A recursive construction for the dual polar spaces $D Q(2 n, 2)$

Bart De Bruyn*
Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

In [10], Sahoo gave new combinatorial constructions for the near hexagons \mathbb{I}_{3} and $D Q(6,2)$ in terms of ordered pairs of collinear points of the generalized quadrangle $W(2)$. Replacing $W(2)$ by an arbitrary dual polar space of type $D Q(2 n, 2), n \geq 2$, we obtain a generalization of these constructions. By using a construction alluded to in [5] we show that these generalized constructions give rise to near $2 n$-gons which are isomorphic to \mathbb{I}_{n} and $D Q(2 n, 2)$. In this way, we obtain a recursive construction for the dual polar spaces $D Q(2 n, 2), n \geq 2$, different from the one given in [4].

Keywords: dual polar space, near polygon, generalized quadrangle MSC2000: 51A50, 51E12, 05B25

1 Introduction

1.1 Elementary definitions

A near polygon is a partial linear space $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I}), \mathrm{I} \subseteq \mathcal{P} \times \mathcal{L}$, with the property that for every point $p \in \mathcal{P}$ and every line $L \in \mathcal{L}$, there exists a unique point $\pi_{L}(p)$ on L nearest to p. Here, distances $\mathrm{d}(\cdot, \cdot)$ are measured in the point graph or collinearity graph Γ of \mathcal{S}. If d is the diameter of Γ, then

[^0]the near polygon \mathcal{S} is called a near $2 d$-gon. A near 0 -gon is a point and a near 2-gon is a line. The class of the near quadrangles coincides with the class of the so-called generalized quadrangles. A good source for information on near polygons is the recent book [6] of the author. For more background information on generalized quadrangles, we refer to the book of Payne and Thas [9].

Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a near polygon. If x and y are two points of \mathcal{S}, then we write $x \sim y$ if $\mathrm{d}(x, y)=1$ and $x \nsim y$ if $\mathrm{d}(x, y) \neq 1$. If X_{1} and X_{2} are two non-empty sets of points of \mathcal{S}, then $\mathrm{d}\left(X_{1}, X_{2}\right)$ denotes the minimal distance between a point of X_{1} and a point of X_{2}. If X_{1} is a singleton $\left\{x_{1}\right\}$, we will also write $\mathrm{d}\left(x_{1}, X_{2}\right)$ instead of $\mathrm{d}\left(\left\{x_{1}\right\}, X_{2}\right)$. For every $i \in \mathbb{Z}$ and every non-empty set X of points of $\mathcal{S}, \Gamma_{i}(X)$ denotes the set of all points y for which $\mathrm{d}(y, X)=i$. If X is a singleton $\{x\}$, we will also write $\Gamma_{i}(x)$ instead of $\Gamma_{i}(\{x\})$. We define $x^{\perp}:=\Gamma_{0}(x) \cup \Gamma_{1}(x)$ for every point x of \mathcal{S}. If X is a set of points, then we define $X^{\perp}:=\bigcap_{x \in X} x^{\perp}$ (with the convention that $X^{\perp}=\mathcal{P}$ if $X=\emptyset)$ and $X^{\perp \perp}:=\left(X^{\perp}\right)^{\perp}$.

If L_{1} and L_{2} are two lines of a near polygon \mathcal{S}, then one of the following two cases occurs (see e.g. Theorem 1.3 of [6]): (i) every point of L_{1} has distance $\mathrm{d}\left(L_{1}, L_{2}\right)$ from L_{2} and every point of L_{2} has distance $\mathrm{d}\left(L_{1}, L_{2}\right)$ from L_{1}; (ii) there exist unique points $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$ such that $\mathrm{d}(x, y)=$ $\mathrm{d}\left(x, x_{1}\right)+\mathrm{d}\left(x_{1}, x_{2}\right)+\mathrm{d}\left(x_{2}, y\right)$ for any $x \in L_{1}$ and any $y \in L_{2}$. If case (i) occurs, then we say that L_{1} and L_{2} are parallel (notation: $L_{1} \| L_{2}$).

A near polygon is called slim if every line is incident with precisely 3 points. A near polygon is called dense if every line is incident with at least 3 points and if every two points at distance 2 have at least 2 common neighbours. By Theorem 4 of Brouwer and Wilbrink [2], every two points of a dense near $2 n$-gon at distance $\delta \in\{0, \ldots, n\}$ from each other are contained in a unique convex sub-(near-) 2δ-gon. These convex subpolygons are called quads if $\delta=2$, hexes if $\delta=3$ and maxes if $\delta=n-1$. The maximal distance between two points of a convex subpolygon F is called the diameter of F and is denoted as $\operatorname{diam}(F)$. If $X_{1}, X_{2}, \ldots, X_{k}$ are $k \geq 1$ objects of a dense near polygon \mathcal{S} (like points or sets of points), then $\left\langle X_{1}, X_{2}, \ldots, X_{k}\right\rangle$ denotes the smallest convex subspace of \mathcal{S} containing $X_{1}, X_{2}, \ldots, X_{k}$.

Let F be a convex subspace of a dense near polygon $\mathcal{S} . \quad F$ is called big in \mathcal{S} if $F \neq \mathcal{S}$ and if every point of \mathcal{S} not contained in F is collinear with a (necessarily unique) point of F. A point x of \mathcal{S} is called classical with respect to F, if there exists a unique point $x^{\prime} \in F$ such that $\mathrm{d}(x, y)=$ $\mathrm{d}\left(x, x^{\prime}\right)+\mathrm{d}\left(x^{\prime}, y\right)$ for every point y of F. We will denote the point x^{\prime} also
by $\pi_{F}(x)$ and call it the projection from x on F. Every point of $\Gamma_{1}(F)$ is classical with respect to F. If X is a set of points of \mathcal{S} which are classical with respect to F, then we define $\pi_{F}(X):=\left\{\pi_{F}(x) \mid x \in X\right\} . F$ is called classical in \mathcal{S} if every point of \mathcal{S} is classical with respect to F. Every big subpolygon of \mathcal{S} is classical in \mathcal{S}.

If F_{1} and F_{2} are two convex subspaces of a dense near $2 d$-gon \mathcal{S} with respective diameters d_{1} and d_{2} such that $F_{1} \cap F_{2} \neq \emptyset$ and F_{1} is classical in \mathcal{S}, then the convex subspace $F_{1} \cap F_{2}$ of \mathcal{S} has diameter at least $d_{1}+d_{2}-d$ by Theorem 2.32 of [6].

Suppose F is a convex subpolygon of a slim dense near polygon \mathcal{S}. For every point x of F, we define $\mathcal{R}_{F}(x):=x$. If x is a point of \mathcal{S} not contained in F, then we put $\mathcal{R}_{F}(x)$ equal to the unique point of the line $x \pi_{F}(x)$ different from x and $\pi_{F}(x)$. By Theorem 1.11 of $[6], \mathcal{R}_{F}$ is an automorphism of \mathcal{S}. \mathcal{R}_{F} is called the reflection about F.

Let Q be a quad of a dense near polygon \mathcal{S} and let x be a point of \mathcal{S} at distance δ from Q. By Shult and Yanushka [11, Proposition 2.6], there are two possibilities. Either $\Gamma_{\delta}(x) \cap Q$ is a point of Q or $\Gamma_{\delta}(x) \cap Q$ is an ovoid of Q, i.e. a set of points of Q intersecting each line of Q in a unique point. In the former case, x is necessarily classical with respect to Q and we write $x \in \Gamma_{\delta, C}(Q)$. In the latter case, x is called ovoidal with respect to Q and we write $x \in \Gamma_{\delta, O}(Q)$.

Let $Q(2 n, 2), n \geq 2$, be a nonsingular parabolic quadric of $\mathrm{PG}(2 n, 2)$. Let $D Q(2 n, 2)$ denote the point-line geometry whose points are the generators ($=$ subspaces of maximal dimension $n-1$) of $Q(2 n, 2)$ and whose lines are the $(n-2)$-dimensional subspaces of $Q(2 n, 2)$, with incidence given by reverse containment. $D Q(2 n, 2)$ is a so-called dual polar space (Cameron [3]). $D Q(2 n, 2)$ is a slim dense near $2 n$-gon. If α is a totally singular subspace of dimension $n-1-k, k \in\{0, \ldots, n\}$, of $Q(2 n, 2)$, then the set of all generators of $Q(2 n, 2)$ containing α is a convex sub- $2 k$-gon of $D Q(2 n, 2)$. Conversely, every convex sub- $2 k$-gon of $D Q(2 n, 2)$ is obtained in this way. Every convex subpolygon of $D Q(2 n, 2)$ is classical in $D Q(2 n, 2)$. The quads of $D Q(2 n, 2)$ are isomorphic to the generalized quadrangle $W(2)$, which is the (up to isomorphisms) unique slim generalized quadrangle with three lines through each point. If x and y are two points of $D Q(2 n, 2)$ at distance 2 from each other, then $\{x, y\}^{\perp \perp}$ is a set $\{x, y, z\}$ of 3 points which is contained in the quad $\langle x, y\rangle$. We call $\{x, y\}^{\perp \perp}=\{x, y, z\}$ the hyperbolic line of $D Q(2 n, 2)$ through the points x and y. If a and b are two distinct points of $\{x, y\}^{\perp}$, then $\{x, y\}^{\perp}=\{a, b\}^{\perp \perp}$. We say that the hyperbolic lines $\{x, y\}^{\perp}$ and $\{x, y\}^{\perp \perp}$
of $D Q(2 n, 2)$ are orthogonal.
Consider now a hyperplane of $\operatorname{PG}(2 n, 2)$ which intersects $Q(2 n, 2)$ in a nonsingular hyperbolic quadric $Q^{+}(2 n-1,2)$. The set of generators of $Q(2 n, 2)$ not contained in $Q^{+}(2 n-1,2)$ is a subspace of $D Q(2 n, 2)$. By Brouwer et al. [1, p. 352-353], the point-line geometry induced on that subspace is a slim dense near $2 n$-gon. Following the terminology of [6], we denote this near $2 n$-gon by \mathbb{I}_{n}. The generalized quadrangle \mathbb{I}_{2} is isomorphic to the (3×3)-grid. The convex subspaces of \mathbb{I}_{n} have been studied in [6, Section 6.4]. If π is a subspace of dimension $n-1-k, k \in\{0, \ldots, n\}$, on $Q(2 n, 2)$ which is not contained in $Q^{+}(2 n-1,2)$ if $k \in\{0,1\}$, then the set X_{π} of all generators of $Q(2 n, 2)$ through π which are not contained in $Q^{+}(2 n-1,2)$ is a convex sub- $2 k$-gon of \mathbb{I}_{n}. Conversely, every convex sub- $2 k$-gon of \mathbb{I}_{n} is obtained in this way. If $k \geq 2$ and π is not contained in $Q^{+}(2 n-1,2)$, then (the point-line geometry induced on) X_{π} is isomorphic to $D Q(2 k, 2)$. If $k \geq 2$ and π is contained in $Q^{+}(2 n-1,2)$, then X_{π} is isomorphic to \mathbb{I}_{k}. So, every quad of \mathbb{I}_{n} is isomorphic to either $D Q(4,2) \cong W(2)$ or the (3×3)-grid \mathbb{I}_{2}. One readily sees that every line of \mathbb{I}_{n} is contained in a unique grid-quad. If π is a point of $Q(2 n, 2) \backslash Q^{+}(2 n-1,2)$, then $X_{\pi} \cong D Q(2 n-2,2)$ is big in \mathbb{I}_{n}. Conversely, every big max of \mathbb{I}_{n} is of the form X_{π} for some point $\pi \in Q(2 n, 2) \backslash Q^{+}(2 n-1,2)$. If π is a generator of $Q^{+}(2 n-1,2)$, then the set of generators of $Q(2 n, 2)$ not contained in $Q^{+}(2 n-1,2)$ intersecting π in a subspace of dimension $n-2$ is called a projective set of \mathbb{I}_{n}. If X is a projective set of \mathbb{I}_{n}, then by De Bruyn and Vandecasteele [7, Section 8] the following holds for all $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$: (i) $\mathrm{d}\left(x_{1}, x_{2}\right)=2$; (ii) $\left\langle x_{1}, x_{2}\right\rangle$ is a grid-quad; (iii) $\left\langle x_{1}, x_{2}\right\rangle \cap X$ is an ovoid of $\left\langle x_{1}, x_{2}\right\rangle$.

1.2 The point-line geometry $\mathcal{S}_{1}(n)$

With the dual polar space $D Q(2 n-2,2), n \geq 3$, there is associated a pointline geometry $\mathcal{S}_{1}(n)$ in the following way. The points of $\mathcal{S}_{1}(n)$ are all the ordered pairs (x, y) of points of $D Q(2 n-2,2)$ satisfying $y \in x^{\perp}$. There are 4 types of lines in $\mathcal{S}_{1}(n)$.
(a) Lines of Type I of $\mathcal{S}_{1}(n)$ are of the form $\{(x, x),(y, y),(z, z)\}$, where $\{x, y, z\}$ is an arbitrary line of $D Q(2 n-2,2)$.
(b) Lines of Type II of $\mathcal{S}_{1}(n)$ are of the form $\{(x, x),(x, y),(x, z)\}$ where $\{x, y, z\}$ is an arbitrary line of $D Q(2 n-2,2)$.
(c) Lines of Type III of $\mathcal{S}_{1}(n)$ are of the form $\{(x, y),(y, z),(z, x)\}$ where $\{x, y, z\}$ is an arbitrary line of $D Q(2 n-2,2)$.
(d) Lines of Type $I V$ of $\mathcal{S}_{1}(n)$ are of the form $\left\{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right),\left(z, z^{\prime}\right)\right\}$ where $x, y, z, x^{\prime}, y^{\prime}$ and z^{\prime} are mutually distinct points of $D Q(2 n-2,2)$ satisfying: (i) $\{x, y, z\}$ is a line of $D Q(2 n-2,2)$; (ii) $\mathrm{d}\left(x, x^{\prime}\right)=\mathrm{d}\left(y, y^{\prime}\right)=\mathrm{d}\left(z, z^{\prime}\right)=1$; (iii) $x, y, z, x^{\prime}, y^{\prime}$ and z^{\prime} are contained in a $W(2)$-quad of $D Q(2 n-2,2)$ but not in a (3×3)-subgrid; (iv) x^{\prime}, y^{\prime} and z^{\prime} are mutually noncollinear.

Incidence is containment. Notice that with every line $\{x, y, z\}$ of $D Q(2 n-$ $2,2)$, there corresponds a unique line of Type I of $\mathcal{S}_{1}(n)$, three lines of Type II of $\mathcal{S}_{1}(n)$ and two lines of Type III of $\mathcal{S}_{1}(n)$.

The above construction for the point-line geometry $\mathcal{S}_{1}(n)$ is a straightforward generalization of a construction given in De Bruyn [5]. If $n=3$, then the dual polar space $D Q(2 n-2,2)$ is isomorphic to the generalized quadrangle $W(2)$ and the construction reduces to the one given in [5, p. 51].

1.3 The point-line geometry $\mathcal{S}_{2}(n)$

With the dual polar space $D Q(2 n-2,2), n \geq 3$, there is associated a point-line geometry $\mathcal{S}_{2}(n)$ in the following way. The points of $\mathcal{S}_{2}(n)$ are all the pairs (x, y), where x and y are points of $D Q(2 n-2,2)$ satisfying $y \in x^{\perp}$. The lines of $\mathcal{S}_{2}(n)$ are all the triples $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}$, where $\left\{x_{1}, x_{2}, x_{3}\right\}$ is either a line or a hyperbolic line of $D Q(2 n-2,2)$ and $\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{x_{1}, x_{2}, x_{3}\right\}^{\perp}$. Incidence is containment.

The above construction for the point-line geometry $\mathcal{S}_{2}(n)$ is a straightforward generalization of a construction given in Sahoo [10]. If $n=3$, then the dual polar space $D Q(2 n-2,2)$ is isomorphic to the generalized quadrangle $W(2)$ and the construction reduces to the one given in [10, Section 2.1].

1.4 The point-line geometry $\mathcal{S}_{3}(n)$

With the dual polar space $D Q(2 n-2,2), n \geq 3$, there is associated a pointline geometry $\mathcal{S}_{3}(n)$ in the following way. There are 3 types of points in $\mathcal{S}_{3}(n)$.
(1) Points of the form (x, y) where x and y are points of $D Q(2 n-2,2)$ satisfying $y \in x^{\perp}$.
(2) Points x of $D Q(2 n-2,2)$.
(3) Symbols x^{\prime} where x is a point of $D Q(2 n-2,2)$.

There are also 3 types of lines in $\mathcal{S}_{3}(n)$:
(a) triples $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}$ where $\left\{x_{1}, x_{2}, x_{3}\right\}=\left\{y_{1}, y_{2}, y_{3}\right\}$ is a line of $D Q(2 n-2,2)$;
(b) triples $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}$, where $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$ are two orthogonal hyperbolic lines of $D Q(2 n-2,2)$;
(c) triples of the form $\left\{x,(x, y), y^{\prime}\right\}$ where x and y are points of $D Q(2 n-$ $2,2)$ satisfying $y \in x^{\perp}$.

Incidence is containment. Obviously, the set of all points of Type I of $\mathcal{S}_{3}(n)$ is a hyperplane of $\mathcal{S}_{3}(n)$, i.e. a proper subspace of $\mathcal{S}_{3}(n)$ meeting each line. The point-line geometry induced on that hyperplane (by the lines of $\left.\mathcal{S}_{3}(n)\right)$ is isomorphic to $\mathcal{S}_{2}(n)$.

The above construction for the point-line geometry $\mathcal{S}_{3}(n)$ is a straightforward generalization of a construction given in Sahoo [10]. If $n=3$, then the dual polar space $D Q(2 n-2,2)$ is isomorphic to the generalized quadrangle $W(2)$ and the construction reduces to the one given in [10, Section 2.2].

1.5 The main results

We show that the combinatorial constructions given in Sections 1.2, 1.3 and 1.4 give rise to the near $2 n$-gons \mathbb{I}_{n} and $D Q(2 n, 2)$.

Theorem 1.1 (Section 3) The point-line geometry $\mathcal{S}_{1}(n), n \geq 3$, is isomorphic to the near $2 n$-gon \mathbb{I}_{n}.

Theorem 1.2 (Section 4) The point-line geometries $\mathcal{S}_{1}(n)$ and $\mathcal{S}_{2}(n)$ are isomorphic for every $n \geq 3$.

The following is an immediate corollary of Theorems 1.1 and 1.2.
Corollary 1.3 The incidence structure $\mathcal{S}_{2}(n), n \geq 3$, is isomorphic to the near $2 n$-gon \mathbb{I}_{n}.

Theorem 1.4 (Section 5) The incidence structure $\mathcal{S}_{3}(n), n \geq 3$, is isomorphic to the dual polar space $D Q(2 n, 2)$.

Remarks. (1) Theorem 1.1 is already known if $n=3$, see De Bruyn [5], where it was shown in a purely combinatorial way that every slim dense near hexagon with parameters $\left(s, t, T_{2}\right)=(2,5,\{1,2\})$ is isomorphic to $\mathcal{S}_{1}(n)$.
(2) Also Theorems 1.2 and 1.4 are known if $n=3$, see Sahoo [10], where it was shown that $\mathcal{S}_{2}(3) \cong \mathbb{I}_{3}$ and $\mathcal{S}_{3}(3) \cong D Q(6,2)$. The kind of proofs given in [10] seem not to be suitable to deal with the case of general n. Also, in [10] no explicit isomorphisms have been established between the near hexagons $\mathcal{S}_{2}(3)$ and \mathbb{I}_{3} and the near hexagons $\mathcal{S}_{3}(3)$ and $D Q(6,2)$. Structural information on the near hexagons $\mathcal{S}_{2}(3)$ and $\mathcal{S}_{3}(3)$ in combination with the classification of all slim dense near hexagons ([1]) gives the desired isomorphisms. Notice also that a classification of all slim dense near $2 n$-gons is only available if $n \leq 4$ ([1], [8], [9]).
(3) By Theorem 1.4, the construction given in Section 1.4 allows us to construct an isomorphic copy of the dual polar space $D Q(2 n+2,2), n \geq 2$, from the dual polar space $D Q(2 n, 2)$. So, we obtain a recursive construction for the dual polar spaces $D Q(2 n, 2), n \geq 2$. A different recursive construction for the dual polar spaces $D Q(2 n, 2), n \geq 2$, was given in Cooperstein and Shult [4].

2 An equivalence relation

2.1 A few lemmas

Lemma 2.1 If L_{1} and L_{2} are two parallel lines of the dual polar space $D Q(2 n, 2), n \geq 2$, at distance δ from each other, then there exist lines $K_{0}, K_{1}, \ldots, K_{\delta}$ in $D Q(2 n, 2)$ such that $K_{0}=L_{1}, K_{\delta}=L_{2}$ and $K_{i} \| K_{i+1}$, $d\left(K_{i}, K_{i+1}\right)=1$ for every $i \in\{0, \ldots, \delta-1\}$.

Proof. We will prove the lemma by induction on δ. Obviously, the lemma holds if $\delta \in\{0,1\}$. So, suppose $\delta \geq 2$. Let $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$ such that $\mathrm{d}\left(x_{1}, x_{2}\right)=\delta$. Let $u \in \Gamma_{\delta-1}\left(x_{1}\right) \cap \Gamma_{1}\left(x_{2}\right)$. Let F denote the convex sub$(2 \delta+2)$-gon $\left\langle L_{1}, L_{2}\right\rangle$, let Q be the quad $\left\langle u, L_{2}\right\rangle$ and let A be the convex sub2δ-gon $\left\langle L_{1}, u\right\rangle$. Since A is classical in $F, \operatorname{diam}(Q \cap A) \geq \operatorname{diam}(Q)+\operatorname{diam}(A)-$ $\operatorname{diam}(F)=2+\delta-(\delta+1)=1$. Hence, $Q \cap A$ is a line M. Since every point of M has distance at most $\delta-1$ from L_{1} (recall that $\left.\operatorname{diam}(A)=\delta\right), M \cap L_{2}=\emptyset$. So, M and L_{2} are parallel. If L_{1} and M were not parallel, then there exist points $y_{1} \in L_{1}$ and $y \in M$ such that $\mathrm{d}\left(y_{1}, y\right) \leq \delta-2$. If y_{2} denotes the unique point of L_{2} collinear with y, then $\mathrm{d}\left(y_{1}, y_{2}\right) \leq \delta-1$, a contradiction. Hence, also L_{1} and M are parallel. By the induction hypothesis, there exist lines $K_{0}, \ldots, K_{\delta-1}$ such that $K_{0}=L_{1}, K_{\delta-1}=M$ and $K_{i} \| K_{i+1}, \mathrm{~d}\left(K_{i}, K_{i+1}\right)=1$ for every $i \in\{0, \ldots, \delta-2\}$. If we put $K_{\delta}=L_{2}$, then we are done.

Remark. If $K_{0}, K_{1}, \ldots, K_{\delta}$ are lines as in Lemma 2.1, then for all $i_{1}, i_{2} \in$ $\{0, \ldots, \delta\}$ with $i_{1} \leq i_{2}, \mathrm{~d}\left(K_{i_{1}}, K_{i_{2}}\right)=i_{2}-i_{1}$ and $K_{i_{1}} \| K_{i_{2}}$.

Lemma 2.2 Let Q be a $W(2)$-quad of $\mathbb{I}_{n}, n \geq 3$, and let L_{1} and L_{2} denote two disjoint lines of Q. Let $G_{i}, i \in\{1,2\}$, denote the unique grid-quad of \mathbb{I}_{n} containing L_{i}. Then $G_{1} \subseteq \Gamma_{1, C}\left(G_{2}\right)$ and $G_{2} \subseteq \Gamma_{1, C}\left(G_{1}\right)$. Moreover, the map $G_{1} \rightarrow G_{2} ; x \mapsto \pi_{G_{2}}(x)$ defines an isomorphism between the grids G_{1} and G_{2}.

Proof. If x is a point of $G_{1} \cap G_{2}$, then x has distance 1 from a unique point x_{1} of L_{1} and a unique point x_{2} of L_{2}. Since Q is a convex subspace, it follows that $x \in Q$, regardless of whether $\mathrm{d}\left(x_{1}, x_{2}\right)=1$ or $\mathrm{d}\left(x_{1}, x_{2}\right)=2$. But this is impossible since $Q \cap G_{1} \cap G_{2}=\left(Q \cap G_{1}\right) \cap\left(Q \cap G_{2}\right)=L_{1} \cap L_{2}=\emptyset$. Hence, G_{1} and G_{2} are disjoint.

Let A denote the hex $\left\langle Q, G_{1}\right\rangle$ of \mathbb{I}_{n}. Since A contains the grid-quad G_{1}, A is isomorphic to \mathbb{I}_{3}. Hence, the unique grid-quad G_{2} through the line $L_{2} \subseteq A$ is also contained in A.

Suppose G_{2} contains a point u at distance 2 from G_{1}. Since $\left\langle u, G_{1}\right\rangle=A$ has diameter $3, u \in \Gamma_{2, O}\left(G_{1}\right)$, i.e. $\Gamma_{2}(u) \cap G_{1}$ is an ovoid of G_{1}. So, there are precisely 3 quads through u which meet G_{1} in a point. If one of these quads, say Q^{\prime}, is isomorphic to $W(2)$, then as Q^{\prime} is big in $A, \operatorname{diam}\left(Q^{\prime} \cap G_{1}\right) \geq$ $\operatorname{diam}\left(Q^{\prime}\right)+\operatorname{diam}\left(G_{1}\right)-\operatorname{diam}(A)=1$ and hence $\mathrm{d}\left(u, G_{1}\right) \leq 1$, a contradiction. Hence, the three quads through u meeting G_{1} are precisely the 3 grid-quads of $A \cong \mathbb{I}_{3}$ through u. Since G_{2} is a grid-quad through u contained in A, this would imply that $G_{1} \cap G_{2}$ is a point, again a contradiction.

Hence, $G_{2} \subseteq \Gamma_{1}\left(G_{1}\right)=\Gamma_{1, C}\left(G_{1}\right)$. By symmetry, $G_{1} \subseteq \Gamma_{1, C}\left(G_{2}\right)$. If L is a line of G_{1}, then $\pi_{G_{2}}(L)$ is a line of G_{2} (see e.g. [6, Theorem 1.23 (3)]). So, the map $G_{1} \rightarrow G_{2} ; x \mapsto \pi_{G_{2}}(x)$ defines an isomorphism between the grids G_{1} and G_{2}.

Lemma 2.3 Let M be a max of $\mathbb{I}_{n}, n \geq 3$, isomorphic to $D Q(2 n-2,2)$. Let L_{1} and L_{2} be two parallel lines of M at distance δ from each other and let $G_{i}, i \in\{1,2\}$, denote the unique grid-quad of \mathbb{I}_{n} containing L_{i}. Then $G_{1} \subseteq \Gamma_{\delta, C}\left(G_{2}\right)$ and $G_{2} \subseteq \Gamma_{\delta, C}\left(G_{1}\right)$. Moreover, the map $G_{1} \rightarrow G_{2} ; x \mapsto \pi_{G_{2}}(x)$ defines an isomorphism between the grids G_{1} and G_{2}.

Proof. We will prove the lemma by induction on δ. The lemma holds for $\delta=1$ by Lemma 2.2 and is trivial for $\delta=0$. So, suppose $\delta \geq 2$. By Lemma 2.1, there exists a line L_{3} in M satisfying $L_{1}\left\|L_{3}\right\| L_{2}, \mathrm{~d}\left(L_{1}, L_{3}\right)=\delta-1$ and $\mathrm{d}\left(L_{3}, L_{2}\right)=1$. Let G_{3} denote the unique grid-quad of \mathbb{I}_{n} through L_{3}. Notice
that $\left\langle L_{1}, L_{3}\right\rangle \cong D Q(2 \delta, 2),\left\langle L_{1}, L_{2}\right\rangle \cong D Q(2 \delta+2,2),\left\langle L_{1}, L_{3}, G_{1}\right\rangle \cong \mathbb{I}_{\delta+1}$, $\left\langle L_{1}, L_{2}, G_{1}\right\rangle \cong \mathbb{I}_{\delta+2}, G_{3} \subseteq\left\langle L_{1}, L_{3}, G_{1}\right\rangle$ and $G_{2} \cup G_{3} \subseteq\left\langle L_{1}, L_{2}, G_{1}\right\rangle$. If $x \in G_{2}$, then $\mathrm{d}\left(x, G_{3}\right)=1$ by Lemma 2.2 and hence $\left\langle G_{3}, x\right\rangle=\left\langle L_{3}, L_{2}, G_{3}\right\rangle \cong \mathbb{I}_{3}$. If $x \in\left\langle L_{1}, L_{3}, G_{1}\right\rangle$, then $G_{2} \subseteq\left\langle G_{3}, x\right\rangle \subseteq\left\langle L_{1}, L_{3}, G_{1}\right\rangle$ and hence $\left\langle L_{1}, L_{2}, G_{1}\right\rangle \subseteq$ $\left\langle L_{1}, L_{3}, G_{1}\right\rangle$, a contradiction, since $\left\langle L_{1}, L_{3}, G_{1}\right\rangle \cong \mathbb{I}_{\delta+1}$ and $\left\langle L_{1}, L_{2}, G_{1}\right\rangle \cong$ $\mathbb{I}_{\delta+2}$. Hence, $x \notin F:=\left\langle L_{1}, L_{3}, G_{1}\right\rangle$. Every point x of G_{2} has distance 1 from F and hence is classical with respect to F with $\pi_{F}(x)=\pi_{G_{3}}(x)$. By the induction hypothesis, $\pi_{F}(x) \in \Gamma_{\delta-1, C}\left(G_{1}\right)$. Hence, $x \in \Gamma_{\delta, C}\left(G_{1}\right)$ since $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), y\right)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), \pi_{G_{1}}\left(\pi_{F}(x)\right)\right)+$ $\mathrm{d}\left(\pi_{G_{1}} \pi_{F}(x), y\right)=\mathrm{d}\left(x, \pi_{G_{1}} \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{G_{1}} \pi_{F}(x), y\right)$ for every $y \in G_{1}$. Since $x \in G_{2}$ was arbitrary, $G_{2} \subseteq \Gamma_{\delta, C}\left(G_{1}\right)$. By symmetry, also $G_{1} \subseteq \Gamma_{\delta, C}\left(G_{2}\right)$. If L is a line of G_{1}, then $\pi_{G_{2}}(L)$ is a line of G_{2} (see e.g. [6, Theorem 1.23 (3)]). So, the map $G_{1} \rightarrow G_{2} ; x \mapsto \pi_{G_{2}}(x)$ defines an isomorphism between the grids G_{1} and G_{2}.

Definition. The map $G_{1} \rightarrow G_{2} ; x \mapsto \pi_{G_{2}}(x)$ defined in Lemma 2.3 is called the projection from G_{1} onto G_{2}.

Lemma 2.4 Let M be a max of $\mathbb{I}_{n}, n \geq 3$, isomorphic to $D Q(2 n-2,2)$, let L_{1} and L_{2} be two parallel lines of M at distance δ from each other and let Q be a quad of M through L_{2} not contained in $\left\langle L_{1}, L_{2}\right\rangle$. Let $G_{i}, i \in\{1,2\}$, denote the unique grid-quad of \mathbb{I}_{n} containing L_{i}. Put $F:=\left\langle L_{1}, L_{2}, G_{2}\right\rangle \cong \mathbb{I}_{\delta+2}$ and $A:=\left\langle Q, G_{2}\right\rangle \cong \mathbb{I}_{3}$. Let x be a point of A.
(i) If $x \in G_{2}$, then $x \in \Gamma_{\delta, C}\left(G_{1}\right)$.
(ii) If $x \in \Gamma_{1}\left(G_{2}\right)$, then $x \in \Gamma_{\delta+1, C}\left(G_{1}\right)$ and $\pi_{G_{1}}(x)=\pi_{G_{1}}\left(\pi_{G_{2}}(x)\right)$.
(iii) If $x \in \Gamma_{2}\left(G_{2}\right)$, then $x \in \Gamma_{\delta+2, O}\left(G_{1}\right)$ and $\Gamma_{\delta+2}(x) \cap G_{1}=\pi_{G_{1}}\left(\Gamma_{2}(x) \cap\right.$ G_{2}).

Proof. We will use the following fact.
Claim. Let $x_{1} \in G_{1}$ and $x_{2} \in G_{2}$ be such that $d\left(x_{1}, x_{2}\right)=\delta$ and let L be a line of G_{2} through x_{2}. Then $\left\langle x_{1}, x_{2}, L\right\rangle \cong D Q(2 \delta+2,2)$. As a consequence, $\left\langle x_{1}, x_{2}\right\rangle \cong D Q(2 \delta, 2)$.
Proof. Let $x_{3} \in L \backslash\left\{x_{2}\right\}$ and let x_{4} be a point of G_{2} at distance 2 from x_{2}. Then $\mathrm{d}\left(x_{1}, x_{3}\right)=\delta+1, \mathrm{~d}\left(x_{1}, x_{4}\right)=\delta+2,\left\langle x_{1}, x_{3}\right\rangle=\left\langle x_{1}, x_{2}, L\right\rangle$ and $\left\langle x_{1}, x_{4}\right\rangle=\left\langle x_{1}, x_{2}, G_{2}\right\rangle$. The convex sub-($2 \delta+4$)-gon $\left\langle x_{1}, x_{2}, G_{2}\right\rangle$ is isomorphic to $\mathbb{I}_{\delta+2}$ since it contains the grid-quad G_{2}. The convex sub- $(2 \delta+2)$-gon $\left\langle x_{1}, x_{2}, L\right\rangle$ is isomorphic to either $\mathbb{I}_{\delta+1}$ or $D Q(2 \delta+2,2)$. Since $\left\langle x_{1}, x_{2}, G_{2}\right\rangle$ is not contained in $\left\langle x_{1}, x_{2}, L\right\rangle$, the unique grid-quad G_{2} through L is not contained in $\left\langle x_{1}, x_{2}, L\right\rangle$. This implies that $\left\langle x_{1}, x_{2}, L\right\rangle \cong D Q(2 \delta+2,2)$.

We will now prove Claims (i), (ii) and (iii) of the lemma. Claim (i) follows from Lemma 2.3.
(ii) Suppose $x \in \Gamma_{1}\left(G_{2}\right)$. Then $x \in \Gamma_{1}(F)$ and hence x is classical with respect to F with $\pi_{F}(x)=\pi_{G_{2}}(x)$. This combined with the fact that $\pi_{F}(x) \in$ $\Gamma_{\delta, C}\left(G_{1}\right)$ implies that $x \in \Gamma_{\delta+1, C}\left(G_{1}\right)$ and $\pi_{G_{1}}(x)=\pi_{G_{1}}\left(\pi_{G_{2}}(x)\right)$.
(iii) Suppose $x \in \Gamma_{2}\left(G_{2}\right)$. Let u_{2} be an arbitrary point of $\Gamma_{2}(x) \cap G_{2}$ and let v be one of the two neighbours of x and u_{2}. Put $u_{1}:=\pi_{G_{1}}\left(u_{2}\right)$ and let L be an arbitrary line of G_{1} through u_{1}. Then $\left\langle u_{1}, u_{2}, L\right\rangle \cong D Q(2 \delta+2,2)$ by the above claim and $\left\langle u_{1}, u_{2}, L, v\right\rangle$ is isomorphic to either $\mathbb{I}_{\delta+2}$ or $D Q(2 \delta+4,2)$ since $v \notin\left\langle u_{1}, u_{2}, L\right\rangle \subseteq F$. If $G_{1} \subseteq\left\langle u_{1}, u_{2}, L, v\right\rangle$, then as $\operatorname{diam}\left(\left\langle u_{1}, u_{2}, L, v\right\rangle\right)=$ $\operatorname{diam}\left(\left\langle u_{1}, u_{2}, G_{1}\right\rangle\right)=\delta+2, F=\left\langle u_{1}, u_{2}, G_{1}\right\rangle=\left\langle u_{1}, u_{2}, L, v\right\rangle$, a contradiction, since $v \notin F$. Hence, the unique grid-quad G_{1} through L is not contained in $\left\langle u_{1}, u_{2}, L, v\right\rangle$. This implies that $\left\langle u_{1}, u_{2}, L, v\right\rangle \cong D Q(2 \delta+4,2)$. It follows that the unique grid-quad $\left\langle u_{2}, x\right\rangle$ through $u_{2} v \subseteq\left\langle u_{1}, u_{2}, L, v\right\rangle$ is not contained in $\left\langle u_{1}, u_{2}, L, v\right\rangle$. So, $\mathrm{d}\left(x,\left\langle u_{1}, u_{2}, L, v\right\rangle\right)=1$ and x is classical with respect to $\left\langle u_{1}, u_{2}, L, v\right\rangle$. The unique point of $\left\langle u_{1}, u_{2}, L, v\right\rangle$ collinear with x is v. Now, $v \in \Gamma_{\delta+1, C}\left(G_{1}\right)$ and $\pi_{G_{1}}(v)=\pi_{G_{1}}\left(\pi_{G_{2}}(v)\right)=\pi_{G_{1}}\left(u_{2}\right)=u_{1}$. It follows that $\mathrm{d}\left(x, u_{1}\right)=\delta+2$ and $\mathrm{d}(x, w)=\delta+3$ for every $w \in L \backslash\left\{u_{1}\right\}$. Since L was an arbitrary line of G_{1} through u_{1}, we have $\mathrm{d}(x, w)=\delta+3$ for every $w \in\left(G_{1} \cap u_{1}^{\perp}\right) \backslash\left\{u_{1}\right\}$. Since u_{2} was an arbitrary point of $\Gamma_{2}(x) \cap G_{2}, \mathrm{~d}(x, u)=$ $\delta+2$ for every $u \in \pi_{G_{1}}\left(\Gamma_{2}(x) \cap G_{2}\right)$ and $\mathrm{d}(x, w)=\delta+3$ for every $w \in$ $G_{1} \backslash \pi_{G_{1}}\left(\Gamma_{2}(x) \cap G_{2}\right)$. This implies that $x \in \Gamma_{\delta+2, O}\left(G_{1}\right)$ and $\Gamma_{\delta+2}(x) \cap G_{1}=$ $\pi_{G_{1}}\left(\Gamma_{2}(x) \cap G_{2}\right)$.

Lemma 2.5 Let M be a max of $\mathbb{I}_{n}, n \geq 3$, isomorphic to $D Q(2 n-2,2)$ and let L_{1} and L_{2} be two non-parallel lines of M at distance δ from each other. Let x_{1} and x_{2} be the unique points of L_{1} and L_{2}, respectively, such that $d\left(x_{1}, x_{2}\right)=\delta$. Let $G_{i}, i \in\{1,2\}$, denote the unique grid-quad of \mathbb{I}_{n} containing L_{i}. Then
(i) $\left\langle G_{1}, G_{2}\right\rangle$ has diameter $\delta+3$.
(ii) Let $i \in\{1,2\}$. Then every point $x \in G_{i} \cap x_{i}^{\perp}$ is classical with respect to G_{3-i} and $\pi_{G_{3-i}}(x)=x_{3-i}$.
(iii) Let $i \in\{1,2\}$. Then every point x of $G_{i} \backslash x_{i}^{\perp}$ belongs to $\Gamma_{\delta+2, O}\left(G_{3-i}\right)$ and $\Gamma_{\delta+2}(x) \cap G_{3-i}$ is an ovoid of G_{3-i} containing x_{3-i}.
(iv) The two ovoids O_{1}, O_{1}^{\prime} of G_{1} through x_{1} and the two ovoids O_{2}, O_{2}^{\prime} of G_{2} through x_{2} can be chosen in such a way that $d(x, y)=\delta+2$ for every $(x, y) \in\left(\left(O_{1} \backslash\left\{x_{1}\right\}\right) \times\left(O_{2} \backslash\left\{x_{2}\right\}\right)\right) \cup\left(\left(O_{1}^{\prime} \backslash\left\{x_{1}\right\}\right) \times\left(O_{2}^{\prime} \backslash\left\{x_{2}\right\}\right)\right)$ and $d(x, y)=$
$\delta+3$ for every $(x, y) \in\left(\left(O_{1} \backslash\left\{x_{1}\right\}\right) \times\left(O_{2}^{\prime} \backslash\left\{x_{2}\right\}\right)\right) \cup\left(\left(O_{1}^{\prime} \backslash\left\{x_{1}\right\}\right) \times\left(O_{2} \backslash\left\{x_{2}\right\}\right)\right)$.
Proof. Let L_{3} denote a line through x_{2} parallel with L_{1} (i.e. a line of $\left\langle L_{1}, x_{2}\right\rangle$ through x_{2} not contained in $\left.\left\langle x_{1}, x_{2}\right\rangle\right)$ and let G_{3} denote the unique grid-quad of \mathbb{I}_{n} through L_{3}. Since G_{2} and G_{3} are two different grid-quads through x_{2} (they have different intersections with M), $G_{2} \cap G_{3}=\left\{x_{2}\right\}$. We can apply Lemma 2.4 (with $\left(L_{1}, L_{3}\right)$ fulfilling the role of $\left(L_{1}, L_{2}\right)$ and $\left\langle L_{2}, L_{3}\right\rangle$ the role of Q). By Lemma 2.4 (i)+(ii)+(iii), the maximal distance between a point of G_{1} and a point of G_{2} is equal to $\delta+3$, proving Claim (i). If $x \in G_{2} \cap x_{2}^{\perp}$, then by Lemma 2.4 (i) + (ii), x is classical with respect to G_{1} and $\pi_{G_{1}}(x)=\pi_{G_{1}}\left(\pi_{G_{3}}(x)\right)=\pi_{G_{1}}\left(x_{2}\right)=x_{1}$. This proves Claim (ii) (taking into account a straightforward symmetry). If $x \in G_{2} \backslash x_{2}^{\perp}$, then by Lemma 2.4 (iii), $x_{2} \in \Gamma_{\delta+2, O}\left(G_{1}\right)$ and the ovoid $\Gamma_{\delta+2}(x) \cap G_{1}=\pi_{G_{1}}\left(\Gamma_{2}(x) \cap G_{3}\right)$ of G_{1} contains the point $\pi_{G_{1}}\left(x_{2}\right)=x_{1}$. This proves Claim (iii). If $L=\left\{\pi_{L}\left(x_{2}\right), u, v\right\}$ is a line of G_{2} not containing x_{2}, then $\Gamma_{\delta+2}(u) \cap G_{1}$ and $\Gamma_{\delta+2}(v) \cap G_{1}$ are the two ovoids of G_{1} through x_{1} (see e.g. [6, Theorem 1.23 (7)]). A similar remark holds for lines of G_{1} not containing x_{1}. Claim (iv) now readily follows.

2.2 The relations R and R^{\prime}

Consider in the near $2 n$-gon $\mathbb{I}_{n}, n \geq 3$, a big max $M \cong D Q(2 n-2,2)$. Let \mathcal{O} denote the set of all ovoids in all grid-quads which intersect M in a line. For every $O \in \mathcal{O}$, let G_{O} denote the unique grid-quad of \mathbb{I}_{n} containing O and put $L_{O}:=G_{O} \cap M$. We now define a relation $R \subseteq \mathcal{O} \times \mathcal{O}$. Let $O_{1}, O_{2} \in \mathcal{O}$.

If $L_{O_{1}}=L_{O_{2}}$, then $\left(O_{1}, O_{2}\right) \in R$ if and only if $O_{1}=O_{2}$ or $O_{1} \cap O_{2}=\emptyset$.
Suppose $L_{O_{1}}$ and $L_{O_{2}}$ are non-parallel lines at distance δ from each other. Let x_{1} and x_{2} be the unique points of respectively $L_{O_{1}}$ and $L_{O_{2}}$ such that $\mathrm{d}\left(x_{1}, x_{2}\right)=\delta$. Let $\widetilde{O_{i}}, i \in\{1,2\}$, denote the unique ovoid of $G_{O_{i}}$ satisfying $x_{i} \in \widetilde{O_{i}}$ and $\left|O_{i} \cap \widetilde{O_{i}}\right| \in\{0,3\}$. If δ is even, then we say that $\left(O_{1}, O_{2}\right) \in R$ if
 $\widetilde{O_{2}} \backslash\left\{x_{2}\right\}$ (cf. Lemma 2.5 (iv)). If δ is odd, then we say that $\left(O_{1}, O_{2}\right) \in R$ if and only if every point of $\widetilde{O_{1}} \backslash\left\{x_{1}\right\}$ has distance $\delta+3$ from every point of $\widetilde{O_{2}} \backslash\left\{x_{2}\right\}$.

Suppose $L_{O_{1}}$ and $L_{O_{2}}$ are parallel lines at distance δ from each other. Let O_{1}^{\prime} denote the ovoid $\pi_{G_{2}}\left(O_{1}\right)$ of G_{2}. (Recall that $G_{2} \subseteq \Gamma_{\delta, C}\left(G_{1}\right)$, see Lemma 2.3). If δ is even, then we say that $\left(O_{1}, O_{2}\right) \in R$ if and only if $\left|O_{1}^{\prime} \cap O_{2}\right| \in\{0,3\}$. If δ is odd, then we say that $\left(O_{1}, O_{2}\right) \in R$ if and only if
$\left|O_{1}^{\prime} \cap O_{2}\right|=1$.
We now define another relation R^{\prime} on the set \mathcal{O}. If $O_{1}, O_{2} \in \mathcal{O}$, then we say that $\left(O_{1}, O_{2}\right) \in R^{\prime}$ if and only if $\left(O_{1}, O_{2}\right) \in R$ and $\left\langle L_{O_{1}}, L_{O_{2}}\right\rangle$ is a line or a quad.

The aim of this section is to prove the following proposition.
Proposition 2.6 The relation R is an equivalence relation with two equivalence classes. Moreover, R is the smallest equivalence relation on the set \mathcal{O} for which $R^{\prime} \subseteq R$.

2.3 Proof of Proposition 2.6

Notice that the 6 ovoids of a (3×3)-grid can be divided into 2 classes such that two ovoids belong to a different class (respectively the same class) if they intersect in precisely 1 point (respectively 0 or 3 points). Combining this fact with the definition of the relation R, we can immediately say that

Lemma 2.7 Let $O_{1}, O_{1}^{\prime}, O_{2}, O_{2}^{\prime} \in \mathcal{O}$ such that $G_{O_{1}}=G_{O_{1}^{\prime}}, G_{O_{2}}=G_{O_{2}^{\prime}}$ and $\left(O_{1}, O_{2}\right) \in R$.
(i) If $\left|O_{1} \cap O_{1}^{\prime}\right|,\left|O_{2} \cap O_{2}^{\prime}\right| \in\{0,3\}$, then $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$.
(ii) If $\left|O_{1} \cap O_{1}^{\prime}\right|=\left|O_{2} \cap O_{2}^{\prime}\right|=1$, then $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$.
(iii) If $\left|O_{1} \cap O_{1}^{\prime}\right|=1$ and $\left|O_{2} \cap O_{2}^{\prime}\right| \in\{0,3\}$, then $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \notin R$.

For every line L of \mathbb{I}_{n}, let G_{L} denote the unique grid-quad of \mathbb{I}_{n} containing L. The following lemma is precisely Lemma 3.1 of De Bruyn [5].

Lemma 2.8 ([5]) Let Q be a $W(2)$-quad of M and let L_{1}, L_{2}, L_{3} be three lines contained in Q. For every $i \in\{1,2,3\}$, let O_{i} be an ovoid of the grid-quad $G_{L_{i}}$. Suppose that $\left(O_{1}, O_{2}\right) \in R$ and $\left(O_{2}, O_{3}\right) \in R$. Then also $\left(O_{1}, O_{3}\right) \in R$.

Lemma 2.9 Let L_{1} and L_{2} be two parallel lines of M at distance δ from each other, let Q be a quad of M through L_{2} not contained in $\left\langle L_{1}, L_{2}\right\rangle$ and let L_{3} be a line of Q. For every $i \in\{1,2,3\}$, let O_{i} be an ovoid of the gridquad $G_{i}:=G_{L_{i}}$. Suppose $\left(O_{1}, O_{2}\right) \in R$. Then $\left(O_{1}, O_{3}\right) \in R$ if and only if $\left(O_{2}, O_{3}\right) \in R$.

Proof. Let π denote the projection from G_{1} onto G_{2}. Notice that since $\left(O_{1}, O_{2}\right) \in R$, we have
(*) $\left|O_{2} \cap \pi\left(O_{1}\right)\right| \in\{0,3\}$ if δ is even and $\left|O_{2} \cap \pi\left(O_{1}\right)\right|=1$ if δ is odd.
We will distinguish three cases: (1) $L_{2}=L_{3}$; (2) $L_{2} \cap L_{3}=\emptyset$; (3) $L_{2} \cap L_{3}$ is a singleton.

Suppose first that $L_{2}=L_{3}$. Then as we have already noticed in Lemma $2.7,\left(O_{1}, O_{3}\right) \in R$ if and only if $\left(O_{2}, O_{3}\right) \in R$.

Suppose next that $L_{2} \cap L_{3}=\emptyset$. Let π^{\prime} be the projection from G_{2} onto G_{3}. Then by Lemma 2.2 and Lemma 2.4(ii), $\pi^{\prime} \pi=\pi^{\prime} \circ \pi$ equals the projection from G_{1} onto G_{3}. We have $\left(O_{2}, O_{3}\right) \in R$ if and only if $\left|\pi^{\prime}\left(O_{2}\right) \cap O_{3}\right|=1$. By (*) this happens if and only if $\left|O_{3} \cap \pi^{\prime} \pi\left(O_{1}\right)\right|=1$ if δ is even and $\left|O_{3} \cap \pi^{\prime} \pi\left(O_{1}\right)\right| \in\{0,3\}$ if δ is odd. Since $\mathrm{d}\left(L_{1}, L_{3}\right)=\delta+1$ and $L_{1} \| L_{3}$, the latter condition is equivalent with $\left(O_{1}, O_{3}\right) \in R$.

Suppose finally that $L_{2} \cap L_{3}$ is a singleton $\{x\}$. Put $x^{\prime}=\pi_{G_{1}}(x)$. Let O_{1}^{\prime} denote the unique ovoid of G_{1} through x^{\prime} such that $\left|O_{1} \cap O_{1}^{\prime}\right| \in\{0,3\}$ and let O_{2}^{\prime} denote the unique ovoid of G_{2} through x such that $\left|O_{2} \cap O_{2}^{\prime}\right| \in\{0,3\}$. By Lemma 2.7, $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$. Let O_{3}^{\prime} denote the unique ovoid of G_{3} through x such that $\left|O_{3} \cap O_{3}^{\prime}\right| \in\{0,3\}$. Then $\left(O_{1}, O_{3}\right) \in R$ if and only if $\left(O_{1}^{\prime}, O_{3}^{\prime}\right) \in R$ and $\left(O_{2}, O_{3}\right) \in R$ if and only if $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R$. Now, $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R$ if and only if every point of $O_{3}^{\prime} \backslash\{x\}$ has distance 2 from every point of $O_{2}^{\prime} \backslash\{x\}$. By Lemma 2.4 (iii), this precisely happens when every point of $O_{3}^{\prime} \backslash\{x\}$ has distance $\delta+2$ from every point of $\pi^{-1}\left(O_{2}^{\prime}\right) \backslash\left\{x^{\prime}\right\}$. Since $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$, $\pi^{-1}\left(O_{2}^{\prime}\right)=O_{1}^{\prime}$ if δ is even. If δ is odd, then $\pi^{-1}\left(O_{2}^{\prime}\right)$ is the other ovoid of G_{1} through x^{\prime}. So, $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R$ if and only if $\left(O_{1}^{\prime}, O_{3}^{\prime}\right) \in R$ finishing the proof of the lemma.

Lemma 2.10 Let $O, O^{\prime} \in \mathcal{O}$ with $\left(O, O^{\prime}\right) \in R$. Then there exist elements $O_{1}, O_{2}, \ldots, O_{k} \in \mathcal{O}$ (for some $k \geq 1$) such that $O_{1}=O, O_{k}=O^{\prime}$ and $\left(O_{i}, O_{i+1}\right) \in R^{\prime}$ for every $i \in\{1, \ldots, k-1\}$.

Proof. Put $G=G_{O}, G^{\prime}=G_{O^{\prime}}, L=L_{O}$ and $L^{\prime}=L_{O^{\prime}}$. We will consider two cases: (1) the lines L and L^{\prime} are parallel; (2) the lines L and L^{\prime} are not parallel.
(1) Suppose L and L^{\prime} are parallel. If $\mathrm{d}\left(L, L^{\prime}\right) \leq 1$, then $\left(O, O^{\prime}\right) \in R$ implies $\left(O, O^{\prime}\right) \in R^{\prime}$ and we are done.

Suppose therefore that $\mathrm{d}\left(L, L^{\prime}\right) \geq 2$. Let $L^{\prime \prime}$ be a line of M such that $\mathrm{d}\left(L, L^{\prime \prime}\right)=\mathrm{d}\left(L, L^{\prime}\right)-1, \mathrm{~d}\left(L^{\prime}, L^{\prime \prime}\right)=1$ and $L\left\|L^{\prime \prime}\right\| L^{\prime}($ cf. Lemma 2.1) and
put $G^{\prime \prime}:=G_{L^{\prime \prime}}$. Let Q be the quad $\left\langle L^{\prime \prime}, L^{\prime}\right\rangle$. Then Q is not contained in $\left\langle L, L^{\prime \prime}\right\rangle$. So we can apply Lemma 2.9. Let $O^{\prime \prime}$ be an ovoid of $G^{\prime \prime}$ such that $\left(O, O^{\prime \prime}\right) \in R$. Then by Lemma 2.9 and the fact that $\left(O, O^{\prime}\right) \in R$, $\left(O^{\prime \prime}, O^{\prime}\right) \in R$, i.e. $\left(O^{\prime \prime}, O^{\prime}\right) \in R^{\prime}$. By the induction hypothesis, there exist $O_{1}, O_{2}, \ldots, O_{k^{\prime}} \in \mathcal{O}$ such that $O_{1}=O, O_{k^{\prime}}=O^{\prime \prime}$ and $\left(O_{i}, O_{i+1}\right) \in R^{\prime}$ for every $i \in\left\{1, \ldots, k^{\prime}-1\right\}$. Now, $\left(O^{\prime \prime}, O^{\prime}\right) \in R^{\prime}$. So, if we put $O_{k^{\prime}+1}=O^{\prime}$, then we are done.
(2) Suppose L and L^{\prime} are not parallel. Again, we will prove the claim by induction on $\mathrm{d}\left(L, L^{\prime}\right)$.

Suppose first that $\mathrm{d}\left(L, L^{\prime}\right)=0$. Then $\left(O, O^{\prime}\right) \in R$ implies $\left(O, O^{\prime}\right) \in R^{\prime}$ and we are done.

Suppose next that $\delta:=\mathrm{d}\left(L, L^{\prime}\right) \geq 1$. Let x and x^{\prime} be the unique points of L and L^{\prime}, respectively, such that $\mathrm{d}\left(x, x^{\prime}\right)=\delta$. Let $L^{\prime \prime}$ be a line of M through x^{\prime} parallel with L, i.e. a line through x^{\prime} contained in $\left\langle x^{\prime}, L\right\rangle$, but not in $\left\langle x, x^{\prime}\right\rangle$. Let $O^{\prime \prime}$ be an ovoid of $G^{\prime \prime}:=G_{L^{\prime \prime}}$ such that $\left(O, O^{\prime \prime}\right) \in R$. Now, put $Q:=\left\langle L^{\prime \prime}, L^{\prime}\right\rangle$. Then the quad Q is not contained in $\left\langle L, L^{\prime \prime}\right\rangle$. So, as before we can apply Lemma 2.9 and conclude that $\left(O^{\prime \prime}, O^{\prime}\right) \in R$. Now, by (1) there exist elements $O_{1}, O_{2}, \ldots, O_{k^{\prime}} \in \mathcal{O}$ such that $O_{1}=O, O_{k^{\prime}}=O^{\prime \prime}$ and $\left(O_{i}, O_{i+1}\right) \in R^{\prime}$ for every $i \in\left\{1, \ldots, k^{\prime}-1\right\}$. Since $\left(O^{\prime \prime}, O^{\prime}\right) \in R^{\prime}$, we can take $O_{k^{\prime}+1}=O^{\prime}$ and we are done.

Lemma 2.11 Let $O_{1}, O_{2}, O_{3} \in \mathcal{O}$ such that $\left(O_{1}, O_{2}\right) \in R$ and $\left(O_{2}, O_{3}\right) \in R^{\prime}$. Then $\left(O_{1}, O_{3}\right) \in R$.

Proof. Fix O_{1} and put $L_{1}:=L_{O_{1}}$. If L_{2} and L_{3} are two lines of M such that $\operatorname{diam}\left(\left\langle L_{2}, L_{3}\right\rangle\right) \in\{1,2\}$, then we say that Property $P\left(L_{2}, L_{3}\right)$ is satisfied if the conclusion of the lemma holds for each triple $\left(O_{1}^{\prime}, O_{2}^{\prime}, O_{3}^{\prime}\right) \in \mathcal{O} \times \mathcal{O} \times \mathcal{O}$ for which $O_{1}^{\prime}=O_{1}, L_{O_{2}^{\prime}}=L_{2}$ and $L_{O_{3}^{\prime}}=L_{3}$.

Claim 1. $P(L, L)$ is satisfied for every line L of M.
Proof. This follows from Lemma 2.7.
Claim 2. If L_{2} and L_{3} are lines of M such that Property $P\left(L_{2}, L_{3}\right)$ is satisfied, then also Property $P\left(L_{3}, L_{2}\right)$ is satisfied.
Proof. Let O_{3}^{\prime} and O_{2}^{\prime} be elements of \mathcal{O} such that $\left(O_{1}, O_{3}^{\prime}\right) \in R,\left(O_{3}^{\prime}, O_{2}^{\prime}\right) \in$ $R^{\prime}, L_{O_{3}^{\prime}}=L_{3}$ and $L_{O_{2}^{\prime}}=L_{2}$. We need to show that $\left(O_{1}, O_{2}^{\prime}\right) \in R$. Let $O_{2}^{\prime \prime}$ and $O_{3}^{\prime \prime}$ be elements of \mathcal{O} such that $\left(O_{1}, O_{2}^{\prime \prime}\right) \in R,\left(O_{2}^{\prime \prime}, O_{3}^{\prime \prime}\right) \in R^{\prime}, L_{O_{2}^{\prime \prime}}=L_{2}$ and $L_{O_{3}^{\prime \prime}}=L_{3}$. By Property $P\left(L_{2}, L_{3}\right),\left(O_{1}, O_{3}^{\prime \prime}\right) \in R$. Since also $\left(O_{1}, O_{3}^{\prime}\right) \in R$, we necessarily have $\left(O_{3}^{\prime}, O_{3}^{\prime \prime}\right) \in R$ by Lemma 2.7. This combined with the
facts that $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R$ and $\left(O_{2}^{\prime \prime}, O_{3}^{\prime \prime}\right) \in R$ yields $\left(O_{2}^{\prime \prime}, O_{2}^{\prime}\right) \in R$ by Lemma 2.7. Applying Lemma 2.7 to the facts that $\left(O_{1}, O_{2}^{\prime \prime}\right) \in R$ and $\left(O_{2}^{\prime \prime}, O_{2}^{\prime}\right) \in R$ yields $\left(O_{1}, O_{2}^{\prime}\right) \in R$.

Claim 3. Let Q be a quad of M and let L_{2}, L_{3}, L_{4} be three lines of Q. If Properties $P\left(L_{2}, L_{3}\right)$ and $P\left(L_{3}, L_{4}\right)$ are satisfied, then also Property $P\left(L_{2}, L_{4}\right)$ is satisfied.
Proof. Let O_{2}^{\prime} and O_{4}^{\prime} be elements of \mathcal{O} such that $\left(O_{1}, O_{2}^{\prime}\right) \in R,\left(O_{2}^{\prime}, O_{4}^{\prime}\right) \in$ $R^{\prime}, L_{O_{2}^{\prime}}=L_{2}$ and $L_{O_{4}^{\prime}}=L_{4}$. We need to show that $\left(O_{1}, O_{4}^{\prime}\right) \in R$. Let O_{3}^{\prime} be an element of \mathcal{O} such that $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R^{\prime}$ and $L_{O_{3}^{\prime}}=L_{3}$. Then by Lemma 2.8, also $\left(O_{3}^{\prime}, O_{4}^{\prime}\right) \in R^{\prime}$. By Property $P\left(L_{2}, L_{3}\right)$ and the facts that $\left(O_{1}, O_{2}^{\prime}\right) \in R$ and $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R^{\prime}$, we have that $\left(O_{1}, O_{3}^{\prime}\right) \in R$. By Property $P\left(L_{3}, L_{4}\right)$ and the facts that $\left(O_{1}, O_{3}^{\prime}\right) \in R$ and $\left(O_{3}^{\prime}, O_{4}^{\prime}\right) \in R^{\prime}$, we have $\left(O_{1}, O_{4}^{\prime}\right) \in R$.

If Q is a quad of M, then by De Bruyn [6, Theorem 1.23], either $\pi_{Q}\left(L_{1}\right)$ is a point or a line. In the former case, no line of Q is parallel with L_{1}. In the latter case, $L_{1} \subseteq \Gamma_{\delta, C}(Q)$ where $\delta:=\mathrm{d}\left(L_{1}, Q\right)$. Lemma 2.11 now follows from Claims 4 and 5 below.

Claim 4. If Q is a quad of M such that $L_{1}^{\prime}:=\pi_{Q}\left(L_{1}\right)$ is a line of Q, then Property $P\left(L_{2}, L_{3}\right)$ is satisfied for any two lines L_{2} and L_{3} of Q.
Proof. Let O_{2}^{\prime} and O_{3}^{\prime} be elements of \mathcal{O} such that $\left(O_{1}, O_{2}^{\prime}\right) \in R,\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in$ $R^{\prime}, L_{O_{2}^{\prime}}=L_{2}$ and $L_{O_{3}^{\prime}}=L_{3}$. We need to show that $\left(O_{1}, O_{3}^{\prime}\right) \in R$. The line L_{1}^{\prime} is parallel with L_{1} and the quad Q is not contained in $\left\langle L_{1}, L_{1}^{\prime}\right\rangle$. Let O_{1}^{\prime} denote an ovoid of $G_{L_{1}^{\prime}}$ such that $\left(O_{1}, O_{1}^{\prime}\right) \in R$. Since also $\left(O, O_{2}^{\prime}\right) \in R,\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$ by Lemma 2.9. This in combination with $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R$ and Lemma 2.8 gives $\left(O_{1}^{\prime}, O_{3}^{\prime}\right) \in R$. By Lemma 2.9 and the facts that $\left(O_{1}, O_{1}^{\prime}\right) \in R$ and $\left(O_{1}^{\prime}, O_{3}^{\prime}\right) \in R$, we have $\left(O_{1}, O_{3}^{\prime}\right) \in R$.

Claim 5. If Q is a quad of M such that $\pi_{Q}\left(L_{1}\right)$ is a singleton $\left\{x_{2}\right\}$, then Property $P\left(L_{2}, L_{3}\right)$ is satisfied for any two lines L_{2} and L_{3} of Q.
Proof. In view of Claims 1,2 and 3 , it suffices to prove this if L_{2} and L_{3} are two disjoint lines of Q such that $x_{2} \in L_{2}$. Suppose $O_{1}, O_{2} \in \mathcal{O}$ such that $\left(O_{1}, O_{2}\right) \in R,\left(O_{2}, O_{3}\right) \in R^{\prime}, L_{O_{2}}=L_{2}$ and $L_{O_{3}}=L_{3}$. Put $\delta:=\mathrm{d}\left(L_{1}, Q\right)$. Recall that no line of Q is parallel with L_{1}. Let x_{3} denote the unique point of L_{3} collinear with x_{2} and let x_{1} denote the unique point of L_{1} such that $\mathrm{d}\left(x_{1}, x_{2}\right)=\delta$ and $\mathrm{d}\left(x_{1}, x_{3}\right)=\delta+1$. Let K_{2} denote a line through x_{2} parallel with L_{1} and let K_{3} be a line through x_{3} different from $x_{2} x_{3}$ and contained in the quad $\left\langle x_{3}, K_{2}\right\rangle$. Then $\mathrm{d}\left(K_{2}, L_{1}\right)=\delta, \mathrm{d}\left(K_{3}, L_{1}\right)=\delta+1$ and $K_{3} \| L_{1}$.

Put $Q_{i}:=\left\langle K_{i}, L_{i}\right\rangle, i \in\{2,3\}$. Since $L_{i}, i \in\{2,3\}$, contains a point a point at distance $\delta-1+i$ from L_{1}, Q_{i} is not contained in $\left\langle L_{1}, K_{i}\right\rangle$. Now, let $O_{i}^{\prime}, i \in\{1,2,3\}$, denote the unique element of \mathcal{O} such that $L_{O_{i}^{\prime}}=L_{i}$, $x_{i} \in O_{i}^{\prime}$ and $\left|O_{i} \cap O_{i}^{\prime}\right| \in\{0,3\}$. Since $\left(O_{1}, O_{2}\right) \in R$ and $\left(O_{2}, O_{3}\right) \in R^{\prime}$, $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$ and $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R^{\prime}$ by Lemma 2.7. Now, let $O_{2}^{\prime \prime}$ denote the unique element of \mathcal{O} such that $L_{O_{2}^{\prime \prime}}=K_{2}, x_{2} \in O_{2}^{\prime \prime}$ and $\left(O_{1}^{\prime}, O_{2}^{\prime \prime}\right) \in R$. By Lemma 2.4 (iii) and the fact that $\left(O_{1}^{\prime}, O_{2}^{\prime}\right) \in R$, every point of $O_{2}^{\prime} \backslash\left\{x_{2}\right\}$ has distance 2 from every point of $O_{2}^{\prime \prime} \backslash\left\{x_{2}\right\}$. By Lemma 2.4 (iii) and the fact that $\left(O_{2}^{\prime}, O_{3}^{\prime}\right) \in R^{\prime}$, every point of $O_{2}^{\prime \prime} \backslash\left\{x_{2}\right\}$ has distance 4 from every point of $O_{3}^{\prime} \backslash\left\{x_{3}\right\}$. Now, let $O_{3}^{\prime \prime}$ be the unique element of \mathcal{O} such that $L_{O_{3}^{\prime \prime}}=K_{3}$, $x_{3} \in O_{3}^{\prime \prime}$ and $\left(O_{2}^{\prime \prime}, O_{3}^{\prime \prime}\right) \in R^{\prime}$. Then by Lemma 2.4 (iii) and the fact that every point of $O_{3}^{\prime} \backslash\left\{x_{3}\right\}$ has distance 4 from every point of $O_{2}^{\prime \prime} \backslash\left\{x_{2}\right\}$, it follows that every point of $O_{3}^{\prime} \backslash\left\{x_{3}\right\}$ has distance 2 from every point of $O_{3}^{\prime \prime} \backslash\left\{x_{3}\right\}$. Since $\left(O_{1}^{\prime}, O_{2}^{\prime \prime}\right) \in R$ and $\left(O_{2}^{\prime \prime}, O_{3}^{\prime \prime}\right) \in R^{\prime}$, it follows that $\left(O_{1}^{\prime}, O_{3}^{\prime \prime}\right) \in R$ by Claim 4. This together with the fact that every point of $O_{3}^{\prime} \backslash\left\{x_{3}\right\}$ has distance 2 from every point of $O_{3}^{\prime \prime} \backslash\left\{x_{3}\right\}$ implies that $\left(O_{1}^{\prime}, O_{3}^{\prime}\right) \in R$ (recall again Lemma 2.4 (iii)). So, $\left(O_{1}, O_{3}\right) \in R$ and Property $P\left(L_{2}, L_{3}\right)$ is satisfied.

From Lemmas 2.10 and 2.11, it now follows that R is the smallest equivalence relation on the set \mathcal{O} satisfying $R^{\prime} \subseteq R$. By Lemma 2.7 there are precisely two equivalence classes. This proves Proposition 2.6.

3 Proof of Theorem 1.1

Consider in the near $2 n$-gon $\mathbb{I}_{n}, n \geq 3$, a big max $M \cong D Q(2 n-2,2)$. Let \mathcal{O} denote the set of all ovoids in all grid-quads which intersect M in a line. Then by Proposition 2.6 an equivalence relation R can be defined on the set \mathcal{O}. Put $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}$ where \mathcal{O}_{1} and \mathcal{O}_{2} are the two equivalence classes of R. We now define a map θ between the point-set of \mathbb{I}_{n} and the point-set of $\mathcal{S}_{1}(n)$.

- If $x \in M$, then we define $\theta(x):=(x, x)$.
- If $x \in \mathbb{I}_{n} \backslash M$, then let L_{x} denote the unique line through x meeting M in a point and let G_{x} denote the unique grid-quad of \mathbb{I}_{n} containing L_{x}. Notice that $G_{x} \cap M$ is a line since M is big in \mathbb{I}_{n}. Now, there exists a unique ovoid $O \in \mathcal{O}_{1}$ such that $x \in O \subseteq G_{x}$. Put $L_{x} \cap M=\left\{x_{1}\right\}$ and $O \cap M=\left\{x_{2}\right\}$. Then we define $\theta(x):=\left(x_{1}, x_{2}\right)$.

Lemma 3.1 θ is a bijection between the set of points of \mathbb{I}_{n} and the set of points of $\mathcal{S}_{1}(n)$.

Proof. Let $\left(x_{1}, x_{2}\right)$ be an arbitrary point of $\mathcal{S}_{1}(n)$ and consider the equation $\theta(x)=\left(x_{1}, x_{2}\right)$.

If $x_{1}=x_{2}$, then $x=x_{1}$ is the unique solution of that equation.
Suppose therefore that $x_{1} \neq x_{2}$. Let G denote the unique grid-quad of \mathbb{I}_{n} containing $x_{1} x_{2}$ and let L denote the unique line of G through x_{1} different from $x_{1} x_{2}$. There exists a unique $O \in \mathcal{O}_{1}$ such that $x_{2} \in O \subseteq G$. Put $O \cap L=\{u\}$. Then $x=u$ is the unique solution of the equation $\theta(x)=\left(x_{1}, x_{2}\right)$.

We now divide the set of lines of \mathbb{I}_{n} into 4 classes.
A line of \mathbb{I}_{n} is said to be of Type I if it is contained in M.
A line of \mathbb{I}_{n} is said to be of Type $I I$ if it intersects M in a unique point.
A line L of \mathbb{I}_{n} is said to be of Type III if it is disjoint from M and if $\left\langle L, \pi_{M}(L)\right\rangle$ is a grid.

A line L of \mathbb{I}_{n} is said to be of type $I V$ if it is disjoint from M and if $\left\langle L, \pi_{M}(L)\right\rangle$ is a $W(2)$-quad.

Theorem 1.1 is a consequence of the following lemma.
Lemma 3.2 (a) θ induces a bijection between the set of lines of Type I of \mathbb{I}_{n} and the set of lines of Type I of $\mathcal{S}_{1}(n)$.
(b) θ induces a bijection between the set of lines of Type II of \mathbb{I}_{n} and the set of lines of Type II of $\mathcal{S}_{1}(n)$.
(c) θ induces a bijection between the set of lines of Type III of \mathbb{I}_{n} and the set of lines of Type III of $\mathcal{S}_{1}(n)$.
(d) θ induces a bijection between the set of lines of Type IV of \mathbb{I}_{n} and the set of lines of Type IV of $\mathcal{S}_{1}(n)$.

Proof. (a) Obviously, the map $\{x, y, z\} \mapsto\{(x, x),(y, y),(z, z)\}$ defines a bijection between the set of lines of Type I of \mathbb{I}_{n} and the set of lines of Type I of $\mathcal{S}_{1}(n)$.
(b) Let $L=\{x, y, z\}$ be a line of Type II of \mathbb{I}_{n} and suppose x is the unique point of L contained in M. Let G denote the unique grid-quad of \mathbb{I}_{n} containing L. Then $G \cap M$ is a line $\left\{x, y^{\prime}, z^{\prime}\right\}$. Clearly, $\theta(L)=\left\{(x, x),\left(x, y^{\prime}\right),\left(x, z^{\prime}\right)\right\}$ is a line of Type II of $\mathcal{S}_{1}(n)$.

Conversely, suppose that $\left\{(x, x),\left(x, y^{\prime}\right),\left(x, z^{\prime}\right)\right\}$ is a line of Type II of $\mathcal{S}_{1}(n)$. Let G denote the unique grid-quad of \mathbb{I}_{n} containing the line $\left\{x, y^{\prime}, z^{\prime}\right\}$ and let L denote the unique line of G through x different from $\left\{x, y^{\prime}, z^{\prime}\right\}$. Then L is the unique line of \mathbb{I}_{n} which is mapped by θ on the line $\left\{(x, x),\left(x, y^{\prime}\right)\right.$, $\left.\left(x, z^{\prime}\right)\right\}$ of $\mathcal{S}_{1}(n)$.
(c) Let $\{x, y, z\}$ be a line of Type III of \mathbb{I}_{n} and let G be the grid-quad $\left\langle L, \pi_{M}(L)\right\rangle$ of \mathbb{I}_{n}. Put $\theta(x)=\left(x_{1}, x_{2}\right), \theta(y)=\left(y_{1}, y_{2}\right)$ and $\theta(z)=\left(z_{1}, z_{2}\right)$. Then $\pi_{M}(L)=\left\{x_{1}, y_{1}, z_{1}\right\}, x_{2}, y_{2}, z_{2} \in \pi_{M}(L), x_{1} \neq x_{2}, y_{1} \neq y_{2}$ and $z_{1} \neq z_{2}$. Let O_{x}, O_{y} and O_{z} be the unique elements of \mathcal{O}_{1} such that $x \in O_{x} \subseteq G$, $y \in O_{y} \subseteq G$ and $z \in O_{z} \subseteq G$. Then $\left\{O_{x}, O_{y}, O_{z}\right\}$ is a partition of G. Since $O_{x} \cap M=\left\{x_{2}\right\}, O_{y} \cap M=\left\{y_{2}\right\}$ and $O_{z} \cap M=\left\{z_{2}\right\}, \pi_{M}(L)=\left\{x_{2}, y_{2}, z_{2}\right\}$. Now, since $x_{1} \neq x_{2}, y_{1} \neq y_{2}$ and $z_{1} \neq z_{2}, \theta(L)$ must be a line of Type III of $\mathcal{S}_{1}(n)$.

Conversely, let $\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right\}$ be a line of Type III of $\mathcal{S}_{1}(n)$. Let x denote the unique point of \mathbb{I}_{n} for which $\theta(x)=\left(x_{1}, x_{2}\right)$. Then x is contained in the unique grid-quad G of \mathbb{I}_{n} containing the line $\left\{x_{1}, y_{1}, z_{1}\right\}=$ $\left\{x_{2}, y_{2}, z_{2}\right\}$. Let L denote the unique line of G through x different from $x x_{1}$. Then L is the unique line of \mathbb{I}_{n} which is mapped by θ on $\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}\right.\right.$, $\left.z_{2}\right)$.
(d) Let $L=\{x, y, z\}$ be a line of Type IV of \mathbb{I}_{n}. Put $\theta(x)=\left(x_{1}, x_{2}\right)$, $\theta(y)=\left(y_{1}, y_{2}\right)$ and $\theta(z)=\left(z_{1}, z_{2}\right)$. Then $\pi_{M}(L)=\left\{x_{1}, y_{1}, z_{1}\right\}$. Recall that $Q:=\left\langle L, \pi_{M}(L)\right\rangle$ is a $W(2)$-quad. Let G_{x} denote the unique grid-quad of \mathbb{I}_{n} containing the line $L_{x}=x x_{1}$ and let A denote the hex $\left\langle G_{x}, Q\right\rangle$. Since A contains a grid-quad, $A \cong \mathbb{I}_{3}$. So, the unique grid-quads G_{y} and G_{z} through respectively $L_{y}=y y_{1}$ and $L_{z}=z z_{1}$ are also contained in A. Now, let Q^{\prime} denote the unique $W(2)$-quad of $A \cong \mathbb{I}_{3}$ through L_{z} different from Q. Then the reflection (in A) of G_{x} about Q^{\prime} is a grid-quad through L_{y} which necessarily coincides with G_{y}. So, the lines $G_{x} \cap M, G_{y} \cap M$ and $Q^{\prime} \cap M$ are contained in a grid-quad. It follows that the lines $G_{x} \cap M, G_{y} \cap M$ and $G_{z} \cap M$ are not contained in a grid-quad. Hence, the points $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}$ are contained in the $W(2)$-quad $A \cap M$, but not in a grid-quad. Now, let O_{x}, O_{y} and O_{z} denote the unique elements of \mathcal{O}_{1} such that $x \in O_{x} \subseteq G_{x}$, $y \in O_{y} \subseteq G_{y}$ and $z \in O_{z} \subseteq G_{z}$. Let O_{x}^{\prime} denote the ovoid $\pi_{G_{y}}\left(O_{x}\right)$ of G_{y} (cf. Lemma 2.2). Since $\left(O_{x}, O_{y}\right) \in R,\left|O_{x}^{\prime} \cap O_{y}\right|=1$. Hence, $O_{x}^{\prime} \cap O_{y}=\left\{y_{1}\right\}$. This implies that $x_{2} \nsim y_{2}$. In a similar way one shows that $y_{2} \nsim z_{2}$ and $x_{2} \nsim z_{2}$. It is now clear that $\theta(L)$ is a line of Type IV of $\mathcal{S}_{1}(n)$.

Conversely, suppose that $\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right\}$ is a line of Type IV of $\mathcal{S}_{1}(n)$. Let Q denote the unique $W(2)$-quad containing $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$ and z_{2}. Let x, y and z denote the unique points of \mathbb{I}_{n} for which $\theta(x)=\left(x_{1}, x_{2}\right)$, $\theta(y)=\left(y_{1}, y_{2}\right)$ and $\theta(z)=\left(z_{1}, z_{2}\right)$. Let $G_{x}\left(G_{y}\right.$, respectively $\left.G_{z}\right)$ denote the unique grid-quad of \mathbb{I}_{n} containing $x_{1} x_{2}\left(y_{1} y_{2}\right.$, respectively $\left.z_{1} z_{2}\right)$. Then $x \in G_{x}, y \in G_{y}$ and $z \in G_{z}$. Let y^{\prime} denote the unique point of G_{y} collinear with x (cf. Lemma 2.2) and let L be the line $x y^{\prime}$. Since $\pi_{M}\left(y^{\prime}\right) \in y_{1} y_{2}$ and $\pi_{M}\left(y^{\prime}\right) \sim \pi_{M}(x)=x_{1}$, we have $\pi_{M}\left(y^{\prime}\right)=y_{1}$. So, $\theta\left(y^{\prime}\right)=\left(y_{1}, y_{2}^{\prime}\right)$ where y_{2}^{\prime} is some point of $y_{1} y_{2} \backslash\left\{y_{1}\right\}$. By (a), (b) and (c), we know that L is a line of Type IV of \mathbb{I}_{n} and by the first paragraph of (d), we know that $x_{2} \nsim y_{2}^{\prime}$. Hence, $y_{2}^{\prime}=y_{2}$ and $y^{\prime}=y$. It is also clear that the third point of the line $x y$ must be mapped to the point $\left(z_{1}, z_{2}\right)$. So, $L=\{x, y, z\}$. By the above discussion, L is the unique line of \mathbb{I}_{n} which is mapped by θ on $\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right\}$.

4 Proof of Theorem 1.2

Let P denote the (common) point-set of $\mathcal{S}_{1}(n)$ and $\mathcal{S}_{2}(n)$. For every point x of $D Q(2 n-2,2)$, we define $\theta[(x, x)]=(x, x)$. For every $(x, y) \in P$ with $x \neq y$, we define $\theta[(x, y)]=(z, y)$, where z denotes the third point on the line $x y$. Obviously, $\theta^{2}=I d_{P}$. So, θ is a permutation of the set P. We show that θ defines an isomorphism from $\mathcal{S}_{1}(n)$ to $\mathcal{S}_{2}(n)$.

Let $L=\{x, y, z\}$ be an arbitrary line of $D Q(2 n-2,2)$. Then θ maps the line $\{(x, x),(y, y),(z, z)\}$ of $\mathcal{S}_{1}(n)$ to the line $\{(x, x),(y, y),(z, z)\}$ of $\mathcal{S}_{2}(n)$, the line $\{(x, x),(x, y),(x, z)\}$ of $\mathcal{S}_{1}(n)$ to the line $\{(x, x),(z, y),(y, z)\}$ of $\mathcal{S}_{2}(n)$ and the line $\{(x, y),(y, z),(z, x)\}$ of $\mathcal{S}_{1}(n)$ to the line $\{(z, y),(x, z),(y, x)\}$ of $\mathcal{S}_{2}(n)$. Clearly, every line $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}$ of $\mathcal{S}_{2}(n)$ where $\left\{x_{1}, x_{2}\right.$, $\left.x_{3}\right\}=\left\{y_{1}, y_{2}, y_{3}\right\}$ is a line of $D Q(2 n-2,2)$ can be obtained in this way.

Now, let $\left\{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right),\left(z, z^{\prime}\right)\right\}$ be an arbitrary line of Type IV of $\mathcal{S}_{1}(n)$. Let $x^{\prime \prime}\left(y^{\prime \prime}\right.$, respectively $\left.z^{\prime \prime}\right)$ denote the unique third point of the line $x x^{\prime}\left(y y^{\prime}\right.$, respectively $z z^{\prime}$). We show that $x^{\prime \prime}$ is collinear with y^{\prime}. Since y is the unique point of $\{x, y, z\}$ collinear with y^{\prime}, the points x and y^{\prime} are not collinear. Now, also x^{\prime} and y^{\prime} are not collinear. It follows that $x^{\prime \prime}$ and y^{\prime} are collinear. In a completely similar way one shows that $x^{\prime \prime} \sim z^{\prime}, y^{\prime \prime} \sim x^{\prime}, y^{\prime \prime} \sim z^{\prime}, z^{\prime \prime} \sim x^{\prime}$ and $z^{\prime \prime} \sim y^{\prime}$. This implies that $\left\{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right\}$ and $\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ are orthogonal hyperbolic lines of $D Q(2 n-2,2)$. So, θ maps lines of Type IV of $\mathcal{S}_{1}(n)$ to lines of $\mathcal{S}_{2}(n)$.

Conversely, let $\left\{\left(x^{\prime \prime}, x^{\prime}\right),\left(y^{\prime \prime}, y^{\prime}\right),\left(z^{\prime \prime}, z^{\prime}\right)\right\}$ be a line of $\mathcal{S}_{2}(n)$, where $\left\{x^{\prime \prime}, y^{\prime \prime}\right.$, $\left.z^{\prime \prime}\right\}$ and $\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ are two orthogonal hyperbolic lines of $D Q(2 n-2,2)$. Let x (y, respectively z) denote the unique third point of the line $x^{\prime} x^{\prime \prime}\left(y^{\prime} y^{\prime \prime}\right.$, respectively $z^{\prime} z^{\prime \prime}$). The point x is not collinear with y^{\prime} (since $y^{\prime} \sim x^{\prime \prime}$) and $y^{\prime \prime}$ (since $y^{\prime \prime} \sim x^{\prime}$) and hence is collinear with y. In a similar way, one shows that $x \sim z$ and $y \sim z$. So, $\{x, y, z\}$ is a line of $D Q(2 n-2,2)$. Since $x^{\prime}, y^{\prime}, z^{\prime}$ are mutually noncollinear points of $D Q(2 n-2,2)$, the points $x, y, z, x^{\prime}, y^{\prime}$ and z^{\prime} cannot be contained in a grid. It follows that $\left\{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right),\left(z, z^{\prime}\right)\right\}$ is a line of $\mathcal{S}_{1}(n)$ which is mapped by θ to the line $\left\{\left(x^{\prime \prime}, x^{\prime}\right),\left(y^{\prime \prime}, y^{\prime}\right),\left(z^{\prime \prime}, z^{\prime}\right)\right\}$ of $\mathcal{S}_{2}(n)$. This finishes the proof that θ defines an isomorphism from $\mathcal{S}_{1}(n)$ to $\mathcal{S}_{2}(n)$.

5 Proof of Theorem 1.4

Lemma 5.1 The points of $\mathcal{S}_{2}(n)$ at distance 1 from the point (x, x) are precisely the points (y, y) where $y \in \Gamma_{1}(x)$ and the points (y, z) where $\{x, y, z\}$ a line of $D Q(2 n-2,2)$ through x.

Proof. Let (y, z) be a point of $\mathcal{S}_{2}(n)$ at distance 1 from (x, x). Then $y \in$ $x^{\perp} \backslash\{x\}$ and $z \in\{x, y\}^{\perp} \backslash\{x\}$. If $\left\{x, y, z^{\prime}\right\}$ denotes the line of $D Q(2 n-2,2)$ containing x and y, then $z \in\left\{y, z^{\prime}\right\}$. This proves the lemma.

Lemma 5.2 Let $\{x, y, z\}$ be a line of $D Q(2 n-2,2)$. The points of $\mathcal{S}_{2}(n)$ at distance 1 from the point (x, y) are precisely the points $(z, z),(y, x),(y, z)$, (z, x) and the points (u, v) where $u \in \Gamma_{1}(y) \cap \Gamma_{2}(x)$ and $v \in \Gamma_{1}(u) \cap \Gamma_{1}(x) \backslash\{y\}$.

Proof. Let (u, v) be a point of $\mathcal{S}_{2}(n)$ at distance 1 from the point (x, y). Then $u \in y^{\perp} \backslash\{x\}$ and $v \in\{u, x\}^{\perp} \backslash\{y\}$. If $u \in\{x, y, z\}$, then $u \in\{y, z\}$ and $v \in\{u, x\}^{\perp} \backslash\{y\}=\{x, z\}$. This gives rise to the points $(z, z),(y, x)$, (y, z) and (z, x). If $u \notin\{x, y, z\}$, then $u \in \Gamma_{1}(y) \cap \Gamma_{2}(x)$ and v is one of the two points contained in $\Gamma_{1}(u) \cap \Gamma_{1}(x) \backslash\{y\}$.

Lemma 5.3 Let $\{x, y, z\}$ be a line of $D Q(2 n-2,2)$. Then the points (x, x) and (x, y) of $\mathcal{S}_{2}(n)$ lie at distance 2 from each other and have precisely two common neighbours, namely the points (z, z) and (y, z).

Proof. Clearly, the points (x, x) and (x, y) lie at distance at least 2 from each other. Suppose (u, v) is a common neighbour of (x, x) and (x, y). Then $u \in\{x, y\}^{\perp}=\{x, y, z\}$ and $u \neq x$. So, $u \in\{y, z\}$. Since $v \in\{x, u\}^{\perp}=$
$\{x, y, z\}$ and $v \notin\{x, y\}, v=z$. It follows that the points (x, x) and (x, y) have precisely two common neighbours, namely the points (y, z) and (z, z).

Lemma 5.4 Let $\{x, y, z\}$ be a line of $D Q(2 n-2,2)$. Then the points (x, y) and (x, z) of $\mathcal{S}_{2}(n)$ lie at distance 2 from each other and have precisely two common neighbours, namely the points (y, x) and (z, x).
Proof. Clearly, the points (x, y) and (x, z) lie at distance at least 2 from each other. Suppose (u, v) is a common neighbour of (x, y) and (x, z). Then $u \in\{y, z\}^{\perp \perp}=\{x, y, z\}$ and $u \neq x$. So, $u \in\{y, z\}$. Since $v \in\{x, u\}^{\perp}=$ $\{x, y, z\}$ and $v \notin\{y, z\}, v=x$. It follows that the points (x, y) and (x, z) have precisely two common neighbours, namely (y, x) and (z, x).

Lemma 5.5 Let x, y and z be points of $D Q(2 n-2,2)$ such that $d(x, y)=$ $d(x, z)=1$ and $d(y, z)=2$. Put $\{y, z\}^{\perp}=\left\{x, u_{1}, u_{2}\right\}$ and $\{y, z\}^{\perp \perp}=$ $\{y, z, v\}$. Then the points (x, y) and (x, z) of $\mathcal{S}_{2}(n)$ have precisely two common neighbours, namely the points $\left(u_{1}, v\right)$ and $\left(u_{2}, v\right)$.
Proof. Clearly, the points (x, y) and (x, z) of $\mathcal{S}_{2}(n)$ lie at distance at least 2 from each other. Suppose $\left(u^{\prime}, v^{\prime}\right)$ is a common neighbour of (x, y) and (x, z). Then $u^{\prime} \in\{y, z\}^{\perp}=\left\{x, u_{1}, u_{2}\right\}$ and $u^{\prime} \neq x$. So, $u^{\prime} \in\left\{u_{1}, u_{2}\right\}$. Since $v^{\prime} \in\left\{x, u^{\prime}\right\}^{\perp}=\{y, z, v\}$ and $v^{\prime} \notin\{y, z\}, v^{\prime}=v$. It follows that the points (x, y) and (x, z) have two common neighbours, namely $\left(u_{1}, v\right)$ and $\left(u_{2}, v\right)$.

Lemma 5.6 For every point x of $D Q(2 n-2,2)$, let $P_{1}(x)=\left\{(x, y) \mid y \in x^{\perp}\right\}$ and $P_{2}(x)=\left\{(y, x) \mid y \in x^{\perp}\right\}$. Then $P_{1}(x)$ and $P_{2}(x)$ are projective sets of $\mathcal{S}_{2}(n) \cong \mathbb{1}_{n}$. For every point (x, y) of $\mathcal{S}_{2}(n), P_{1}(x)$ and $P_{2}(y)$ are the two projective sets of $\mathcal{S}_{2}(n)$ containing (x, y).

Proof. Let (x, y) be an arbitrary point of $\mathcal{S}_{2}(n)$. We have $\left|P_{1}(x)\right|=\left|P_{2}(y)\right|=$ $2^{n}-1$. By Lemmas 5.3, 5.4 and 5.5, if u and v are two distinct points of $P_{1}(x)$, then $\mathrm{d}(u, v)=2$ and $\langle u, v\rangle$ is a grid-quad. By symmetry, the same conclusion also holds for two distinct points u and v of $P_{2}(y)$. Since there are precisely $2^{n-1}-1$ grid-quads through every point of $\mathbb{I}_{n}, P_{1}(x)$ and $P_{2}(y)$ can be constructed in the following way: let $G_{j}, j \in\left\{1, \ldots, 2^{n-1}-1\right\}$, denote all the $2^{n-1}-1$ grid-quads of $\mathcal{S}_{2}(n)$ through (x, y), let $O_{1}^{(1)}$ and $O_{1}^{(2)}$ denote the two ovoids of G_{1} containing (x, y) and let $O_{j}^{(i)}, i \in\{1,2\}$ and $j \in\left\{2, \ldots, 2^{n-1}-1\right\}$, denote the set of points of G_{j} at distance 2 from every point of $O_{1}^{(i)} \backslash\{(x, y)\}$. Then $\left\{P_{1}(x), P_{2}(y)\right\}=\left\{\bigcup_{j=1}^{2^{n-1}-1} O_{j}^{(i)} \mid i \in\{1,2\}\right\}$.

Now, let P_{1} and P_{2} denote the two projective sets of $\mathcal{S}_{2}(n)$ through the point (x, y). Then $\left|P_{1}\right|=\left|P_{2}\right|=2^{n}-1$ and if u and v are two distinct points of $P_{i}, i \in\{1,2\}$, then $\mathrm{d}(u, v)=2$ and $\langle u, v\rangle$ is a grid-quad. Similarly, as above, one then shows that $\left\{P_{1}, P_{2}\right\}=\left\{\bigcup_{j=1}^{2^{n-1}-1} O_{j}^{(i)} \mid i \in\{1,2\}\right\}$. Hence, we have $\left\{P_{1}(x), P_{2}(y)\right\}=\left\{P_{1}, P_{2}\right\}$. This proves the lemma.

The following proposition is precisely Theorem 1.4.
Proposition 5.7 The point-line geometry $\mathcal{S}_{3}(n)$ is isomorphic to $D Q(2 n, 2)$.
Proof. Consider the natural embedding of \mathbb{I}_{n} into $D Q(2 n, 2)$. The dual polar space $D Q(2 n, 2)$ can be reconstructed in the following way from the near $2 n$-gon \mathbb{I}_{n} : the points of $D Q(2 n, 2)$ not contained in \mathbb{I}_{n} are in bijective correspondence with the projective sets of \mathbb{I}_{n}, the lines of $D Q(2 n, 2)$ not contained in \mathbb{I}_{n} are in bijective correspondence with the sets $\left\{x, P_{1}, P_{2}\right\}$ where x is a point of \mathbb{I}_{n} and where P_{1} and P_{2} are the two projective sets of \mathbb{I}_{n} containing x. The proposition now follows from Theorem 1.2 and Lemma 5.6.

References

[1] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. Geom. Dedicata 49 (1994), 349-368.
[2] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata 14 (1983), 145-176.
[3] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75-85.
[4] B. N. Cooperstein and E. E. Shult. Combinatorial construction of some near polygons. J. Combin. Theory Ser. A 78 (1997), 120-140.
[5] B. De Bruyn. A new geometrical construction for the near hexagon with parameters $\left(s, t, T_{2}\right)=(2,5,\{1,2\})$. J. Geom. 78 (2003), 50-58.
[6] B. De Bruyn. Near Polygons. Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
[7] B. De Bruyn and P. Vandecasteele. The distance-2-sets of the slim dense near hexagons. Ann. Comb. 10 (2006), 193-210.
[8] B. De Bruyn and P. Vandecasteele. The classification of the slim dense near octagons. European J. Combin. 28 (2007), 410-428.
[9] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles. Research Notes in Mathematics 110. Pitman, Boston, 1984.
[10] B. K. Sahoo. New constructions of two slim dense near hexagons. Discrete Math., to appear.
[11] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1-72.

[^0]: *Postdoctoral Fellow of the Research Foundation - Flanders (Belgium)

