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Abstract

In [10], Sahoo gave new combinatorial constructions for the near
hexagons I3 and DQ(6, 2) in terms of ordered pairs of collinear points
of the generalized quadrangle W (2). Replacing W (2) by an arbitrary
dual polar space of type DQ(2n, 2), n ≥ 2, we obtain a generalization
of these constructions. By using a construction alluded to in [5] we
show that these generalized constructions give rise to near 2n-gons
which are isomorphic to In and DQ(2n, 2). In this way, we obtain
a recursive construction for the dual polar spaces DQ(2n, 2), n ≥ 2,
different from the one given in [4].
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1 Introduction

1.1 Elementary definitions

A near polygon is a partial linear space S = (P ,L, I), I ⊆ P × L, with the
property that for every point p ∈ P and every line L ∈ L, there exists a
unique point πL(p) on L nearest to p. Here, distances d(·, ·) are measured in
the point graph or collinearity graph Γ of S. If d is the diameter of Γ, then
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the near polygon S is called a near 2d-gon. A near 0-gon is a point and a
near 2-gon is a line. The class of the near quadrangles coincides with the
class of the so-called generalized quadrangles. A good source for information
on near polygons is the recent book [6] of the author. For more background
information on generalized quadrangles, we refer to the book of Payne and
Thas [9].

Let S = (P ,L, I) be a near polygon. If x and y are two points of S, then
we write x ∼ y if d(x, y) = 1 and x 6∼ y if d(x, y) 6= 1. If X1 and X2 are two
non-empty sets of points of S, then d(X1, X2) denotes the minimal distance
between a point of X1 and a point of X2. If X1 is a singleton {x1}, we
will also write d(x1, X2) instead of d({x1}, X2). For every i ∈ Z and every
non-empty set X of points of S, Γi(X) denotes the set of all points y for
which d(y, X) = i. If X is a singleton {x}, we will also write Γi(x) instead of
Γi({x}). We define x⊥ := Γ0(x) ∪ Γ1(x) for every point x of S. If X is a set
of points, then we define X⊥ :=

⋂
x∈X x⊥ (with the convention that X⊥ = P

if X = ∅) and X⊥⊥ := (X⊥)⊥.
If L1 and L2 are two lines of a near polygon S, then one of the following

two cases occurs (see e.g. Theorem 1.3 of [6]): (i) every point of L1 has
distance d(L1, L2) from L2 and every point of L2 has distance d(L1, L2) from
L1; (ii) there exist unique points x1 ∈ L1 and x2 ∈ L2 such that d(x, y) =
d(x, x1) + d(x1, x2) + d(x2, y) for any x ∈ L1 and any y ∈ L2. If case (i)
occurs, then we say that L1 and L2 are parallel (notation: L1‖L2).

A near polygon is called slim if every line is incident with precisely 3
points. A near polygon is called dense if every line is incident with at least
3 points and if every two points at distance 2 have at least 2 common neigh-
bours. By Theorem 4 of Brouwer and Wilbrink [2], every two points of a
dense near 2n-gon at distance δ ∈ {0, . . . , n} from each other are contained
in a unique convex sub-(near-)2δ-gon. These convex subpolygons are called
quads if δ = 2, hexes if δ = 3 and maxes if δ = n− 1. The maximal distance
between two points of a convex subpolygon F is called the diameter of F and
is denoted as diam(F ). If X1, X2, . . . , Xk are k ≥ 1 objects of a dense near
polygon S (like points or sets of points), then 〈X1, X2, . . . , Xk〉 denotes the
smallest convex subspace of S containing X1, X2, . . . , Xk.

Let F be a convex subspace of a dense near polygon S. F is called
big in S if F 6= S and if every point of S not contained in F is collinear
with a (necessarily unique) point of F . A point x of S is called classical
with respect to F , if there exists a unique point x′ ∈ F such that d(x, y) =
d(x, x′) + d(x′, y) for every point y of F . We will denote the point x′ also
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by πF (x) and call it the projection from x on F . Every point of Γ1(F ) is
classical with respect to F . If X is a set of points of S which are classical
with respect to F , then we define πF (X) := {πF (x) |x ∈ X}. F is called
classical in S if every point of S is classical with respect to F . Every big
subpolygon of S is classical in S.

If F1 and F2 are two convex subspaces of a dense near 2d-gon S with
respective diameters d1 and d2 such that F1 ∩ F2 6= ∅ and F1 is classical in
S, then the convex subspace F1 ∩ F2 of S has diameter at least d1 + d2 − d
by Theorem 2.32 of [6].

Suppose F is a convex subpolygon of a slim dense near polygon S. For
every point x of F , we define RF (x) := x. If x is a point of S not contained in
F , then we put RF (x) equal to the unique point of the line xπF (x) different
from x and πF (x). By Theorem 1.11 of [6], RF is an automorphism of S.
RF is called the reflection about F .

Let Q be a quad of a dense near polygon S and let x be a point of S at
distance δ from Q. By Shult and Yanushka [11, Proposition 2.6], there are
two possibilities. Either Γδ(x) ∩ Q is a point of Q or Γδ(x) ∩ Q is an ovoid
of Q, i.e. a set of points of Q intersecting each line of Q in a unique point.
In the former case, x is necessarily classical with respect to Q and we write
x ∈ Γδ,C(Q). In the latter case, x is called ovoidal with respect to Q and we
write x ∈ Γδ,O(Q).

Let Q(2n, 2), n ≥ 2, be a nonsingular parabolic quadric of PG(2n, 2).
Let DQ(2n, 2) denote the point-line geometry whose points are the genera-
tors (= subspaces of maximal dimension n− 1) of Q(2n, 2) and whose lines
are the (n − 2)-dimensional subspaces of Q(2n, 2), with incidence given by
reverse containment. DQ(2n, 2) is a so-called dual polar space (Cameron
[3]). DQ(2n, 2) is a slim dense near 2n-gon. If α is a totally singular sub-
space of dimension n − 1 − k, k ∈ {0, . . . , n}, of Q(2n, 2), then the set of
all generators of Q(2n, 2) containing α is a convex sub-2k-gon of DQ(2n, 2).
Conversely, every convex sub-2k-gon of DQ(2n, 2) is obtained in this way.
Every convex subpolygon of DQ(2n, 2) is classical in DQ(2n, 2). The quads
of DQ(2n, 2) are isomorphic to the generalized quadrangle W (2), which is
the (up to isomorphisms) unique slim generalized quadrangle with three lines
through each point. If x and y are two points of DQ(2n, 2) at distance 2 from
each other, then {x, y}⊥⊥ is a set {x, y, z} of 3 points which is contained in
the quad 〈x, y〉. We call {x, y}⊥⊥ = {x, y, z} the hyperbolic line of DQ(2n, 2)
through the points x and y. If a and b are two distinct points of {x, y}⊥, then
{x, y}⊥ = {a, b}⊥⊥. We say that the hyperbolic lines {x, y}⊥ and {x, y}⊥⊥
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of DQ(2n, 2) are orthogonal.
Consider now a hyperplane of PG(2n, 2) which intersects Q(2n, 2) in

a nonsingular hyperbolic quadric Q+(2n − 1, 2). The set of generators of
Q(2n, 2) not contained in Q+(2n − 1, 2) is a subspace of DQ(2n, 2). By
Brouwer et al. [1, p. 352–353], the point-line geometry induced on that sub-
space is a slim dense near 2n-gon. Following the terminology of [6], we denote
this near 2n-gon by In. The generalized quadrangle I2 is isomorphic to the
(3 × 3)-grid. The convex subspaces of In have been studied in [6, Section
6.4]. If π is a subspace of dimension n − 1 − k, k ∈ {0, . . . , n}, on Q(2n, 2)
which is not contained in Q+(2n − 1, 2) if k ∈ {0, 1}, then the set Xπ of all
generators of Q(2n, 2) through π which are not contained in Q+(2n − 1, 2)
is a convex sub-2k-gon of In. Conversely, every convex sub-2k-gon of In is
obtained in this way. If k ≥ 2 and π is not contained in Q+(2n − 1, 2),
then (the point-line geometry induced on) Xπ is isomorphic to DQ(2k, 2). If
k ≥ 2 and π is contained in Q+(2n− 1, 2), then Xπ is isomorphic to Ik. So,
every quad of In is isomorphic to either DQ(4, 2) ∼= W (2) or the (3× 3)-grid
I2. One readily sees that every line of In is contained in a unique grid-quad.
If π is a point of Q(2n, 2) \ Q+(2n − 1, 2), then Xπ

∼= DQ(2n − 2, 2) is big
in In. Conversely, every big max of In is of the form Xπ for some point
π ∈ Q(2n, 2) \ Q+(2n − 1, 2). If π is a generator of Q+(2n − 1, 2), then the
set of generators of Q(2n, 2) not contained in Q+(2n − 1, 2) intersecting π
in a subspace of dimension n − 2 is called a projective set of In. If X is a
projective set of In, then by De Bruyn and Vandecasteele [7, Section 8] the
following holds for all x1, x2 ∈ X with x1 6= x2: (i) d(x1, x2) = 2; (ii) 〈x1, x2〉
is a grid-quad; (iii) 〈x1, x2〉 ∩X is an ovoid of 〈x1, x2〉.

1.2 The point-line geometry S1(n)

With the dual polar space DQ(2n− 2, 2), n ≥ 3, there is associated a point-
line geometry S1(n) in the following way. The points of S1(n) are all the
ordered pairs (x, y) of points of DQ(2n − 2, 2) satisfying y ∈ x⊥. There are
4 types of lines in S1(n).

(a) Lines of Type I of S1(n) are of the form {(x, x), (y, y), (z, z)}, where
{x, y, z} is an arbitrary line of DQ(2n− 2, 2).

(b) Lines of Type II of S1(n) are of the form {(x, x), (x, y), (x, z)} where
{x, y, z} is an arbitrary line of DQ(2n− 2, 2).

(c) Lines of Type III of S1(n) are of the form {(x, y), (y, z), (z, x)} where
{x, y, z} is an arbitrary line of DQ(2n− 2, 2).

4



(d) Lines of Type IV of S1(n) are of the form {(x, x′), (y, y′), (z, z′)} where
x, y, z, x′, y′ and z′ are mutually distinct points of DQ(2n− 2, 2) satisfying:
(i) {x, y, z} is a line of DQ(2n − 2, 2); (ii) d(x, x′) = d(y, y′) = d(z, z′) = 1;
(iii) x, y, z, x′, y′ and z′ are contained in a W (2)-quad of DQ(2n− 2, 2) but
not in a (3× 3)-subgrid; (iv) x′, y′ and z′ are mutually noncollinear.

Incidence is containment. Notice that with every line {x, y, z} of DQ(2n−
2, 2), there corresponds a unique line of Type I of S1(n), three lines of Type
II of S1(n) and two lines of Type III of S1(n).

The above construction for the point-line geometry S1(n) is a straight-
forward generalization of a construction given in De Bruyn [5]. If n = 3,
then the dual polar space DQ(2n − 2, 2) is isomorphic to the generalized
quadrangle W (2) and the construction reduces to the one given in [5, p. 51].

1.3 The point-line geometry S2(n)

With the dual polar space DQ(2n − 2, 2), n ≥ 3, there is associated a
point-line geometry S2(n) in the following way. The points of S2(n) are
all the pairs (x, y), where x and y are points of DQ(2n − 2, 2) satisfying
y ∈ x⊥. The lines of S2(n) are all the triples {(x1, y1), (x2, y2), (x3, y3)},
where {x1, x2, x3} is either a line or a hyperbolic line of DQ(2n − 2, 2) and
{y1, y2, y3} = {x1, x2, x3}⊥. Incidence is containment.

The above construction for the point-line geometry S2(n) is a straightfor-
ward generalization of a construction given in Sahoo [10]. If n = 3, then the
dual polar space DQ(2n − 2, 2) is isomorphic to the generalized quadrangle
W (2) and the construction reduces to the one given in [10, Section 2.1].

1.4 The point-line geometry S3(n)

With the dual polar space DQ(2n− 2, 2), n ≥ 3, there is associated a point-
line geometry S3(n) in the following way. There are 3 types of points in
S3(n).

(1) Points of the form (x, y) where x and y are points of DQ(2n − 2, 2)
satisfying y ∈ x⊥.

(2) Points x of DQ(2n− 2, 2).
(3) Symbols x′ where x is a point of DQ(2n− 2, 2).

There are also 3 types of lines in S3(n):
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(a) triples {(x1, y1), (x2, y2), (x3, y3)} where {x1, x2, x3} = {y1, y2, y3} is a
line of DQ(2n− 2, 2);

(b) triples {(x1, y1), (x2, y2), (x3, y3)}, where {x1, x2, x3} and {y1, y2, y3}
are two orthogonal hyperbolic lines of DQ(2n− 2, 2);

(c) triples of the form {x, (x, y), y′} where x and y are points of DQ(2n−
2, 2) satisfying y ∈ x⊥.

Incidence is containment. Obviously, the set of all points of Type I of
S3(n) is a hyperplane of S3(n), i.e. a proper subspace of S3(n) meeting each
line. The point-line geometry induced on that hyperplane (by the lines of
S3(n)) is isomorphic to S2(n).

The above construction for the point-line geometry S3(n) is a straightfor-
ward generalization of a construction given in Sahoo [10]. If n = 3, then the
dual polar space DQ(2n − 2, 2) is isomorphic to the generalized quadrangle
W (2) and the construction reduces to the one given in [10, Section 2.2].

1.5 The main results

We show that the combinatorial constructions given in Sections 1.2, 1.3 and
1.4 give rise to the near 2n-gons In and DQ(2n, 2).

Theorem 1.1 (Section 3) The point-line geometry S1(n), n ≥ 3, is iso-
morphic to the near 2n-gon In.

Theorem 1.2 (Section 4) The point-line geometries S1(n) and S2(n) are
isomorphic for every n ≥ 3.

The following is an immediate corollary of Theorems 1.1 and 1.2.

Corollary 1.3 The incidence structure S2(n), n ≥ 3, is isomorphic to the
near 2n-gon In.

Theorem 1.4 (Section 5) The incidence structure S3(n), n ≥ 3, is iso-
morphic to the dual polar space DQ(2n, 2).

Remarks. (1) Theorem 1.1 is already known if n = 3, see De Bruyn [5],
where it was shown in a purely combinatorial way that every slim dense near
hexagon with parameters (s, t, T2) = (2, 5, {1, 2}) is isomorphic to S1(n).
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(2) Also Theorems 1.2 and 1.4 are known if n = 3, see Sahoo [10], where it
was shown that S2(3) ∼= I3 and S3(3) ∼= DQ(6, 2). The kind of proofs given in
[10] seem not to be suitable to deal with the case of general n. Also, in [10] no
explicit isomorphisms have been established between the near hexagons S2(3)
and I3 and the near hexagons S3(3) and DQ(6, 2). Structural information
on the near hexagons S2(3) and S3(3) in combination with the classification
of all slim dense near hexagons ([1]) gives the desired isomorphisms. Notice
also that a classification of all slim dense near 2n-gons is only available if
n ≤ 4 ([1], [8], [9]).

(3) By Theorem 1.4, the construction given in Section 1.4 allows us to
construct an isomorphic copy of the dual polar space DQ(2n + 2, 2), n ≥ 2,
from the dual polar space DQ(2n, 2). So, we obtain a recursive construction
for the dual polar spaces DQ(2n, 2), n ≥ 2. A different recursive construction
for the dual polar spaces DQ(2n, 2), n ≥ 2, was given in Cooperstein and
Shult [4].

2 An equivalence relation

2.1 A few lemmas

Lemma 2.1 If L1 and L2 are two parallel lines of the dual polar space
DQ(2n, 2), n ≥ 2, at distance δ from each other, then there exist lines
K0, K1, . . . , Kδ in DQ(2n, 2) such that K0 = L1, Kδ = L2 and Ki‖Ki+1,
d(Ki, Ki+1) = 1 for every i ∈ {0, . . . , δ − 1}.

Proof. We will prove the lemma by induction on δ. Obviously, the lemma
holds if δ ∈ {0, 1}. So, suppose δ ≥ 2. Let x1 ∈ L1 and x2 ∈ L2 such that
d(x1, x2) = δ. Let u ∈ Γδ−1(x1) ∩ Γ1(x2). Let F denote the convex sub-
(2δ +2)-gon 〈L1, L2〉, let Q be the quad 〈u, L2〉 and let A be the convex sub-
2δ-gon 〈L1, u〉. Since A is classical in F , diam(Q∩A) ≥ diam(Q)+diam(A)−
diam(F ) = 2+δ−(δ+1) = 1. Hence, Q∩A is a line M . Since every point of
M has distance at most δ−1 from L1 (recall that diam(A) = δ), M ∩L2 = ∅.
So, M and L2 are parallel. If L1 and M were not parallel, then there exist
points y1 ∈ L1 and y ∈ M such that d(y1, y) ≤ δ−2. If y2 denotes the unique
point of L2 collinear with y, then d(y1, y2) ≤ δ − 1, a contradiction. Hence,
also L1 and M are parallel. By the induction hypothesis, there exist lines
K0, . . . , Kδ−1 such that K0 = L1, Kδ−1 = M and Ki‖Ki+1, d(Ki, Ki+1) = 1
for every i ∈ {0, . . . , δ − 2}. If we put Kδ = L2, then we are done. �
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Remark. If K0, K1, . . . , Kδ are lines as in Lemma 2.1, then for all i1, i2 ∈
{0, . . . , δ} with i1 ≤ i2, d(Ki1 , Ki2) = i2 − i1 and Ki1‖Ki2 .

Lemma 2.2 Let Q be a W (2)-quad of In, n ≥ 3, and let L1 and L2 denote
two disjoint lines of Q. Let Gi, i ∈ {1, 2}, denote the unique grid-quad of In

containing Li. Then G1 ⊆ Γ1,C(G2) and G2 ⊆ Γ1,C(G1). Moreover, the map
G1 → G2; x 7→ πG2(x) defines an isomorphism between the grids G1 and G2.

Proof. If x is a point of G1 ∩G2, then x has distance 1 from a unique point
x1 of L1 and a unique point x2 of L2. Since Q is a convex subspace, it follows
that x ∈ Q, regardless of whether d(x1, x2) = 1 or d(x1, x2) = 2. But this is
impossible since Q ∩G1 ∩G2 = (Q ∩G1) ∩ (Q ∩G2) = L1 ∩ L2 = ∅. Hence,
G1 and G2 are disjoint.

Let A denote the hex 〈Q, G1〉 of In. Since A contains the grid-quad G1, A
is isomorphic to I3. Hence, the unique grid-quad G2 through the line L2 ⊆ A
is also contained in A.

Suppose G2 contains a point u at distance 2 from G1. Since 〈u, G1〉 = A
has diameter 3, u ∈ Γ2,O(G1), i.e. Γ2(u) ∩ G1 is an ovoid of G1. So, there
are precisely 3 quads through u which meet G1 in a point. If one of these
quads, say Q′, is isomorphic to W (2), then as Q′ is big in A, diam(Q′∩G1) ≥
diam(Q′)+diam(G1)−diam(A) = 1 and hence d(u, G1) ≤ 1, a contradiction.
Hence, the three quads through u meeting G1 are precisely the 3 grid-quads
of A ∼= I3 through u. Since G2 is a grid-quad through u contained in A, this
would imply that G1 ∩G2 is a point, again a contradiction.

Hence, G2 ⊆ Γ1(G1) = Γ1,C(G1). By symmetry, G1 ⊆ Γ1,C(G2). If L is a
line of G1, then πG2(L) is a line of G2 (see e.g. [6, Theorem 1.23 (3)]). So,
the map G1 → G2; x 7→ πG2(x) defines an isomorphism between the grids G1

and G2. �

Lemma 2.3 Let M be a max of In, n ≥ 3, isomorphic to DQ(2n − 2, 2).
Let L1 and L2 be two parallel lines of M at distance δ from each other and
let Gi, i ∈ {1, 2}, denote the unique grid-quad of In containing Li. Then
G1 ⊆ Γδ,C(G2) and G2 ⊆ Γδ,C(G1). Moreover, the map G1 → G2; x 7→ πG2(x)
defines an isomorphism between the grids G1 and G2.

Proof. We will prove the lemma by induction on δ. The lemma holds for
δ = 1 by Lemma 2.2 and is trivial for δ = 0. So, suppose δ ≥ 2. By Lemma
2.1, there exists a line L3 in M satisfying L1 ‖L3 ‖L2, d(L1, L3) = δ− 1 and
d(L3, L2) = 1. Let G3 denote the unique grid-quad of In through L3. Notice

8



that 〈L1, L3〉 ∼= DQ(2δ, 2), 〈L1, L2〉 ∼= DQ(2δ + 2, 2), 〈L1, L3, G1〉 ∼= Iδ+1,
〈L1, L2, G1〉 ∼= Iδ+2, G3 ⊆ 〈L1, L3, G1〉 and G2∪G3 ⊆ 〈L1, L2, G1〉. If x ∈ G2,
then d(x, G3) = 1 by Lemma 2.2 and hence 〈G3, x〉 = 〈L3, L2, G3〉 ∼= I3. If
x ∈ 〈L1, L3, G1〉, then G2 ⊆ 〈G3, x〉 ⊆ 〈L1, L3, G1〉 and hence 〈L1, L2, G1〉 ⊆
〈L1, L3, G1〉, a contradiction, since 〈L1, L3, G1〉 ∼= Iδ+1 and 〈L1, L2, G1〉 ∼=
Iδ+2. Hence, x 6∈ F := 〈L1, L3, G1〉. Every point x of G2 has distance 1
from F and hence is classical with respect to F with πF (x) = πG3(x). By
the induction hypothesis, πF (x) ∈ Γδ−1,C(G1). Hence, x ∈ Γδ,C(G1) since
d(x, y) = d(x, πF (x)) + d(πF (x), y) = d(x, πF (x)) + d(πF (x), πG1(πF (x))) +
d(πG1πF (x), y) = d(x, πG1πF (x)) + d(πG1πF (x), y) for every y ∈ G1. Since
x ∈ G2 was arbitrary, G2 ⊆ Γδ,C(G1). By symmetry, also G1 ⊆ Γδ,C(G2). If
L is a line of G1, then πG2(L) is a line of G2 (see e.g. [6, Theorem 1.23 (3)]).
So, the map G1 → G2; x 7→ πG2(x) defines an isomorphism between the grids
G1 and G2. �

Definition. The map G1 → G2; x 7→ πG2(x) defined in Lemma 2.3 is called
the projection from G1 onto G2.

Lemma 2.4 Let M be a max of In, n ≥ 3, isomorphic to DQ(2n− 2, 2), let
L1 and L2 be two parallel lines of M at distance δ from each other and let Q be
a quad of M through L2 not contained in 〈L1, L2〉. Let Gi, i ∈ {1, 2}, denote
the unique grid-quad of In containing Li. Put F := 〈L1, L2, G2〉 ∼= Iδ+2 and
A := 〈Q, G2〉 ∼= I3. Let x be a point of A.

(i) If x ∈ G2, then x ∈ Γδ,C(G1).
(ii) If x ∈ Γ1(G2), then x ∈ Γδ+1,C(G1) and πG1(x) = πG1(πG2(x)).
(iii) If x ∈ Γ2(G2), then x ∈ Γδ+2,O(G1) and Γδ+2(x)∩G1 = πG1(Γ2(x)∩

G2).

Proof. We will use the following fact.

Claim. Let x1 ∈ G1 and x2 ∈ G2 be such that d(x1, x2) = δ and let L be a
line of G2 through x2. Then 〈x1, x2, L〉 ∼= DQ(2δ + 2, 2). As a consequence,
〈x1, x2〉 ∼= DQ(2δ, 2).
Proof. Let x3 ∈ L \ {x2} and let x4 be a point of G2 at distance 2 from
x2. Then d(x1, x3) = δ + 1, d(x1, x4) = δ + 2, 〈x1, x3〉 = 〈x1, x2, L〉 and
〈x1, x4〉 = 〈x1, x2, G2〉. The convex sub-(2δ+4)-gon 〈x1, x2, G2〉 is isomorphic
to Iδ+2 since it contains the grid-quad G2. The convex sub-(2δ + 2)-gon
〈x1, x2, L〉 is isomorphic to either Iδ+1 or DQ(2δ + 2, 2). Since 〈x1, x2, G2〉
is not contained in 〈x1, x2, L〉, the unique grid-quad G2 through L is not
contained in 〈x1, x2, L〉. This implies that 〈x1, x2, L〉 ∼= DQ(2δ + 2, 2).
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We will now prove Claims (i), (ii) and (iii) of the lemma. Claim (i) follows
from Lemma 2.3.

(ii) Suppose x ∈ Γ1(G2). Then x ∈ Γ1(F ) and hence x is classical with
respect to F with πF (x) = πG2(x). This combined with the fact that πF (x) ∈
Γδ,C(G1) implies that x ∈ Γδ+1,C(G1) and πG1(x) = πG1(πG2(x)).

(iii) Suppose x ∈ Γ2(G2). Let u2 be an arbitrary point of Γ2(x)∩G2 and
let v be one of the two neighbours of x and u2. Put u1 := πG1(u2) and let L
be an arbitrary line of G1 through u1. Then 〈u1, u2, L〉 ∼= DQ(2δ + 2, 2) by
the above claim and 〈u1, u2, L, v〉 is isomorphic to either Iδ+2 or DQ(2δ+4, 2)
since v 6∈ 〈u1, u2, L〉 ⊆ F . If G1 ⊆ 〈u1, u2, L, v〉, then as diam(〈u1, u2, L, v〉) =
diam(〈u1, u2, G1〉) = δ + 2, F = 〈u1, u2, G1〉 = 〈u1, u2, L, v〉, a contradiction,
since v 6∈ F . Hence, the unique grid-quad G1 through L is not contained in
〈u1, u2, L, v〉. This implies that 〈u1, u2, L, v〉 ∼= DQ(2δ +4, 2). It follows that
the unique grid-quad 〈u2, x〉 through u2v ⊆ 〈u1, u2, L, v〉 is not contained in
〈u1, u2, L, v〉. So, d(x, 〈u1, u2, L, v〉) = 1 and x is classical with respect to
〈u1, u2, L, v〉. The unique point of 〈u1, u2, L, v〉 collinear with x is v. Now,
v ∈ Γδ+1,C(G1) and πG1(v) = πG1(πG2(v)) = πG1(u2) = u1. It follows that
d(x, u1) = δ + 2 and d(x, w) = δ + 3 for every w ∈ L \ {u1}. Since L
was an arbitrary line of G1 through u1, we have d(x, w) = δ + 3 for every
w ∈ (G1∩u⊥1 )\{u1}. Since u2 was an arbitrary point of Γ2(x)∩G2, d(x, u) =
δ + 2 for every u ∈ πG1(Γ2(x) ∩ G2) and d(x, w) = δ + 3 for every w ∈
G1 \ πG1(Γ2(x) ∩G2). This implies that x ∈ Γδ+2,O(G1) and Γδ+2(x) ∩G1 =
πG1(Γ2(x) ∩G2). �

Lemma 2.5 Let M be a max of In, n ≥ 3, isomorphic to DQ(2n − 2, 2)
and let L1 and L2 be two non-parallel lines of M at distance δ from each
other. Let x1 and x2 be the unique points of L1 and L2, respectively, such
that d(x1, x2) = δ. Let Gi, i ∈ {1, 2}, denote the unique grid-quad of In

containing Li. Then
(i) 〈G1, G2〉 has diameter δ + 3.
(ii) Let i ∈ {1, 2}. Then every point x ∈ Gi ∩ x⊥i is classical with respect

to G3−i and πG3−i
(x) = x3−i.

(iii) Let i ∈ {1, 2}. Then every point x of Gi \x⊥i belongs to Γδ+2,O(G3−i)
and Γδ+2(x) ∩G3−i is an ovoid of G3−i containing x3−i.

(iv) The two ovoids O1, O
′
1 of G1 through x1 and the two ovoids O2, O

′
2

of G2 through x2 can be chosen in such a way that d(x, y) = δ + 2 for every

(x, y) ∈
(
(O1\{x1})×(O2\{x2})

)
∪

(
(O′

1\{x1})×(O′
2\{x2})

)
and d(x, y) =
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δ+3 for every (x, y) ∈
(
(O1\{x1})×(O′

2\{x2})
)
∪

(
(O′

1\{x1})×(O2\{x2})
)
.

Proof. Let L3 denote a line through x2 parallel with L1 (i.e. a line of
〈L1, x2〉 through x2 not contained in 〈x1, x2〉) and let G3 denote the unique
grid-quad of In through L3. Since G2 and G3 are two different grid-quads
through x2 (they have different intersections with M), G2 ∩ G3 = {x2}.
We can apply Lemma 2.4 (with (L1, L3) fulfilling the role of (L1, L2) and
〈L2, L3〉 the role of Q). By Lemma 2.4 (i)+(ii)+(iii), the maximal distance
between a point of G1 and a point of G2 is equal to δ+3, proving Claim (i). If
x ∈ G2∩x⊥2 , then by Lemma 2.4 (i)+(ii), x is classical with respect to G1 and
πG1(x) = πG1(πG3(x)) = πG1(x2) = x1. This proves Claim (ii) (taking into
account a straightforward symmetry). If x ∈ G2\x⊥2 , then by Lemma 2.4 (iii),
x2 ∈ Γδ+2,O(G1) and the ovoid Γδ+2(x)∩G1 = πG1(Γ2(x)∩G3) of G1 contains
the point πG1(x2) = x1. This proves Claim (iii). If L = {πL(x2), u, v} is a
line of G2 not containing x2, then Γδ+2(u)∩G1 and Γδ+2(v)∩G1 are the two
ovoids of G1 through x1 (see e.g. [6, Theorem 1.23 (7)]). A similar remark
holds for lines of G1 not containing x1. Claim (iv) now readily follows. �

2.2 The relations R and R′

Consider in the near 2n-gon In, n ≥ 3, a big max M ∼= DQ(2n − 2, 2). Let
O denote the set of all ovoids in all grid-quads which intersect M in a line.
For every O ∈ O, let GO denote the unique grid-quad of In containing O and
put LO := GO ∩M . We now define a relation R ⊆ O ×O. Let O1, O2 ∈ O.

If LO1 = LO2 , then (O1, O2) ∈ R if and only if O1 = O2 or O1 ∩O2 = ∅.
Suppose LO1 and LO2 are non-parallel lines at distance δ from each other.

Let x1 and x2 be the unique points of respectively LO1 and LO2 such that

d(x1, x2) = δ. Let Õi, i ∈ {1, 2}, denote the unique ovoid of GOi
satisfying

xi ∈ Õi and |Oi ∩ Õi| ∈ {0, 3}. If δ is even, then we say that (O1, O2) ∈ R if

and only if every point of Õ1 \ {x1} has distance δ + 2 from every point of

Õ2 \ {x2} (cf. Lemma 2.5 (iv)). If δ is odd, then we say that (O1, O2) ∈ R if

and only if every point of Õ1 \ {x1} has distance δ + 3 from every point of

Õ2 \ {x2}.
Suppose LO1 and LO2 are parallel lines at distance δ from each other.

Let O′
1 denote the ovoid πG2(O1) of G2. (Recall that G2 ⊆ Γδ,C(G1), see

Lemma 2.3). If δ is even, then we say that (O1, O2) ∈ R if and only if
|O′

1 ∩ O2| ∈ {0, 3}. If δ is odd, then we say that (O1, O2) ∈ R if and only if

11



|O′
1 ∩O2| = 1.

We now define another relation R′ on the set O. If O1, O2 ∈ O, then we say
that (O1, O2) ∈ R′ if and only if (O1, O2) ∈ R and 〈LO1 , LO2〉 is a line or a
quad.

The aim of this section is to prove the following proposition.

Proposition 2.6 The relation R is an equivalence relation with two equiv-
alence classes. Moreover, R is the smallest equivalence relation on the set O
for which R′ ⊆ R.

2.3 Proof of Proposition 2.6

Notice that the 6 ovoids of a (3× 3)-grid can be divided into 2 classes such
that two ovoids belong to a different class (respectively the same class) if
they intersect in precisely 1 point (respectively 0 or 3 points). Combining
this fact with the definition of the relation R, we can immediately say that

Lemma 2.7 Let O1, O
′
1, O2, O

′
2 ∈ O such that GO1 = GO′

1
, GO2 = GO′

2
and

(O1, O2) ∈ R.
(i) If |O1 ∩O′

1|, |O2 ∩O′
2| ∈ {0, 3}, then (O′

1, O
′
2) ∈ R.

(ii) If |O1 ∩O′
1| = |O2 ∩O′

2| = 1, then (O′
1, O

′
2) ∈ R.

(iii) If |O1 ∩O′
1| = 1 and |O2 ∩O′

2| ∈ {0, 3}, then (O′
1, O

′
2) 6∈ R. �

For every line L of In, let GL denote the unique grid-quad of In containing
L. The following lemma is precisely Lemma 3.1 of De Bruyn [5].

Lemma 2.8 ([5]) Let Q be a W (2)-quad of M and let L1, L2, L3 be three
lines contained in Q. For every i ∈ {1, 2, 3}, let Oi be an ovoid of the
grid-quad GLi

. Suppose that (O1, O2) ∈ R and (O2, O3) ∈ R. Then also
(O1, O3) ∈ R. �

Lemma 2.9 Let L1 and L2 be two parallel lines of M at distance δ from
each other, let Q be a quad of M through L2 not contained in 〈L1, L2〉 and
let L3 be a line of Q. For every i ∈ {1, 2, 3}, let Oi be an ovoid of the grid-
quad Gi := GLi

. Suppose (O1, O2) ∈ R. Then (O1, O3) ∈ R if and only if
(O2, O3) ∈ R.

12



Proof. Let π denote the projection from G1 onto G2. Notice that since
(O1, O2) ∈ R, we have

(∗) |O2 ∩ π(O1)| ∈ {0, 3} if δ is even and |O2 ∩ π(O1)| = 1 if δ is odd.

We will distinguish three cases: (1) L2 = L3; (2) L2 ∩ L3 = ∅; (3) L2 ∩ L3 is
a singleton.

Suppose first that L2 = L3. Then as we have already noticed in Lemma
2.7, (O1, O3) ∈ R if and only if (O2, O3) ∈ R.

Suppose next that L2∩L3 = ∅. Let π′ be the projection from G2 onto G3.
Then by Lemma 2.2 and Lemma 2.4(ii), π′π = π′ ◦ π equals the projection
from G1 onto G3. We have (O2, O3) ∈ R if and only if |π′(O2) ∩ O3| = 1.
By (∗) this happens if and only if |O3 ∩ π′π(O1)| = 1 if δ is even and
|O3 ∩ π′π(O1)| ∈ {0, 3} if δ is odd. Since d(L1, L3) = δ + 1 and L1‖L3, the
latter condition is equivalent with (O1, O3) ∈ R.

Suppose finally that L2 ∩ L3 is a singleton {x}. Put x′ = πG1(x). Let O′
1

denote the unique ovoid of G1 through x′ such that |O1∩O′
1| ∈ {0, 3} and let

O′
2 denote the unique ovoid of G2 through x such that |O2∩O′

2| ∈ {0, 3}. By
Lemma 2.7, (O′

1, O
′
2) ∈ R. Let O′

3 denote the unique ovoid of G3 through x
such that |O3 ∩ O′

3| ∈ {0, 3}. Then (O1, O3) ∈ R if and only if (O′
1, O

′
3) ∈ R

and (O2, O3) ∈ R if and only if (O′
2, O

′
3) ∈ R. Now, (O′

2, O
′
3) ∈ R if and

only if every point of O′
3 \ {x} has distance 2 from every point of O′

2 \ {x}.
By Lemma 2.4 (iii), this precisely happens when every point of O′

3 \ {x}
has distance δ + 2 from every point of π−1(O′

2) \ {x′}. Since (O′
1, O

′
2) ∈ R,

π−1(O′
2) = O′

1 if δ is even. If δ is odd, then π−1(O′
2) is the other ovoid of G1

through x′. So, (O′
2, O

′
3) ∈ R if and only if (O′

1, O
′
3) ∈ R finishing the proof

of the lemma. �

Lemma 2.10 Let O,O′ ∈ O with (O, O′) ∈ R. Then there exist elements
O1, O2, . . . , Ok ∈ O (for some k ≥ 1) such that O1 = O, Ok = O′ and
(Oi, Oi+1) ∈ R′ for every i ∈ {1, . . . , k − 1}.

Proof. Put G = GO, G′ = GO′ , L = LO and L′ = LO′ . We will consider
two cases: (1) the lines L and L′ are parallel; (2) the lines L and L′ are not
parallel.

(1) Suppose L and L′ are parallel. If d(L, L′) ≤ 1, then (O,O′) ∈ R
implies (O,O′) ∈ R′ and we are done.

Suppose therefore that d(L, L′) ≥ 2. Let L′′ be a line of M such that
d(L, L′′) = d(L, L′) − 1, d(L′, L′′) = 1 and L ‖L′′ ‖L′ (cf. Lemma 2.1) and
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put G′′ := GL′′ . Let Q be the quad 〈L′′, L′〉. Then Q is not contained
in 〈L, L′′〉. So we can apply Lemma 2.9. Let O′′ be an ovoid of G′′ such
that (O,O′′) ∈ R. Then by Lemma 2.9 and the fact that (O, O′) ∈ R,
(O′′, O′) ∈ R, i.e. (O′′, O′) ∈ R′. By the induction hypothesis, there exist
O1, O2, . . . , Ok′ ∈ O such that O1 = O, Ok′ = O′′ and (Oi, Oi+1) ∈ R′ for
every i ∈ {1, . . . , k′− 1}. Now, (O′′, O′) ∈ R′. So, if we put Ok′+1 = O′, then
we are done.

(2) Suppose L and L′ are not parallel. Again, we will prove the claim by
induction on d(L, L′).

Suppose first that d(L, L′) = 0. Then (O, O′) ∈ R implies (O, O′) ∈ R′

and we are done.
Suppose next that δ := d(L, L′) ≥ 1. Let x and x′ be the unique points

of L and L′, respectively, such that d(x, x′) = δ. Let L′′ be a line of M
through x′ parallel with L, i.e. a line through x′ contained in 〈x′, L〉, but
not in 〈x, x′〉. Let O′′ be an ovoid of G′′ := GL′′ such that (O, O′′) ∈ R.
Now, put Q := 〈L′′, L′〉. Then the quad Q is not contained in 〈L, L′′〉. So,
as before we can apply Lemma 2.9 and conclude that (O′′, O′) ∈ R. Now,
by (1) there exist elements O1, O2, . . . , Ok′ ∈ O such that O1 = O, Ok′ = O′′

and (Oi, Oi+1) ∈ R′ for every i ∈ {1, . . . , k′− 1}. Since (O′′, O′) ∈ R′, we can
take Ok′+1 = O′ and we are done. �

Lemma 2.11 Let O1, O2, O3 ∈ O such that (O1, O2) ∈ R and (O2, O3) ∈ R′.
Then (O1, O3) ∈ R.

Proof. Fix O1 and put L1 := LO1 . If L2 and L3 are two lines of M such that
diam(〈L2, L3〉) ∈ {1, 2}, then we say that Property P (L2, L3) is satisfied if
the conclusion of the lemma holds for each triple (O′

1, O
′
2, O

′
3) ∈ O ×O ×O

for which O′
1 = O1, LO′

2
= L2 and LO′

3
= L3.

Claim 1. P (L, L) is satisfied for every line L of M .
Proof. This follows from Lemma 2.7.

Claim 2. If L2 and L3 are lines of M such that Property P (L2, L3) is
satisfied, then also Property P (L3, L2) is satisfied.
Proof. Let O′

3 and O′
2 be elements of O such that (O1, O

′
3) ∈ R, (O′

3, O
′
2) ∈

R′, LO′
3

= L3 and LO′
2

= L2. We need to show that (O1, O
′
2) ∈ R. Let O′′

2 and
O′′

3 be elements of O such that (O1, O
′′
2) ∈ R, (O′′

2 , O
′′
3) ∈ R′, LO′′

2
= L2 and

LO′′
3

= L3. By Property P (L2, L3), (O1, O
′′
3) ∈ R. Since also (O1, O

′
3) ∈ R,

we necessarily have (O′
3, O

′′
3) ∈ R by Lemma 2.7. This combined with the
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facts that (O′
2, O

′
3) ∈ R and (O′′

2 , O
′′
3) ∈ R yields (O′′

2 , O
′
2) ∈ R by Lemma

2.7. Applying Lemma 2.7 to the facts that (O1, O
′′
2) ∈ R and (O′′

2 , O
′
2) ∈ R

yields (O1, O
′
2) ∈ R.

Claim 3. Let Q be a quad of M and let L2, L3, L4 be three lines of Q. If Prop-
erties P (L2, L3) and P (L3, L4) are satisfied, then also Property P (L2, L4) is
satisfied.
Proof. Let O′

2 and O′
4 be elements of O such that (O1, O

′
2) ∈ R, (O′

2, O
′
4) ∈

R′, LO′
2

= L2 and LO′
4

= L4. We need to show that (O1, O
′
4) ∈ R. Let O′

3 be
an element of O such that (O′

2, O
′
3) ∈ R′ and LO′

3
= L3. Then by Lemma 2.8,

also (O′
3, O

′
4) ∈ R′. By Property P (L2, L3) and the facts that (O1, O

′
2) ∈ R

and (O′
2, O

′
3) ∈ R′, we have that (O1, O

′
3) ∈ R. By Property P (L3, L4) and

the facts that (O1, O
′
3) ∈ R and (O′

3, O
′
4) ∈ R′, we have (O1, O

′
4) ∈ R.

If Q is a quad of M , then by De Bruyn [6, Theorem 1.23], either πQ(L1) is
a point or a line. In the former case, no line of Q is parallel with L1. In
the latter case, L1 ⊆ Γδ,C(Q) where δ := d(L1, Q). Lemma 2.11 now follows
from Claims 4 and 5 below.

Claim 4. If Q is a quad of M such that L′
1 := πQ(L1) is a line of Q, then

Property P (L2, L3) is satisfied for any two lines L2 and L3 of Q.
Proof. Let O′

2 and O′
3 be elements of O such that (O1, O

′
2) ∈ R, (O′

2, O
′
3) ∈

R′, LO′
2

= L2 and LO′
3

= L3. We need to show that (O1, O
′
3) ∈ R. The line L′

1

is parallel with L1 and the quad Q is not contained in 〈L1, L
′
1〉. Let O′

1 denote
an ovoid of GL′

1
such that (O1, O

′
1) ∈ R. Since also (O,O′

2) ∈ R, (O′
1, O

′
2) ∈ R

by Lemma 2.9. This in combination with (O′
2, O

′
3) ∈ R and Lemma 2.8

gives (O′
1, O

′
3) ∈ R. By Lemma 2.9 and the facts that (O1, O

′
1) ∈ R and

(O′
1, O

′
3) ∈ R, we have (O1, O

′
3) ∈ R.

Claim 5. If Q is a quad of M such that πQ(L1) is a singleton {x2}, then
Property P (L2, L3) is satisfied for any two lines L2 and L3 of Q.
Proof. In view of Claims 1, 2 and 3, it suffices to prove this if L2 and L3

are two disjoint lines of Q such that x2 ∈ L2. Suppose O1, O2 ∈ O such that
(O1, O2) ∈ R, (O2, O3) ∈ R′, LO2 = L2 and LO3 = L3. Put δ := d(L1, Q).
Recall that no line of Q is parallel with L1. Let x3 denote the unique point
of L3 collinear with x2 and let x1 denote the unique point of L1 such that
d(x1, x2) = δ and d(x1, x3) = δ + 1. Let K2 denote a line through x2 parallel
with L1 and let K3 be a line through x3 different from x2x3 and contained
in the quad 〈x3, K2〉. Then d(K2, L1) = δ, d(K3, L1) = δ + 1 and K3‖L1.
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Put Qi := 〈Ki, Li〉, i ∈ {2, 3}. Since Li, i ∈ {2, 3}, contains a point a
point at distance δ − 1 + i from L1, Qi is not contained in 〈L1, Ki〉. Now,
let O′

i, i ∈ {1, 2, 3}, denote the unique element of O such that LO′
i

= Li,
xi ∈ O′

i and |Oi ∩ O′
i| ∈ {0, 3}. Since (O1, O2) ∈ R and (O2, O3) ∈ R′,

(O′
1, O

′
2) ∈ R and (O′

2, O
′
3) ∈ R′ by Lemma 2.7. Now, let O′′

2 denote the
unique element of O such that LO′′

2
= K2, x2 ∈ O′′

2 and (O′
1, O

′′
2) ∈ R. By

Lemma 2.4 (iii) and the fact that (O′
1, O

′
2) ∈ R, every point of O′

2 \ {x2} has
distance 2 from every point of O′′

2 \ {x2}. By Lemma 2.4 (iii) and the fact
that (O′

2, O
′
3) ∈ R′, every point of O′′

2 \ {x2} has distance 4 from every point
of O′

3 \ {x3}. Now, let O′′
3 be the unique element of O such that LO′′

3
= K3,

x3 ∈ O′′
3 and (O′′

2 , O
′′
3) ∈ R′. Then by Lemma 2.4 (iii) and the fact that every

point of O′
3 \ {x3} has distance 4 from every point of O′′

2 \ {x2}, it follows
that every point of O′

3 \ {x3} has distance 2 from every point of O′′
3 \ {x3}.

Since (O′
1, O

′′
2) ∈ R and (O′′

2 , O
′′
3) ∈ R′, it follows that (O′

1, O
′′
3) ∈ R by Claim

4. This together with the fact that every point of O′
3 \ {x3} has distance 2

from every point of O′′
3 \{x3} implies that (O′

1, O
′
3) ∈ R (recall again Lemma

2.4 (iii)). So, (O1, O3) ∈ R and Property P (L2, L3) is satisfied. �

From Lemmas 2.10 and 2.11, it now follows that R is the smallest equivalence
relation on the set O satisfying R′ ⊆ R. By Lemma 2.7 there are precisely
two equivalence classes. This proves Proposition 2.6.

3 Proof of Theorem 1.1

Consider in the near 2n-gon In, n ≥ 3, a big max M ∼= DQ(2n − 2, 2). Let
O denote the set of all ovoids in all grid-quads which intersect M in a line.
Then by Proposition 2.6 an equivalence relation R can be defined on the set
O. Put O = O1 ∪ O2 where O1 and O2 are the two equivalence classes of
R. We now define a map θ between the point-set of In and the point-set of
S1(n).

• If x ∈ M , then we define θ(x) := (x, x).

• If x ∈ In \M , then let Lx denote the unique line through x meeting M
in a point and let Gx denote the unique grid-quad of In containing Lx.
Notice that Gx ∩M is a line since M is big in In. Now, there exists a
unique ovoid O ∈ O1 such that x ∈ O ⊆ Gx. Put Lx ∩M = {x1} and
O ∩M = {x2}. Then we define θ(x) := (x1, x2).
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Lemma 3.1 θ is a bijection between the set of points of In and the set of
points of S1(n).

Proof. Let (x1, x2) be an arbitrary point of S1(n) and consider the equation
θ(x) = (x1, x2).

If x1 = x2, then x = x1 is the unique solution of that equation.
Suppose therefore that x1 6= x2. Let G denote the unique grid-quad

of In containing x1x2 and let L denote the unique line of G through x1

different from x1x2. There exists a unique O ∈ O1 such that x2 ∈ O ⊆ G.
Put O ∩ L = {u}. Then x = u is the unique solution of the equation
θ(x) = (x1, x2). �

We now divide the set of lines of In into 4 classes.
A line of In is said to be of Type I if it is contained in M .
A line of In is said to be of Type II if it intersects M in a unique point.
A line L of In is said to be of Type III if it is disjoint from M and if

〈L, πM(L)〉 is a grid.
A line L of In is said to be of type IV if it is disjoint from M and if

〈L, πM(L)〉 is a W (2)-quad.

Theorem 1.1 is a consequence of the following lemma.

Lemma 3.2 (a) θ induces a bijection between the set of lines of Type I of
In and the set of lines of Type I of S1(n).

(b) θ induces a bijection between the set of lines of Type II of In and the
set of lines of Type II of S1(n).

(c) θ induces a bijection between the set of lines of Type III of In and the
set of lines of Type III of S1(n).

(d) θ induces a bijection between the set of lines of Type IV of In and the
set of lines of Type IV of S1(n).

Proof. (a) Obviously, the map {x, y, z} 7→ {(x, x), (y, y), (z, z)} defines a
bijection between the set of lines of Type I of In and the set of lines of Type
I of S1(n).

(b) Let L = {x, y, z} be a line of Type II of In and suppose x is the unique
point of L contained in M . Let G denote the unique grid-quad of In contain-
ing L. Then G∩M is a line {x, y′, z′}. Clearly, θ(L) = {(x, x), (x, y′), (x, z′)}
is a line of Type II of S1(n).
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Conversely, suppose that {(x, x), (x, y′), (x, z′)} is a line of Type II of
S1(n). Let G denote the unique grid-quad of In containing the line {x, y′, z′}
and let L denote the unique line of G through x different from {x, y′, z′}.
Then L is the unique line of In which is mapped by θ on the line {(x, x), (x, y′),
(x, z′)} of S1(n).

(c) Let {x, y, z} be a line of Type III of In and let G be the grid-quad
〈L, πM(L)〉 of In. Put θ(x) = (x1, x2), θ(y) = (y1, y2) and θ(z) = (z1, z2).
Then πM(L) = {x1, y1, z1}, x2, y2, z2 ∈ πM(L), x1 6= x2, y1 6= y2 and z1 6= z2.
Let Ox, Oy and Oz be the unique elements of O1 such that x ∈ Ox ⊆ G,
y ∈ Oy ⊆ G and z ∈ Oz ⊆ G. Then {Ox, Oy, Oz} is a partition of G. Since
Ox ∩ M = {x2}, Oy ∩ M = {y2} and Oz ∩ M = {z2}, πM(L) = {x2, y2, z2}.
Now, since x1 6= x2, y1 6= y2 and z1 6= z2, θ(L) must be a line of Type III of
S1(n).

Conversely, let {(x1, x2), (y1, y2), (z1, z2)} be a line of Type III of S1(n).
Let x denote the unique point of In for which θ(x) = (x1, x2). Then x is
contained in the unique grid-quad G of In containing the line {x1, y1, z1} =
{x2, y2, z2}. Let L denote the unique line of G through x different from xx1.
Then L is the unique line of In which is mapped by θ on {(x1, x2), (y1, y2), (z1,
z2)}.

(d) Let L = {x, y, z} be a line of Type IV of In. Put θ(x) = (x1, x2),
θ(y) = (y1, y2) and θ(z) = (z1, z2). Then πM(L) = {x1, y1, z1}. Recall that
Q := 〈L, πM(L)〉 is a W (2)-quad. Let Gx denote the unique grid-quad of
In containing the line Lx = xx1 and let A denote the hex 〈Gx, Q〉. Since A
contains a grid-quad, A ∼= I3. So, the unique grid-quads Gy and Gz through
respectively Ly = yy1 and Lz = zz1 are also contained in A. Now, let
Q′ denote the unique W (2)-quad of A ∼= I3 through Lz different from Q.
Then the reflection (in A) of Gx about Q′ is a grid-quad through Ly which
necessarily coincides with Gy. So, the lines Gx ∩ M , Gy ∩ M and Q′ ∩ M
are contained in a grid-quad. It follows that the lines Gx ∩M , Gy ∩M and
Gz∩M are not contained in a grid-quad. Hence, the points x1, x2, y1, y2, z1, z2

are contained in the W (2)-quad A ∩ M , but not in a grid-quad. Now, let
Ox, Oy and Oz denote the unique elements of O1 such that x ∈ Ox ⊆ Gx,
y ∈ Oy ⊆ Gy and z ∈ Oz ⊆ Gz. Let O′

x denote the ovoid πGy(Ox) of Gy (cf.
Lemma 2.2). Since (Ox, Oy) ∈ R, |O′

x ∩ Oy| = 1. Hence, O′
x ∩ Oy = {y1}.

This implies that x2 6∼ y2. In a similar way one shows that y2 6∼ z2 and
x2 6∼ z2. It is now clear that θ(L) is a line of Type IV of S1(n).
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Conversely, suppose that {(x1, x2), (y1, y2), (z1, z2)} is a line of Type IV of
S1(n). Let Q denote the unique W (2)-quad containing x1, x2, y1, y2, z1 and
z2. Let x, y and z denote the unique points of In for which θ(x) = (x1, x2),
θ(y) = (y1, y2) and θ(z) = (z1, z2). Let Gx (Gy, respectively Gz) denote
the unique grid-quad of In containing x1x2 (y1y2, respectively z1z2). Then
x ∈ Gx, y ∈ Gy and z ∈ Gz. Let y′ denote the unique point of Gy collinear
with x (cf. Lemma 2.2) and let L be the line xy′. Since πM(y′) ∈ y1y2 and
πM(y′) ∼ πM(x) = x1, we have πM(y′) = y1. So, θ(y′) = (y1, y

′
2) where y′2 is

some point of y1y2\{y1}. By (a), (b) and (c), we know that L is a line of Type
IV of In and by the first paragraph of (d), we know that x2 6∼ y′2. Hence,
y′2 = y2 and y′ = y. It is also clear that the third point of the line xy must be
mapped to the point (z1, z2). So, L = {x, y, z}. By the above discussion, L
is the unique line of In which is mapped by θ on {(x1, x2), (y1, y2), (z1, z2)}.
�

4 Proof of Theorem 1.2

Let P denote the (common) point-set of S1(n) and S2(n). For every point
x of DQ(2n − 2, 2), we define θ[(x, x)] = (x, x). For every (x, y) ∈ P with
x 6= y, we define θ[(x, y)] = (z, y), where z denotes the third point on the
line xy. Obviously, θ2 = IdP . So, θ is a permutation of the set P . We show
that θ defines an isomorphism from S1(n) to S2(n).

Let L = {x, y, z} be an arbitrary line of DQ(2n− 2, 2). Then θ maps the
line {(x, x), (y, y), (z, z)} of S1(n) to the line {(x, x), (y, y), (z, z)} of S2(n),
the line {(x, x), (x, y), (x, z)} of S1(n) to the line {(x, x), (z, y), (y, z)} of S2(n)
and the line {(x, y), (y, z), (z, x)} of S1(n) to the line {(z, y), (x, z), (y, x)} of
S2(n). Clearly, every line {(x1, y1), (x2, y2), (x3, y3)} of S2(n) where {x1, x2,
x3} = {y1, y2, y3} is a line of DQ(2n− 2, 2) can be obtained in this way.

Now, let {(x, x′), (y, y′), (z, z′)} be an arbitrary line of Type IV of S1(n).
Let x′′ (y′′, respectively z′′) denote the unique third point of the line xx′ (yy′,
respectively zz′). We show that x′′ is collinear with y′. Since y is the unique
point of {x, y, z} collinear with y′, the points x and y′ are not collinear. Now,
also x′ and y′ are not collinear. It follows that x′′ and y′ are collinear. In
a completely similar way one shows that x′′ ∼ z′, y′′ ∼ x′, y′′ ∼ z′, z′′ ∼ x′

and z′′ ∼ y′. This implies that {x′′, y′′, z′′} and {x′, y′, z′} are orthogonal
hyperbolic lines of DQ(2n − 2, 2). So, θ maps lines of Type IV of S1(n) to
lines of S2(n).
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Conversely, let {(x′′, x′), (y′′, y′), (z′′, z′)} be a line of S2(n), where {x′′, y′′,
z′′} and {x′, y′, z′} are two orthogonal hyperbolic lines of DQ(2n− 2, 2). Let
x (y, respectively z) denote the unique third point of the line x′x′′ (y′y′′,
respectively z′z′′). The point x is not collinear with y′ (since y′ ∼ x′′) and
y′′ (since y′′ ∼ x′) and hence is collinear with y. In a similar way, one shows
that x ∼ z and y ∼ z. So, {x, y, z} is a line of DQ(2n− 2, 2). Since x′, y′, z′

are mutually noncollinear points of DQ(2n − 2, 2), the points x, y, z, x′, y′

and z′ cannot be contained in a grid. It follows that {(x, x′), (y, y′), (z, z′)}
is a line of S1(n) which is mapped by θ to the line {(x′′, x′), (y′′, y′), (z′′, z′)}
of S2(n). This finishes the proof that θ defines an isomorphism from S1(n)
to S2(n).

5 Proof of Theorem 1.4

Lemma 5.1 The points of S2(n) at distance 1 from the point (x, x) are pre-
cisely the points (y, y) where y ∈ Γ1(x) and the points (y, z) where {x, y, z}
a line of DQ(2n− 2, 2) through x.

Proof. Let (y, z) be a point of S2(n) at distance 1 from (x, x). Then y ∈
x⊥ \ {x} and z ∈ {x, y}⊥ \ {x}. If {x, y, z′} denotes the line of DQ(2n− 2, 2)
containing x and y, then z ∈ {y, z′}. This proves the lemma. �

Lemma 5.2 Let {x, y, z} be a line of DQ(2n− 2, 2). The points of S2(n) at
distance 1 from the point (x, y) are precisely the points (z, z), (y, x), (y, z),
(z, x) and the points (u, v) where u ∈ Γ1(y)∩Γ2(x) and v ∈ Γ1(u)∩Γ1(x)\{y}.

Proof. Let (u, v) be a point of S2(n) at distance 1 from the point (x, y).
Then u ∈ y⊥ \ {x} and v ∈ {u, x}⊥ \ {y}. If u ∈ {x, y, z}, then u ∈ {y, z}
and v ∈ {u, x}⊥ \ {y} = {x, z}. This gives rise to the points (z, z), (y, x),
(y, z) and (z, x). If u 6∈ {x, y, z}, then u ∈ Γ1(y) ∩ Γ2(x) and v is one of the
two points contained in Γ1(u) ∩ Γ1(x) \ {y}. �

Lemma 5.3 Let {x, y, z} be a line of DQ(2n− 2, 2). Then the points (x, x)
and (x, y) of S2(n) lie at distance 2 from each other and have precisely two
common neighbours, namely the points (z, z) and (y, z).

Proof. Clearly, the points (x, x) and (x, y) lie at distance at least 2 from
each other. Suppose (u, v) is a common neighbour of (x, x) and (x, y). Then
u ∈ {x, y}⊥ = {x, y, z} and u 6= x. So, u ∈ {y, z}. Since v ∈ {x, u}⊥ =
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{x, y, z} and v 6∈ {x, y}, v = z. It follows that the points (x, x) and (x, y)
have precisely two common neighbours, namely the points (y, z) and (z, z).
�

Lemma 5.4 Let {x, y, z} be a line of DQ(2n− 2, 2). Then the points (x, y)
and (x, z) of S2(n) lie at distance 2 from each other and have precisely two
common neighbours, namely the points (y, x) and (z, x).

Proof. Clearly, the points (x, y) and (x, z) lie at distance at least 2 from
each other. Suppose (u, v) is a common neighbour of (x, y) and (x, z). Then
u ∈ {y, z}⊥⊥ = {x, y, z} and u 6= x. So, u ∈ {y, z}. Since v ∈ {x, u}⊥ =
{x, y, z} and v 6∈ {y, z}, v = x. It follows that the points (x, y) and (x, z)
have precisely two common neighbours, namely (y, x) and (z, x). �

Lemma 5.5 Let x, y and z be points of DQ(2n − 2, 2) such that d(x, y) =
d(x, z) = 1 and d(y, z) = 2. Put {y, z}⊥ = {x, u1, u2} and {y, z}⊥⊥ =
{y, z, v}. Then the points (x, y) and (x, z) of S2(n) have precisely two com-
mon neighbours, namely the points (u1, v) and (u2, v).

Proof. Clearly, the points (x, y) and (x, z) of S2(n) lie at distance at least
2 from each other. Suppose (u′, v′) is a common neighbour of (x, y) and
(x, z). Then u′ ∈ {y, z}⊥ = {x, u1, u2} and u′ 6= x. So, u′ ∈ {u1, u2}. Since
v′ ∈ {x, u′}⊥ = {y, z, v} and v′ 6∈ {y, z}, v′ = v. It follows that the points
(x, y) and (x, z) have two common neighbours, namely (u1, v) and (u2, v). �

Lemma 5.6 For every point x of DQ(2n−2, 2), let P1(x) = {(x, y) | y ∈ x⊥}
and P2(x) = {(y, x) | y ∈ x⊥}. Then P1(x) and P2(x) are projective sets of
S2(n) ∼= In. For every point (x, y) of S2(n), P1(x) and P2(y) are the two
projective sets of S2(n) containing (x, y).

Proof. Let (x, y) be an arbitrary point of S2(n). We have |P1(x)| = |P2(y)| =
2n − 1. By Lemmas 5.3, 5.4 and 5.5, if u and v are two distinct points of
P1(x), then d(u, v) = 2 and 〈u, v〉 is a grid-quad. By symmetry, the same
conclusion also holds for two distinct points u and v of P2(y). Since there
are precisely 2n−1 − 1 grid-quads through every point of In, P1(x) and P2(y)
can be constructed in the following way: let Gj, j ∈ {1, . . . , 2n−1 − 1},
denote all the 2n−1 − 1 grid-quads of S2(n) through (x, y), let O

(1)
1 and O

(2)
1

denote the two ovoids of G1 containing (x, y) and let O
(i)
j , i ∈ {1, 2} and

j ∈ {2, . . . , 2n−1− 1}, denote the set of points of Gj at distance 2 from every

point of O
(i)
1 \ {(x, y)}. Then {P1(x), P2(y)} = {

⋃2n−1−1
j=1 O

(i)
j | i ∈ {1, 2}}.
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Now, let P1 and P2 denote the two projective sets of S2(n) through the
point (x, y). Then |P1| = |P2| = 2n− 1 and if u and v are two distinct points
of Pi, i ∈ {1, 2}, then d(u, v) = 2 and 〈u, v〉 is a grid-quad. Similarly, as

above, one then shows that {P1, P2} = {
⋃2n−1−1

j=1 O
(i)
j | i ∈ {1, 2}}. Hence, we

have {P1(x), P2(y)} = {P1, P2}. This proves the lemma. �

The following proposition is precisely Theorem 1.4.

Proposition 5.7 The point-line geometry S3(n) is isomorphic to DQ(2n, 2).

Proof. Consider the natural embedding of In into DQ(2n, 2). The dual
polar space DQ(2n, 2) can be reconstructed in the following way from the
near 2n-gon In: the points of DQ(2n, 2) not contained in In are in bijective
correspondence with the projective sets of In, the lines of DQ(2n, 2) not
contained in In are in bijective correspondence with the sets {x, P1, P2} where
x is a point of In and where P1 and P2 are the two projective sets of In

containing x. The proposition now follows from Theorem 1.2 and Lemma
5.6. �
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