S, then we denote by Of

the set of points with value 0. A quad Q of S is called special (with respect
to) f if it contains two distinct points of Of , or equivalently (see [4]), if it
intersects Of in an ovoid of Q. We denote by Gf the partial linear space
with points the elements of Of and with lines the special quads (natural
incidence).

Proposition 1.1 (Proposition 2.12 of [4]) Let S be a dense near poly-
gon and let F = (P ′,L′, I′) be a (not necessarily convex) subpolygon of S
for which the following holds: (1) F is a dense near polygon; (2) F is a
subspace of S; (3) if x and y are two points of F , then dF (x, y) = dS(x, y).
Let f denote a valuation of S and put m := min{f(x) |x ∈ P ′}. Then the
map fF : P ′ → N, x 7→ f(x) − m is a valuation of F .
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Definition. The valuation fF in Proposition 1.1 is called the valuation of
F induced by f .

Proposition 1.2 (Proposition 2.4 of [3]) Let f be a valuation of a dense
near polygon, let M denote the maximal value attained by f , and let X de-
note the set of points with value M . Then f(x) = M − d(x,X) for every
point x of S.

Examples. Let S = (P,L, I) be a dense near 2n-gon.
(1) For every point x of S, the map fx : P → N; y 7→ d(x, y) is a

valuation of S which we call a classical valuation.
(2) Suppose O is an ovoid of S, i.e., a set of points meeting each line in

a unique point. For every point x of S, we define fO(x) = 0 if x ∈ O and
fO(x) = 1 otherwise. Then fO is a valuation of S, which we call an ovoidal
valuation.

(3) Suppose F = (P ′,L′, I′) is a convex subspace of S which is classical
in S. Suppose that f ′ : P ′ → N is a valuation of F . Then the map
f : P → N;x 7→ f(x) := d(x, πF (x)) + f ′(πF (x)) is a valuation of S. We
call f the extension of f ′. If P ′ = P, then we say that the extension is
trivial.

Valuations are a very important tool for classifying dense near polygons,
see e.g. [7]. They are also important in the theory of hyperplanes of dense
near polygons. With every valuation of a dense near polygon, there is
associated a hyperplane, see Proposition 2 of [5]. Also in [5], valuations
have been used to construct new hyperplanes of dual polar spaces. In [3],
valuations have been used as a tool for classifying hyperplanes.

1.2 The dual polar space DQ(2n, 2)

Let Q(2n, 2) denote a nonsingular (parabolic) quadric in PG(2n, 2), n ≥ 1.
The dual polar space DQ(2n, 2) is the point-line geometry with points,
respectively lines, the maximal, respectively next-to-maximal, subspaces
of Q(2n, 2) with reverse containment as incidence relation. DQ(2n, 2) is a
dense near 2n-gon. By convention, DQ(0, 2) is a point. If α is a subspace of
Q(2n, 2), then the set of all generators through α defines a convex subspace
of DQ(2n, 2). Conversely, every convex subspace of DQ(2n, 2) is obtained
in this way.

The dual polar space DQ(4n, 2), n ∈ N, admits so-called SDPS-sets.
An SDPS-set of DQ(4n, 2) is a set X of points satisfying: (i) no two points
of X are collinear; (ii) if x, y ∈ X such that d(x, y) = 2, then X ∩ 〈x, y〉 is
an ovoid of the quad 〈x, y〉; (iii) the point-line geometry A whose points are
the elements of X and whose lines are the quads of DQ(4n, 2) containing
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at least two points of X (natural incidence) is isomorphic to DQ(2n, 4);
(iv) if x and y are two points of X, then the distance between x and y in
DQ(4n, 2) is twice the distance between x and y in the geometry A. If X

is an SDPS-set of DQ(4n, 2), then every line of DQ(4n, 2) through a point
of X is contained in a unique quad which intersects X in an ovoid.

If X is an SDPS-set of DQ(4n, 2), then by Theorem 4 of [5], the map
f : DQ(4n, 2) → N;x 7→ d(x,X) is a valuation of DQ(4n, 2), a so-called
SDPS-valuation. The following proposition describes the structure of the
valuations of DQ(2n, 2).

Proposition 1.3 (Corollary 2.6 of [8]) If f is a valuation of DQ(2n, 2),
n ≥ 0, then f is the possibly trivial extension of an SDPS-valuation in a
convex subspace (of even diameter) of DQ(2n, 2).

Remark. SDPS-sets and SDPS-valuations can be defined for general thick
dual polar spaces, see De Bruyn and Vandecasteele [5] or Chapter 5 of De
Bruyn [2]. SDPS-sets in thick dual polar spaces of rank 4 were also studied
by Pralle and Shpectorov [10].

1.3 The near 2n-gon In and the results

Again, let Q(2n, 2), n ≥ 2, be a nonsingular parabolic quadric of PG(2n, 2)
and let Π be a hyperplane of PG(2n, 2) intersecting Q(2n, 2) in a nonsingu-
lar hyperbolic quadric Q+(2n − 1, 2). The maximal subspaces of Q(2n, 2)
which are not contained in Π form a hyperplane of DQ(2n, 2), i.e., a proper
subspace meeting each line of DQ(2n, 2). The geometry induced on this
hyperplane is a dense near 2n-gon which we will denote by In. Every point
of In is contained in a unique line of DQ(2n, 2) which is not contained in
In. The generalized quadrangle I2 is isomorphic to the (3 × 3)-grid.

Let α be a subspace of Q(2n, 2) which is not contained in Q+(2n−1, 2)
if δ := dim(α) ∈ {n − 2, n − 1}. Then the set of generators through α

not contained in Q+(2n − 1, 2) is a convex subspace Aα of In. Conversely,
every convex subspace is obtained in this way. If δ ≤ n − 3 and α ⊂
Q+(2n−1, 2), then Aα

∼= In−1−δ. If δ ≤ n−3 and α 6⊂ Q+(2n−1, 2), then
Aα

∼= DQ(2δ, 2).
The embedding of In in DQ(2n, 2) is an isometric one. So, by Propo-

sition 1.1, every valuation of DQ(2n, 2) induces a valuation of In. In this
paper, we will prove that also the converse is true.

Theorem 1.4 (Section 2) Every valuation f of In, n ≥ 2, is induced by
a valuation f ′ of DQ(2n, 2). If n ≥ 3, then f ′ is uniquely determined by f .

Theorem 1.4 has already been proved in [6, Section 8.4] for the case
n = 3 and in [8] for the case n = 4. Theorem 1.4 is easy to prove if n = 2,
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but the uniqueness for f ′ is not necessarily true. If f is an ovoidal valuation
of I2, then f is induced by a unique classical and a unique ovoidal valuation
of DQ(4, 2).

In the present paper, we will also determine the structure of the valu-
ations of In. We will show in Proposition 3.5 that f is the (generalized)
extension of a valuation in the convex subspace 〈Of 〉 of In. We will also
determine the structure of Gf . We will prove the following result.

Theorem 1.5 (Propositions 3.5 and 4.1) If f is a valuation of In, n ≥
3, then the incidence structure Gf is isomorphic to one of the following
geometries:

• a point;

• the projective space PG(n − 1, 2);

• the dual polar space DQ(2m, 4) for some m satisfying 1 ≤ m ≤ n−1

2
;

• the partial linear space DQ′(2m, 4) for some m satisfying 1 ≤ m ≤ n
2
.

In Theorem 1.5, DQ(2m, 4) is the dual polar space associated with the
nonsingular parabolic quadric Q(2m, 4) of PG(2m, 4) and DQ′(2m, 4) is
the subgeometry of DQ(2m, 4) induced on the set of all generators which
are not contained in a given hyperbolic quadric Q−(2m− 1, 4) ⊆ Q(2m, 4).

It is our hope that Theorems 1.4 and 1.5 will contribute to the project
of classifying all dense near polygons with three points per line. During
classifications of dense near polygons, valuations play a very important role,
see e.g. [7].

2 Proof of Theorem 1.4

We will make use of the following lemma.

Lemma 2.1 Let x be a point of a dense near 2n-gon, n ≥ 3. Let Γ be the
graph with vertices the hexes through x, two distinct hexes being adjacent
whenever they intersect in a quad. Then Γ is connected.

Proof. Let H1 and H2 be two hexes through x.
(a) If H1 = H2 or H1 ∩H2 is a quad, then H1 and H2 are connected by

a path.
(b) Suppose H1 ∩ H2 is a line L. Let Li, i ∈ {1, 2}, denote a line of Hi

through x distinct from L. Then the hex 〈L,L1, L2〉 is a common neighbour
of H1 and H2 in the graph Γ.
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(c) Suppose H1 ∩ H2 is a point x. Let Li, i ∈ {1, 2}, denote a line
through x contained in Hi, and let H3 be a hex through L1 and L2. By
(a)+(b), we know that there exists a path in Γ connecting H3 and Hi,
i ∈ {1, 2}. Hence, also H1 and H2 are connected by a path. ¥

We will prove Theorem 1.4 by induction on n.

Suppose first that n = 2. Then the embedding of I2 in DQ(4, 2) is just
the embedding of the (3 × 3)-grid in the generalized quadrangle W (2).
Every valuation of a generalized quadrangle is either classical or ovoidal
by Corollary 2.11 of [4]. Every classical valuation f of I2 is induced by a
unique valuation f ′ of DQ(4, 2). The valuation f ′ is classical and Of ′ = Of .
Every ovoidal valuation g of I2 is induced by a unique classical valuation
g1 of DQ(4, 2) and a unique ovoidal valuation g2 of DQ(4, 2). The point
in Og1

is the unique point of DQ(4, 2) \ I2 collinear with all points of Og,
and the ovoid Og2

is the unique ovoid of DQ(4, 2) containing Og.

The main theorem has already been proved in [6, Section 8.4] for the case
n = 3 and in [8] for the case n = 4.

Suppose now that n ≥ 5 and that the main theorem holds for every near
2m-gon Im with 2 ≤ m ≤ n − 1. Let f be a valuation of In. We will
regard In as a sub-near-polygon of DQ(2n, 2). The embedding of In in
DQ(2n, 2) is an isometric one. Convex subspaces of diameter 2, respectively
3, of In will be called quads and hexes, respectively. Convex subspaces of
diameter 2, respectively 3, of DQ(2n, 2) will be called QUADS and HEXES,
respectively.

Definition. Let F denote a convex subspace of DQ(2n, 2) and suppose
that the diameter δ of F satisfies 3 ≤ δ ≤ n− 1. By the induction hypoth-
esis, there exists a unique function fF from F to Z satisfying the following
properties:

(i) fF (y) = f(y) for every point y of F ∩ In;

(ii) if ε is the minimal value attained by fF , then the map F → N; y 7→
fF (y) − ε is a valuation of F .

Lemma 2.2 Let F1 and F2 denote two convex subspaces of DQ(2n, 2) such
that F1 ⊆ F2. Let δi, i ∈ {1, 2}, denote the diameter of Fi and suppose
that 3 ≤ δ1 ≤ δ2 ≤ n − 1. Then fF1

(x) = fF2
(x) for every point x of F1.

Proof. Let ε2 denote the minimal value of fF2
and let fF2

denote the

valuation of F2 mapping each point x of F2 to fF2
(x) − ε2. Put ε1 :=
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min{fF2
(x) |x ∈ F1}. By Proposition 1.1, the map fF1

: F1 → N;x 7→
fF2

(x) − ε1 is a valuation of F1. Let f ′

F1
denote the map F1 → N;x 7→

fF1
(x) + ε1 + ε2. Then for every x ∈ F1 ∩ In,

f ′

F1
(x) = fF1

(x) + ε1 + ε2 = fF2
(x) + ε2 = fF2

(x) = f(x).

Since fF1
is a valuation of F1, the minimal value of f ′

F1
is equal to ε1 + ε2.

It readily follows that fF1
= f ′

F1
. Now, for every x ∈ F1,

fF1
(x) = f ′

F1
(x) = fF1

(x) + ε1 + ε2 = fF2
(x) + ε2 = fF2

(x).

This proves the lemma. ¥

Lemma 2.3 Let x be a point of DQ(2n, 2) \ In and let H1 and H2 be two
HEXES of DQ(2n, 2) through x. Then fH1

(x) = fH2
(x).

Proof. By Lemma 2.1, it suffices to prove the lemma in the case that H1

and H2 intersect in a quad. Let F denote the sub near octagon 〈H1,H2〉
of DQ(2n, 2). By Lemma 2.2, fH1

(x) = fF (x) = fH2
(x). (Recall that

n ≥ 5.) ¥

Define now the following map f from the point-set of DQ(2n, 2) to Z:

• if x ∈ In, then f(x) = f(x);

• if x ∈ DQ(2n, 2)\In, then f(x) = fH(x), where H is any hex through
x.

We will now show that the map f satisfies the properties (V2) and (V3) in
the definition of valuation.

Lemma 2.4 The map f satisfies property (V 2).

Proof. Let L denote an arbitrary line of DQ(2n, 2). If L is a line of In,
then there exists a unique point xL on L such that f(xL) = f(y) − 1 for
every y ∈ L \ {xL}. Hence, f(xL) = f(y) − 1 for every y ∈ L \ {xL}.

Suppose L is not a line of In and let H denote an arbitrary HEX through
L. Then there exists a constant ε such that the map x 7→ fH(x) + ε is a
valuation of H. Hence, there exists a unique point xL on L such that
fH(xL) = fH(y) − 1 for every y ∈ L \ {xL}. It follows that f(xL) =
fH(xL) = fH(y) − 1 = f(y) − 1 for every y ∈ L \ {xL}. ¥

For every point x of DQ(2n, 2), let Lx denote the linear space with points,
respectively lines, the lines, respectively quads, through x. Then Lx is
isomorphic to the point-line system of PG(n − 1, 2). For every point x of
DQ(2n, 2), let Sx denote the set of lines through x containing a point with
value f(x) − 1.
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Lemma 2.5 The set Sx is a subspace of Lx.

Proof. Suppose L1 and L2 are two distinct lines through x belonging to
Sx and that L3 is a line of the quad 〈L1, L2〉 through x. Let H denote
an arbitrary HEX through 〈L1, L2〉. Let Gx denote the convex subspace
of H through x which satisfies property (V3) with respect to the function
fH . Since L1 and L2 contain points with fH -value fH(x) − 1, L1, L2 ⊆
Gx. Hence also L3 ⊆ Gx. So, L3 contains a unique point with fH -value
fH(x) − 1. The lemma now readily follows. ¥

For every point x of DQ(2n, 2), let Fx denote the unique convex subspace
of DQ(2n, 2) through x such that the lines of Fx through x are precisely
the lines of Sx.

We will now show that f satisfies property (V3) with respect to the convex
subspaces Fx.

Lemma 2.6 Suppose x is a point of DQ(2n, 2) such that Fx = DQ(2n, 2).
Then Fx satisfies property (V 3).

Proof. Let X denote the set of points with f -value at most f(x). We must
show that X coincides with the whole point set of DQ(2n, 2). By Lemma
2.4, X is a subspace of DQ(2n, 2). Let F denote an arbitrary convex
subspace of diameter n− 1 through x. Then there exists a constant ε such
that the map F → Z; y 7→ fF (y)+ ε is a valuation of F . Let F ′

x denote the
convex subspace through x which satisfies property (V3) with respect to
this valuation. Every line of F through x contains a point with fF -value
fF (x) − 1. Hence, F ′

x = F . It follows that f(y) = fF (y) ≤ fF (x) = f(x)
for every point y of F . So, every point of DQ(2n, 2) at distance at most
n − 1 from x belongs to X, i.e., Hx ⊆ X. Here, Hx denotes the so-called
singular hyperplane with deepest point x which consists of all points of
DQ(2n, 2) at non-maximal distance from x.

Now, let L denote an arbitrary line through x. Then L contains a
unique point with value f(x) − 1. Let x′ denote the third point on that
line. By Lemma 2.4, f(x′) = f(x). Let L′ denote an arbitrary line through
x′. Every point of L′ has distance at most 2 from x and hence has value at
most f(x) = f(x′) by the previous paragraph. By Lemma 2.4, L′ contains
a unique point with value f(x′) − 1. It follows that Fx′ = DQ(2n, 2).
As before, we can conclude that the singular hyperplane Hx′ with deepest
point x′ is contained in X.

Now, by Lemma 6.1 of Shult [11], the singular hyperplanes Hx and Hx′

are maximal subspaces of DQ(2n, 2). Since Hx ∪Hx′ ⊆ X and since X is a
subspace, it follows that X coincides with the whole point-set of DQ(2n, 2).
¥
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Lemma 2.7 Suppose x is a point of DQ(2n, 2) such that Fx is a proper
convex subspace of DQ(2n, 2), then f(y) ≤ f(x) for every point y of Fx.

Proof. Let F denote a convex subspace of diameter n − 1 through Fx.
There exists a constant ε such that the map F → Z; y 7→ fF (y) + ε is
a valuation of F . Let F ′

x denote the convex subspace of F through x

which satisfies property (V3) with respect to this valuation. The lines of
F through x containing a point with fF -value fF (x) − 1 are precisely the
lines of Fx through x. It follows that F ′

x = Fx. Hence, f(y) = fF (y) ≤
fF (x) = f(x) for every point y of Fx. ¥

Lemma 2.8 Suppose x is a point of DQ(2n, 2) such that Fx is a proper
convex subspace of DQ(2n, 2). Let y and z be points of DQ(2n, 2) such
that y ∈ Fx, d(y, z) = 1 and f(z) = f(y) − 1. Then z ∈ Fx.

Proof. Put k := f(x)− f(y). By Proposition 1.2 applied to the valuation
of Fx induced by f , there exists a path u0, u1, . . . , uk of length k between
a point u0 ∈ Fx with f -value f(x) and the point uk = y.

By Lemmas 2.4 and 2.7, every line of Fx through u0 contains a point
with f -value f(x)− 1 = f(u0)− 1. It follows that Fx ⊆ Fu0

. Since x ∈ Fu0

with f(x) = f(u0), we can apply the same reasoning again (use also Lemma
2.6 for the case Fu0

= DQ(2n, 2)) and we find that Fu0
⊆ Fx. So, Fx = Fu0

.
Suppose z were not contained in Fx. Define inductively the following

path v0, v1, . . . , vk of points:

• vk = z;

• vi, i ∈ {0, . . . , k − 1}, is a common neighbour of ui and vi+1 different
from ui+1.

One readily verifies by induction that vi 6∈ Fx for every i ∈ {0, . . . , k}. In
particular, v0 6∈ Fx. By Lemma 2.4 and the fact that Fu0

= Fx, f(v0) =
f(u0)+1. Hence, f(v0)−f(vk) = f(u0)+1−f(z) = (f(x)+1)−(f(y)−1) =
k+2. On the other hand, f(v0)−f(vk) = (f(v0)−f(v1))+(f(v1)−f(v2))+
· · ·+ (f(vk−1)− f(vk)) ≤ k by Lemma 2.4. So, our assumption z 6∈ Fx was
wrong. This proves the lemma. ¥

By Lemmas 2.6, 2.7 and 2.8, we obtain:

Corollary 2.9 The function f satisfies property (V 3) with respect to the
convex subspaces Fx.

Now, let ε ∈ {−1, 0} denote the minimal value attained by f . For every
point x of DQ(2n, 2), we define f ′(x) = f(x)−ε. Then f ′ satisfies properties
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(V1), (V2), (V3) and hence is a valuation of DQ(2n, 2). Obviously, f is
induced by f ′. It is also clear from the construction that f ′ is the unique
valuation of DQ(2n, 2) inducing f . This proves Theorem 1.4.

3 Extensions of valuations

Consider the near 2n-gon In, n ≥ 2. Suppose as in Section 2 that In is
isometrically embedded in DQ(2n, 2).

Definition. A projective set of In is a nonempty set X of points satisfying
the following properties:

(i) if x1 and x2 are two points of X, then d(x1, x2) = 2 and the quad
〈x1, x2〉 of In containing x1 and x2 intersects X in an ovoid;

(ii) the incidence structure with points the elements of X and with lines
the quads of In containing three points of X is isomorphic to the
point-line system of PG(n − 1, 2).

If x is a point of DQ(2n, 2)\In, then x⊥∩In is a projective set. Conversely, if
X is a projective set of In, then there exists a unique point x ∈ DQ(2n, 2)\
In such that X = x⊥ ∩ In. We refer to Section 8.2 of [6] for more details
on projective sets.

Lemma 3.1 Let x be a point of DQ(2n, 2) \ In and let X be the projective
set x⊥ ∩ In of In. Then for every point y of In, d(X, y) = d(x, y) − 1.

Proof. Since d(x,X) = 1, d(X, y) ≥ d(x, y) − 1. We will now show that
d(x, y)−1 ≥ d(X, y) for every point y of In. Let F denote a convex subspace
of In through y isomorphic to DQ(2n−2, 2). Then d(x, y)−1 = d(πF (x), y).
Since πF (x) ∈ X, we necessarily have d(x, y) − 1 ≥ d(X, y). This proves
the lemma. ¥

Let f be a valuation of In. If n ≥ 3 or (n = 2 and f classical), then by
Theorem 1.4 there exists a unique map f from the point-set of DQ(2n, 2)
to Z satisfying the following properties:

(i) f(x) = f(x) for every point x of In;

(ii) there exists a constant ε ∈ {0, 1} such that the map x 7→ f(x) + ε is
a valuation of DQ(2n, 2).

If n = 2 and f ovoidal, then there exists a unique ovoidal valuation f of
DQ(4, 2) such that f(x) = f(x) for every point x of I2.
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The valuation f is a map from the point-set P of In to N. Let P ′ denote
the set of all projective sets of In. We extend f to a map from P ∪P ′ to Z,
mapping x ∈ P to f(x) and X ∈ P ′ to f(x)−1, where x is the unique point
of DQ(2n, 2) \ In for which x⊥ ∩ In = X. We will denote the extension of
f to the set P ∪ P ′ also by f .

Proposition 3.2 Let x be a point of In and let F denote a convex subspace
of In of diameter δ ≥ 2. If F ∼= DQ(2δ, 2), then there exists a unique point
πF (x) in F nearest to x and d(x, y) = d(x, πF (x)) + d(πF (x), y) for every
point y of F . If F ∼= Iδ, then there are two possibilities:

(a) There exists a unique point πF (x) in F nearest to x and d(x, y) =
d(x, πF (x)) + d(πF (x), y) for every point y of F .

(b) The points in F nearest to x form a projective set X. For every point
y of F , we have d(x, y) = d(x,X) + d(X, y).

Proof. If F ∼= DQ(2δ, 2), then F is classical in In, since F is classical
in DQ(2n, 2). Hence, there exists a unique point πF (x) in F nearest to x

and d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point y of F . Suppose
now that F ∼= Iδ. Let F ∼= DQ(2δ, 2) denote the convex subspace of
diameter δ of DQ(2n, 2) containing F . Then there exists a unique point
πF (x) in F such that d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point
y of F . If πF (x) ∈ F , then case (a) of the proposition occurs. Suppose
now that πF (x) 6∈ F . Let X denote the set of points of F collinear with
πF (x). Then X is a projective set of F and is the set of points of F

nearest to x. For every point y of F , d(x, y) = d(x, πF (x)) + d(πF (x), y) =
d(x,X) + d(πF (x), y) − 1 = d(x,X) + d(X, y) by Lemma 3.1. So, we have
case (b) of the proposition. ¥

Definition If case (b) of Proposition 3.2 occurs, then we denote the pro-
jective set X also by πF (x).

Corollary 3.3 If x is a point and if F is a convex subspace of In, then
d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point y of F .

Proposition 3.4 Let F denote a convex subspace of In isomorphic to Im

for some m ≥ 2, and let f denote a valuation of Im. Extend f to the set of
all projective sets of Im as described above. For every point x of In, define
f ′(x) := d(x, πF (x)) + f(πF (x)). Then f ′ is a valuation of In.

Proof. Let F ∼= DQ(2m, 2) denote the convex subspace of diameter m of
DQ(2n, 2) containing F . If m ≥ 3 or (m = 2 and f classical), then let f

denote the unique map from F to Z satisfying the following properties:
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(1) f(x) = f(x) for every point x of F ;

(2) there exists a constant ε ∈ {0, 1} such that the map x 7→ f(x) + ε is
a valuation of F .

If m = 2 and f ovoidal, put ε = 0 and let f denote the unique ovoidal
valuation of F such that f(x) = f(x) for every point x of I2.

For every point x of DQ(2n, 2), define g(x) := d(x, πF (x)) + f(πF (x)).
Then the map x 7→ g(x)+ε is a valuation g̃ of DQ(2n, 2). Let g′ denote the
valuation of In induced by g̃. Then g′(x) = d(x, πF (x))+f(πF (x)) for every
point x of In. [We must show that the minimal value of the function x 7→
d(x, πF (x)) + f(πF (x)), x ∈ In, is equal to 0. If x ∈ F , then d(x, πF (x)) +
f(πF (x)) = f(x) ≥ 0 with equality if and only if x ∈ Of . If x 6∈ F , then
d(x, πF (x)) + f(πF (x)) ≥ 1 + (−1) = 0.] If πF (x) ∈ F , then g′(x) =
d(x, πF (x)) + f(πF (x)) = d(x, πF (x)) + f(πF (x)) = f ′(x). If πF (x) 6∈ F ,
then g′(x) = d(x, πF (x))+ f(πF (x)) = [d(x, πF (x))− 1]+ [f(πF (x))+ 1] =
d(x, πF (x)) + f(πF (x)) = f ′(x). This proves the proposition. ¥

Definitions. (1) The valuation f ′ in Proposition 3.4 is called the (gener-
alized) extension of the valuation f .

(2) A valuation f of a dense near 2n-gon, n ≥ 0, is said to have property
(O) if Of contains two opposite points, i.e., two points at maximal distance
n from each other.

Proposition 3.5 If f is a valuation of In, n ≥ 3, then precisely one of the
following holds:

(1) f is a classical valuation;

(2) there exists a projective set X in In and f(x) = d(x,X) for every
point x of In;

(3) there exists a convex subspace F of In isomorphic to DQ(4m, 2) for
some m ∈ {1, . . . , bn−1

2
c} and an SDPS-valuation g of F such that f

is the extension of g;

(4) there exists a convex subspace F of In isomorphic to I2m for some
m ∈ {1, . . . , bn

2
c} and a valuation g of F satisfying property (O) such

that f is the extension of g.

Proof. By Theorem 1.4, the valuation f is induced by a unique valuation
f ′ of DQ(2n, 2). Let F denote the convex subspace 〈Of ′〉 of DQ(2n, 2). By
Proposition 1.3, f ′ is the possibly trivial extension of an SDPS-valuation
in F . So, F has even diameter.
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(1) Suppose that f ′ is classical and that the unique point x with f ′-value
0 belongs to In. Then f is classical and Of = {x}. So, we have case (1) of
the proposition.

(2) Suppose f ′ is classical and that the unique point x with f ′-value 0 does
not belong to In. Then x⊥∩ In is a projective set X and f(y) = d(x, y)−1
for every point y of In. By Lemma 3.1, f(y) = d(X, y) for every point y of
In. So, case (2) of the proposition occurs.

(3) Suppose that F ∼= DQ(4m, 2) is a convex subspace of diameter 2m ≥ 2
contained in In. Let f ′′ denote the valuation of F associated with the
SDPS-set Of ′ . Then f ′ is the extension of f ′′, i.e., for every point x of
DQ(2n, 2), f ′(x) = d(x, πF (x)) + f ′′(πF (x)). In particular, this equality
holds for every point x of In. Hence, the valuation f of In is also the
extension of the valuation f ′′ of F . So, case (3) of the proposition occurs.

(4) Suppose that F is a convex subspace of diameter 2m ≥ 2 not contained
in In. Let f ′′ denote the valuation of F associated with the SDPS-set Of ′ .
Then f ′(x) = d(x, πF (x)) + f ′′(πF (x)) for every point x of DQ(2n, 2).

Let f ′′′ denote the valuation of F ∩ In
∼= I2m induced by f ′′. We will

show that f ′′′ satisfies property (O). Let x1 and x2 be two points of Of ′′

at distance 2m from each other, let y1 and y2 be points of Of ′′ satisfying
d(x1, y1) = d(x2, y2) = 2, d(x1, y2) = d(x2, y1) = 2m − 2 and d(y1, y2) =
2m. (Such points exist since Gf ′′

∼= DQ(2m, 4).) It is easily seen that there
exist two points z1 ∈ 〈x1, y1〉 ∩ Of ′′ ∩ In and z2 ∈ 〈x2, y2〉 ∩ Of ′′ ∩ In at
distance 2m from each other. So, f ′′′ satisfies property (O). Now, extend
f ′′′ in the natural way to projective sets.

Suppose now that x is a point of In such that πF (x) ∈ In. Then
f(x) = f ′(x) = d(x, πF (x)) + f ′′(πF (x)) = d(x, πF (x)) + f ′′′(πF (x)).

Suppose now that x is a point of In such that πF (x) 6∈ In. Let X

denote the projective set πF (x)⊥∩ (In∩F ) of In∩F . Then f(x) = f ′(x) =
d(x, πF (x))+ f ′′(πF (x)) = [d(x,X)− 1]+ [f ′′′(X)+1] = d(x,X)+ f ′′′(X).
It follows that f is the extension of the valuation f ′′′ of In ∩ F . ¥

If case (1) of Proposition 3.5 occurs, then Gf is a point. If case (2) occurs,
then Gf

∼= PG(n−1, 2). If case (3) occurs, then Gf
∼= DQ(2m, 4) (with the

convention that DQ(2, 4) is a line with 5 points). In the following section,
we will determine Gf if f is a valuation as in case (4) of Proposition 3.5.

4 Valuations of I2n satisfying property (O)

Consider in PG(2n, 4), n ≥ 1, a nonsingular parabolic quadric Q(2n, 4) and
let Π be a hyperplane of PG(2n, 4) intersecting Q(2n, 4) in a nonsingular hy-
perbolic quadric Q+(2n− 1, 4). Let DQ(2n, 4) denote the dual polar space
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associated with Q(2n, 4) and let DQ′(2n, 4) denote the incidence structure
whose points, respectively lines, are the (n − 1)-dimensional, respectively
(n − 2)-dimensional, subspaces of Q(2n, 4) not contained in Q+(2n − 1, 4)
(natural incidence). In this section, we will prove the following result.

Proposition 4.1 If f is a valuation of I2n, n ≥ 1, satisfying property (O),
then Gf

∼= DQ′(2n, 4).

So, let f be a valuation of I2n, n ≥ 2, satisfying property (O). By Theorem
1.4, the valuation f is induced by a valuation f ′ of DQ(4n, 2). By (the
proof of) Proposition 3.5, the valuation f ′ also satisfies property (O). By
Proposition 1.3, the valuation f ′ arises from an SDPS-set of DQ(4n, 2).
So, Gf ′

∼= DQ(2n, 4). In the sequel, we will regard the set Of ′ as the set
of all generators of the quadric Q(2n, 4). Then Of ⊆ Of ′ is a certain set of
generators of Q(2n, 4).

Lemma 4.2 The set Of ′ \Of is a convex set of points of DQ(4n, 2). (But
it is not a subspace!)

Proof. Suppose the contrary. Then there exist points x1, x2 and x3 such
that x1, x2 ∈ Of ′ \Of , x3 ∈ Of , d(x1, x3) = d(x1, x2)−2 and d(x2, x3) = 2.
The convex subspaces 〈x1, x3〉 and 〈x3, x2〉 of DQ(4n, 2) only intersect in
the point x3. Let L denote the unique line of DQ(4n, 2) through x3 not
contained in I2n. Since x1 ∈ Of ′ \ Of , 〈x1, x3〉 is not a convex subspace of
I2n and it follows that L ⊆ 〈x1, x3〉. Similarly, because x2 ∈ Of ′ \ Of , L

must be contained in 〈x2, x3〉. A contradiction follows. ¥

Lemma 4.3 The number |Of ′ \ Of | is equal to the number of generators
of the hyperbolic quadric Q+(2n − 1, 4).

Proof. Let F denote a convex subspace of diameter 2n−1 of I2n isomorphic
to DQ(4n − 2, 2). Then by Lemma 8 of [5], F ∩ Of ′ is an SDPS-set in a
convex subspace F ′ of F isomorphic to DQ(4n− 4, 2). Hence, the number
|F ′ ∩Of ′ | is equal to the number of generators of Q(2n− 2, 4). Now, every
point y of Of ′ \F ′ has distance 2 from a unique point y′ of Of ′ ∩F ′ (since
Gf ′

∼= DQ(2n, 4)) and every point y′ of Of ′ ∩ F ′ is contained in a unique
special QUAD (with respect to f ′) which is not a quad of I2n, namely the
unique special QUAD containing the unique line through y′ not contained
in I2n. Since every such QUAD contains exactly two points of Of ′ \ Of ,
|Of ′ \ Of | is twice the number of generators of Q(2n − 2, 4). This number
equals the number of generators of the hyperbolic quadric Q+(2n−1, 4). ¥

Lemma 4.4 There exist two points in Of ′ \ Of at maximal distance 2n

from each other.
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Proof. Let F denote a convex subspace of diameter 2n−1 of I2n isomorphic
to DQ(4n− 2, 4). Then F ∩Of ′ is an SDPS-set in a convex subspace F ′ of
F isomorphic to DQ(4n − 4, 4). Let x1 and x2 be two points of F ′ ∩ Of ′

at maximal distance 2n− 2 from each other. Let Qi, i ∈ {1, 2}, denote the
unique special QUAD through xi which is not a quad of I2n. Let ui and
vi denote the two points of Qi ∩ (Of ′ \Of ). Since Gf ′

∼= DQ(2n, 4), every
point of Q1 ∩ Of ′ has distance 2n − 2 from a unique point of Q2 ∩ Of ′ .
Hence, d(u1, v1) = 2n or d(u1, v2) = 2n. This proves the lemma. ¥

We are now ready to prove Proposition 4.1. Let π1 and π2 be two points of
Of ′ \Of at distance 2n from each other. Then π1 and π2 can be regarded as
two disjoint generators of Q(2n, 4). The space 〈π1, π2〉 intersects Q(2n, 4)
in a nonsingular hyperbolic quadric Q+(2n−1, 4). The set of generators of
Q(2n, 4) contained in Q+(2n− 1, 4) is a convex set of points of DQ(2n, 4).
The smallest convex set of points of DQ(2n, 4) containing π1 and π2 coin-
cides with the set of generators of Q+(2n − 1, 4). [For, let DQ+(2n − 1, 4)
denote the dual polar space associated with Q+(2n−1, 4). Since every line
of DQ+(2n− 1, 4) contains precisely two points, every convex set of points
of DQ+(2n − 1, 4) is also a convex subspace of DQ+(2n − 1, 4). So, every
convex set of points containing the opposite points π1 and π2 must coincide
with the whole set of points of DQ+(2n − 1, 4).] By Lemma 4.2, the set
of generators of Q+(2n − 1, 4) is contained in Of ′ \ Of . By Lemma 4.3, it
then follows that both sets coincide. Proposition 4.1 now readily follows.
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