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Abstract

We survey the main results on ovoids and spreads, large maximal
partial ovoids and large maximal partial spreads, and on small maximal
partial ovoids and small maximal partial spreads in classical finite polar
spaces. We also discuss the main results on the spectrum problem on
maximal partial ovoids and maximal partial spreads in classical finite
polar spaces.
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1 Classical finite polar spaces

The classical finite polar spaces play an important role in incidence geometry.
They consist of the non-singular quadrics, the non-singular hermitian varieties,
and the symplectic spaces in projective spaces of odd dimension (see [7] and [27]
for an introduction to polar spaces).

The interest in these incidence structures follows first of all from the fact
that they are classical geometrical objects. The study of substructures con-
tained in these classical finite polar spaces also contributes to their geometrical
importance. The substructures involved include (partial) ovoids and (partial)
spreads.
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We survey the main results on these (partial) ovoids and (partial) spreads.
The focus is first of all put on the known (non-)existence results on ovoids and
spreads in classical finite polar spaces. Then the attention is drawn to the main
results on large partial ovoids and large partial spreads. This is then followed
by focusing on small maximal partial ovoids and small maximal partial spreads.

After the discussion of these results, attention is paid to the spectrum prob-
lem on maximal partial ovoids and maximal partial spreads.

The main results are gathered in tables to make them easily accessible to the
readers. We also give information on some of the most important techniques
used in obtaining these results.

To present the results, we proceed as follows.
In Section 2, we first present the basic definitions and results on classical

finite polar spaces. Section 3 presents an overview of the main results. To
conclude, we present in Section 4 the most important proof techniques.

2 Basic results

2.1 Polar spaces

A polar space is a geometry that satisfies the “one or all axiom”:

• Let l be a line and let P be a point not on l. Then either P is connected
to exactly one point of l by a line or P is connected to all points of l by
lines.

A polar space contains projective spaces as subspaces. A projective subspace
of maximal dimension is called a generator.

A polar space is classical if its points and lines are the totally isotropic points
and lines of a projective space with respect to some non-degenerate sesquilinear
form. There exist five different types of classical finite polar spaces:

• The elliptic quadric Q−(2n+1, q), n ≥ 2, formed by all points of PG(2n+
1, q) which satisfy the standard equation x0x1+· · ·+x2n−2x2n−1+f(x2n, x2n+1) =
0 where f is an irreducible polynomial of degree 2 over Fq.

• The parabolic quadric Q(2n, q), n ≥ 2, formed by all points of PG(2n, q)
which satisfy the standard equation x0x1 + · · ·+ x2n−2x2n−1 + x2

2n = 0.

• The hyperbolic quadric Q+(2n + 1, q), n ≥ 1, formed by all points of
PG(2n+1, q) which satisfy the standard equation x0x1+ · · ·+x2nx2n+1 =
0.

• The symplectic polar space W (2n+1, q), n ≥ 1, which consists of all points
of PG(2n+1, q) together with the totally isotropic lines with respect to the
standard symplectic form θ(x, y) = x0y1−x1y0+· · ·+x2ny2n+1−x2n+1y2n.

• The hermitian polar space H(n, q2), n ≥ 3, formed by all points of
PG(n, q2) which satisfy the standard equation xq+1

0 + · · ·+ xq+1
n = 0.
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For the results to come, it is useful to know the number of points and gen-
erators of these polar spaces. We summarise these numbers in the following
theorems (for a proof, see for example [25]).

Theorem 1
• Q−(2n + 1, q) has (qn−1)(qn+1+1)

q−1 points.

• Q(2n, q) has q2n−1
q−1 points.

• Q+(2n + 1, q) has (qn+1)(qn+1−1)
q−1 points.

• W (2n + 1, q) has q2n+2−1
q−1 points.

• H(n, q2) has (qn+1+(−1)n)(qn−(−1)n)
q2−1 points.

Theorem 2
• Q−(2n + 1, q) has (q2 + 1)(q3 + 1) · · · (qn+1 + 1) generators.

• Q(2n, q) has (q + 1)(q2 + 1)(q3 + 1) · · · (qn + 1) generators.

• Q+(2n + 1, q) has 2(q + 1)(q2 + 1) · · · (qn + 1) generators.

• W (2n + 1, q) has (q + 1)(q2 + 1) · · · (qn+1 + 1) generators.

• H(2n, q2) has (q3 + 1)(q5 + 1) · · · (q2n+1 + 1) generators.

• H(2n + 1, q2) has (q + 1)(q3 + 1) · · · (q2n+1 + 1) generators.

2.2 Ovoids and spreads

Definition 3
Let P be a classical finite polar space.

A partial ovoid O is a set of points with the property that no generator
contains more than one point of O. A partial ovoid O is maximal if it is not a
proper subset of an other partial ovoid. A partial ovoid O is called an ovoid if
every generator contains exactly one point of O.

A partial spread S is a set of pairwise disjoint generators. A partial spread
S is maximal if it is not a proper subset of an other partial spread. A partial
spread S is called a spread if all points of P are covered by the elements of S.

¿From Theorem 1 and Theorem 2 we get directly the number of points in
an ovoid and the number of generators in a spread.

Theorem 4
An ovoid in Q−(2n − 1, q), Q(2n, q), Q+(2n + 1, q) or W (2n − 1, q) has qn + 1
points. An ovoid of H(2n, q2) or H(2n + 1, q2) has q2n+1 + 1 points.

A spread of Q−(2n + 1, q), Q(2n, q), Q+(2n + 1, q) or W (2n− 1, q) contains
qn + 1 generators. A spread of H(2n, q2) or H(2n + 1, q2) contains q2n+1 + 1
generators.
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Proof. One has to do the proof for all different types of polar spaces. We show
it on the example of a hyperbolic quadric Q+(2n + 1, q).

By Theorem 2, Q+(2n+1, q) has 2(q+1)(q2+1) · · · (qn+1) generators. Going
to the factor space of one point, one sees a hyperbolic quadric Q+(2n − 1, q),
i.e. every point lies in 2(q + 1)(q2 + 1) · · · (qn−1 + 1) generators. Thus an ovoid
must have [2(q +1)(q2 +1) · · · (qn +1)]/[2(q +1)(q2 +1) · · · (qn−1 +1)] = qn +1
elements.

By Theorem 1, Q+(2n + 1, q) has (qn+1)(qn+1−1)
q−1 points. Each generator is

a projective space of dimension n, that contains qn+1−1
q−1 points. Thus a spread

must contain [ (q
n+1)(qn+1−1)

q−1 ]/[ qn+1−1
q−1 ] = qn + 1 elements. �

2.3 Useful observations

There exist several relations between classical finite polar spaces that can be
used to translate results. In this subsection, we summarise these relations.

2.3.1 Isomorphisms and anti-isomorphisms

• Q(4, q) is isomorphic to the dual of W (3, q). Thus every result on spreads
of Q(4, q) is also a result on ovoids of W (3, q) and vice versa. Similarly,
every result on ovoids of Q(4, q) is also a result on spreads of W (3, q) and
vice versa [39].

• For q even, Q(4, q) and W (3, q) are self-dual. In this case, every result on
ovoids is also a result on spreads [39].

• For q even, Q(2n, q) is isomorphic to W (2n − 1, q). Thus every result on
Q(2n, q), q even, is also a result on W (2n− 1, q), q even [46].

• Q−(5, q) is isomorphic to the dual of H(3, q2) [39].

2.3.2 The Klein correspondence

The generators of Q+(5, q) fall into two groups. Two planes from the same
group always intersect in a point. Two planes from different groups are either
disjoint or intersect in a line. The geometry with the generators of type 1
as “points”, the points of Q+(5, q) as “lines” and the generators of type 2 as
“planes” is a 3-dimensional projective space PG(3, q) (see [26] for details). By
these properties, every (partial) ovoid of Q+(5, q) corresponds to a (partial) line
spread of PG(3, q).

An ovoid of Q+(5, q) is an elliptic quadric Q−(3, q) if and only if the corre-
sponding line spread of PG(3, q) is regular. An ovoid of Q+(5, q) is contained in
a parabolic quadric Q(4, q) contained in Q+(5, q) if and only if the corresponding
line spread of PG(3, q) is also a spread of a symplectic geometry W (3, q).
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2.3.3 Triality

In Q+(7, q), the generators fall into two groups; each group has size (q +1)(q2 +
1)(q3 + 1) which is exactly the number of points of Q+(7, q). We call two
generators from different groups incident if they intersect in a point. With
this definition, the three classes of objects points, generators of group 1, and
generators of group 2 become interchangeable (see [25] for more details and
further references).

This means that every result on (partial) ovoids of Q+(7, q) is also a result
on (partial) spreads and vice versa.

2.3.4 Intersections

Let S be a partial spread of Q+(2n+1, q). A hyperplane of PG(2n+1, q) which
is not a tangent hyperplane intersects Q+(2n + 1, q) in a parabolic quadric
Q(2n, q). The intersection of S with that hyperplane forms a partial spread of
this Q(2n, q). Similar intersection arguments prove:

Theorem 5
If Q+(2n+1, q) has a partial spread of size s, then Q(2n, q) has a partial spread
of size s. Especially Q(4n + 2, q) has a spread if Q+(4n + 3, q) has a spread.

If Q(2n, q) has a partial spread of size s, then Q−(2n − 1, q) has a partial
spread of size s. Especially Q−(2n− 1, q) has a spread if Q(2n, q) has a spread.

If H(2n + 1, q2) has a partial spread of size s, then H(2n, q2) has a partial
spread of size s.

One can also show that a partial spread of size s in Q(2n + 2, q) implies a
partial spread of size s in Q+(4n + 3, q) (see Theorem 9).

If a polar space P can be embedded in an other polar space P ′, we know
that every partial ovoid of P also is a partial ovoid of P ′. We summarise these
observations in the following theorem.

Theorem 6
If Q−(2n − 1, q) has a partial ovoid of size s, then Q(2n, q) has a partial ovoid
of size s.

If Q(2n, q) has a partial ovoid of size s, then Q+(2n + 1, q) has a partial
ovoid of size s. Especially Q+(2n + 1, q) has an ovoid if Q(2n, q) has an ovoid.

If H(2n, q2) has a partial ovoid of size s, then H(2n + 1, q2) has a partial
ovoid of size s.

2.3.5 Quadratic extensions

Consider the polar space Q−(4n + 1, q). The ambient space PG(4n + 1, q)
can be embedded in a quadratic extension PG(4n + 1, q2). The polar space
Q−(4n + 1, q) extends to Q+(4n + 1, q2). On this Q+(4n + 1, q2), it is possible
to choose a projective 2n-space π with π ∩πσ = ∅, where πσ is the conjugate of
π with respect to the quadratic extension Fq2 of Fq. The lines of Q−(4n + 1, q)

5



whose extensions intersect π and πσ form a line spread L of Q−(4n + 1, q) and
the intersections of these lines with π form a hermitian variety H(2n, q2). Let G
be a generator of this H(2n, q2), then the union of lines of L whose extensions
intersect in G form a generator G′ of Q−(4n+1, q). Thus every (partial) spread
of H(2n, q2) defines a (partial) spread of Q−(4n+1, q). Let O be a partial ovoid
of Q−(4n + 1, q). The lines of L through the points of O intersect H(2n, q2) in
the points of a partial ovoid of H(2n, q2).

A similar correspondence exists between Q+(4n + 3, q) and H(2n + 1, q2).
We summarise these correspondences in the following theorem.

Theorem 7
If Q−(4n + 1, q), n ≥ 2, has a partial ovoid of size s, then H(2n, q2) also has a
partial ovoid of size s.

If H(2n, q2) has a partial spread of size s, then Q−(4n + 1, q) also has a
partial spread of size s.

If Q+(4n + 3, q), n ≥ 1, has a partial ovoid of size s, then H(2n + 1, q2) also
has a partial ovoid of size s.

If H(2n + 1, q2) has a partial spread of size s, then Q+(4n + 3, q) also has a
partial spread of size s.

An other application of a quadratic extension can be found in [42].

3 Overview of the results

This section contains tables that summarise the known results on partial ovoids
and partial spreads.

3.1 Ovoids and spreads

Tables 1 and 2 give the main known results on the (non-)existence of ovoids and
spreads.

Non-existence proofs for ovoids and spreads are normally good upper bounds
on the size of a partial ovoid or partial spread; see the next subsection for an
overview on large partial ovoids and large partial spreads. Some rare exceptions
to this rule are non-existence proofs for ovoids that use a classification of ovoids
in a lower dimension. The non-existence of ovoids of Q(6, q), q > 3, q prime [3],
and H(5, 4) [13] are examples for this type of proof.

The existence of ovoids and spreads is proved by the construction of ex-
amples. The most difficult and interesting of these constructions are ovoids of
Q+(7, q): see Subsection 4.3 for an example.

Open problems

The most interesting open problems on ovoids and spreads are:
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Space Existence References
Q−(2n + 1, q) n > 1: No [46]

Q(4, q) Yes [28, 32, 40, 49]
Q(6, q) q even: No [46]

q = 3n: Yes [28, 45, 46]
q > 3, q prime: No [38]

Q(2n, q) n ≥ 4: No [21, 46]
Q+(3, q) Yes
Q+(5, q) Yes [26]
Q+(7, q) q = 3h: Yes [8, 28, 50]

q = 2h : Yes [15, 28]
q = ph, p ≡ 2 mod 3, p prime, h odd: Yes [28]
q prime: Yes [10, 36]

Q+(2n + 1, q) q = ph, p prime, pn >
(
2n+p
2n+1

)
−

(
2n+p−2
2n+1

)
: No [4]

W (3, q) q even: Yes [44]
q odd: No [44]

W (2n + 1, q) n > 1: No [46]
H(2n, q2) n ≥ 2: No [46]
H(3, q2) Yes [39, 47, 49]
H(5, 4) No [13]

H(2n + 1, q2) q = ph, p prime, p2n+1 >
(
2n+p
2n+1

)2 −
(
2n+p−1
2n+1

)2
: No [37]

Table 1: Existence and non-existence results on ovoids

Space Existence References
Q−(5, q) Yes [39, 47, 49]

Q−(2n + 1, q) q even: Yes [15, 45, 46]
Q(2n, q) n ≥ 2, q even: Yes [15, 45, 46, 49]
Q(6, q) q odd, q prime: Yes

q odd, q 6≡ 1 mod 3: Yes [8, 10, 28, 36, 50]
Q(4n, q) q odd: No [44, 48]

Q+(4n + 1, q) No
Q+(3, q) Yes
Q+(7, q) q odd, q prime: Yes

q odd, q 6≡ 1 mod 3: Yes [8, 10, 28, 36, 50]
Q+(4n + 3, q) q even: Yes [15, 45, 46]
W (2n + 1, q) Yes
H(2n + 1, q2) No [46, 48]

H(4, 4) No [5]

Table 2: Existence and non-existence results on spreads

7



Space Recursion References
Q−(2n + 1, q) xn,q ≤ 2 + qn+1

qn−1+1 (xn−1,q − 2) [29]
Q(2n, q) xn,q ≤ 1 + q(xn−1,q − 1) [12]

Q+(2n + 1, q) xn,q ≤ 2 + qn−1
qn−1−1 (xn−1,q − 2) [12]

W (2n + 1, q) xn,q ≤ 2 + (q − 1)xn−1,q [12]
H(2n, q2) xn,q2 ≤ q2xn−1,q2 − q2 + 1 [11]

H(2n + 1, q2) xn,q2 ≤ q2xn−1,q2 − q2 + 1 [11]

Table 3: Recursive bounds on the size of partial ovoids

Space Upper bound Lower bound References
Q−(5, q) q = 2: 1

2 (q3 + q + 2) = 6 q = 2: 6 [11, 26]
q = 3: 1

2 (q3 + q + 2) = 16 q = 3: 16 [11, 16]
1
2 (q3 + q + 2) q2 + 1 [1, 11]

Q(6, q) q > 13, q prime: q3 − 2q + 1 [12]
Q(8, q) q odd, q not a prime: q4 − q

√
q [12]

W (5, q) 1 + q
2 (

√
5q4 + 6q3 + 7q2 + 6q + 1− q2 − q − 1) [12]

H(4, q2) q5 − q4 + q3 + 1 q4 + 1 [11, 33]

Table 4: Large partial ovoids in small dimensions

• Lower the bound on n in Corollaries 12 and 14 stating that H(2n + 1, q2)
and Q+(2n + 1, q), n large, have no ovoid.

Conjecture: H(5, q2) and Q+(9, q) have no ovoid.

• Does Q(6, q), q > 3 odd, q not a prime, have an ovoid?

• Construct ovoids for Q+(7, q).

3.2 Large partial ovoids and large partial spreads

After the study of ovoids and spreads, the next natural question is the size of
the largest partial ovoid or spread, when ovoids or spreads do not exist. Indeed,
most non-existence results are in fact upper bounds on the largest size of a
partial ovoid or partial spread.

For partial ovoids, we can obtain recursive bounds on the size of partial
ovoids. Table 3 summarises these recursions. In Table 3, xn,q denotes the upper
bound on the size of a partial ovoid on the corresponding classical finite polar
space in PG(2n, q) or PG(2n + 1, q).

Bounds on the size of partial ovoids in high dimension are obtained by apply-
ing these recursions to the bounds in small dimensions. Therefore, Table 4 lists
only the small dimensions. The table contains only the cases in which the non-
existence of ovoids has been proven. For convenience, we include Table 5 which
gives the bounds of Table 4 combined with the recursive bounds of Table 3.
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Space Upper bound Ref.
W (2n + 1, q), q > 2 2 (q−1)n−2−1

q−2 + (q − 1)n−2 · q3 + 1− q(
√

q − 1)(q −√
q + 1) [12]

Q(2n + 2, q), q even, q > 2 2 (q−1)n−2−1
q−2 + (q − 1)n−2 · q3 + 1− q(

√
q − 1)(q −√

q + 1) [12]
Q(2n, q), n ≥ 4,

q odd, q not prime qn + 1− qn−4(q
√

q + 1) [12]
Q(2n, q), n ≥ 3,
q > 13 prime qn − 2qn−2 + 1 [12]

Q−(2n + 1, q), n ≥ 3 2 + 1
2 ·

qn−1
q+1 · (q2 + q + 2) [12]

H(2n, q2), n ≥ 3 q2n+1 + 1− q2(n−3)(q6 − q5 − 1)− q3 · q2(n−2)−1
q2−1 [11]

H(2n + 1, q2), n ≥ 2 q2n+1 + 1 [11]

Table 5: Large partial ovoids

Space Upper bound Lower bound References
Q(4n, q) q odd: qn + 1− δ [20]

Q+(4n + 1, q) 2 2
H(3, q2) q = 2: 6 q = 2: 6 [11, 26]

q = 3: 16 q = 3: 16 [11, 16]
1
2 (q3 + q + 2) q2 + 1 [1, 11]

H(5, q2) q3 + 1 q3 + 1 [14]
H(2n + 1, q2) n odd: q2n+1 − q

1
2 (3n+4) + q

1
2 (3n+3) [11]

n even: q2n+1 + 1 + qn(q − 1)−
−qn

√
qn+1(q − 1) + (q − 1)2 [11]

Table 6: Large partial spreads

Most of these results are proven by double counting (see Subsection 4.1). The
upper bounds on the size of partial spreads use as additional proof technique
extension results (see Subsection 4.2) and a special geometric property of H(2n+
1, q2) (see Subsection 4.6). The upper bound qn +1−δ is related to the problem
of the classification of the blocking sets in PG(2, q). In the table entry for
Q(4n, q), n ≥ 2, q odd, there always holds that δ ≥ ε where q + 1 + ε is the size
of the smallest non-trivial blocking sets in PG(2, q). In cases that the smallest
non-trivial blocking sets in PG(2, q) are characterized, larger values of δ are
allowed. For instance, for q an odd square, q > 16, the results of [19] imply that
δ ≥ q5/8/

√
2 + 1.

The lower bounds in Table 4 and Table 6 indicate the largest known partial
ovoid or partial spread in the classical finite polar space. Note the sharpness of
the bound q3 + 1 on the size of a partial spread in H(5, q2).

Open problems

• Little is known about the construction of large partial ovoids and large
partial spreads. Find good constructions (i.e. lower bounds) and improve
the upper bounds.
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Space Upper bound Lower bound References
Q−(5, q) q = 22h+1, h ≥ 1 : q2+7q+8

√
2q+10

2 q ≥ 4: 2q + 2 [12, 16, 35]
+(2q + 4

√
2q + 4) log(q4 − q2)

Q−(2n + 1, q) n ≥ 3: 2q + 1 [12]
Q(2n, q) n = 2, q odd: 1.419q [9, 12]

n = 3, q = 3, 5, 7: 2q [12]
n = 3, q odd, q ≥ 9: 2q − 1 [12]
n = 4, q = 3: 2q [12]
n ≥ 4, q odd,

(n, q) 6= (4, 3): 2q + 1 [12]
q even: q + 1 q even: q + 1 [9, 12]

Q+(5, q) 2q [12, 17]
Q+(2n + 1, q) n ≥ 3, q > 3: 2q + 1 [12]
W (2n + 1, q) q + 1 q + 1 [12, 9]

H(3, q2) q > 2 even: q2 + 1 q > 2, q even: q2 + 1 [2]
q odd: q2 + 1 + 4

9q [34]
H(4, q2) q2 + q + 2 [35]
H(n, q2) n ≥ 5: q2 + q + 1 [11]

Table 7: Small maximal partial ovoids

Space Upper bound Lower bound References
Q−(2n + 1, q) n ≥ 3: q2 + 1 [12]
Q+(4n + 3, q) q ≥ 7 and n ≥ 1: 2q + 1 [31]
W (2n + 1, q) q ≥ 5 and n ≥ 2: 2q + 1 [31]

H(2n, q2) n ≥ 3: q3 + 1 [12]
H(2n + 1, q2) q ≥ 13 and n ≥ 2: 2q + 3 [31]

Table 8: Small maximal partial spreads

• A very interesting case is that of large partial spreads of H(3, q2). The
upper bound in this case is known to be sharp for q = 2 and q = 3. What
happens for q ≥ 4? The proof of the upper bound 1

2 (q3 + q + 2) gives
many properties that a potential example must have (see Subsection 4.6
and [11]).

3.3 Small maximal partial ovoids and small maximal par-
tial spreads

Small maximal partial ovoids and small maximal partial spreads have recently
drawn much attention. The proof techniques in this area are mostly variations
of the triple counting technique (see Subsection 4.5), sometimes combined with
a geometric property like the one described in Subsection 4.6. Table 7 and
Table 8 present the known results on small maximal partial ovoids and small
maximal partial spreads.
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Space Interval References
Q(4, q), q = 24h, h ≥ 2 q2+194q+10qb48 log(q+1)c−190

10 ≤ k ≤ 9q2−69q+440
10 [41]

Q(4, q), q = 24h+1, h ≥ 2 q2+198q+10qb48 log(q+1)c−230
10 ≤ k ≤ 9q2−68q+430

10 [41]
Q(4, q), q = 24h+2, h ≥ 1 q2+196q+10qb48 log(q+1)c−210

10 ≤ k ≤ 9q2−66q+410
10 [41]

Q(4, q), q = 24h+3, h ≥ 1 q2+192q+10qb48 log(q+1)c−170
10 ≤ k ≤ 9q2−67q+420

10 [41]

Table 9: Spectrum on maximal partial spreads

Space Interval References
Q+(5, q), q odd, q ≥ 7 q2+13

2 ≤ k ≤ q2 − q + 2 [22, 23, 24]
Q+(5, q), q even, q ≥ q0

5q2+q+16
8 ≤ k ≤ q2 − q + 2 [18]

Q(4, q), q = 24h, h ≥ 2 q2+194q+10qb48 log(q+1)c−190
10 ≤ k ≤ 9q2−69q+440

10 [41]
Q(4, q), q = 24h+1, h ≥ 2 q2+198q+10qb48 log(q+1)c−230

10 ≤ k ≤ 9q2−68q+430
10 [41]

Q(4, q), q = 24h+2, h ≥ 1 q2+196q+10qb48 log(q+1)c−210
10 ≤ k ≤ 9q2−66q+410

10 [41]
Q(4, q), q = 24h+3, h ≥ 1 q2+192q+10qb48 log(q+1)c−170

10 ≤ k ≤ 9q2−67q+420
10 [41]

Table 10: Spectrum on maximal partial ovoids

3.4 Spectrum results

A spectrum result on maximal partial ovoids or maximal partial spreads is a
result stating that for a large interval for the parameter k, there exist maximal
partial ovoids or maximal partial spreads of size k for every integer in that
interval. In Tables 9 and 10, we present results on the spectrum of maximal
partial ovoids and maximal partial spreads on Q(4, q), q even. (Here, bxc denotes
the largest integer smaller than or equal to x.) Note that these results are also
valid for W (q), q even, since this classical generalised quadrangle is isomorphic
to Q(4, q), q even (see Subsection 2.3.1).

By the Klein correspondence (Subsection 2.3.2), partial ovoids of Q+(5, q)
are linked to partial spreads of PG(3, q), for which there are important results
of Heden [22, 23, 24].

The results of [22, 23, 24] originally were stated as a spectrum result on
maximal partial spreads of PG(3, q). As an additional application, they were
used to obtain a spectrum-like result on maximal partial spreads of the elliptic
quadric Q−(5, q).

Theorem 8 (see [6])
Suppose that S is a maximal partial spread of PG(3, q) of size q2 + 1− δ. Then
there exists a maximal partial spread of Q−(5, q) of size q3 + 1− qδ.

Theorem 9 (see [48])
Let n ≥ 1. Then Q+(4n + 3, q) has a maximal partial spread of size s if and
only if Q(4n + 2, q) has a maximal partial spread of size s.
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Proof. We will use the intersection technique from Subsection 2.3.4.
The generators of Q+(4n + 3, q) fall into two groups and generators of the

same group intersect in a space of odd dimension, while generators of different
groups intersect in a space of even dimension. Thus every partial spread of
Q+(4n + 3, q) must consist of generators of the same class.

Now take a hyperplane π of PG(4n + 3, q) intersecting Q+(4n + 3, q) in a
parabolic quadric Q(4n + 2, q).

Let S be a partial spread of generators of type 1 of Q+(4n + 3, q). Then the
intersections of elements of S with π define a partial spread S ′ of Q(4n + 2, q).

On the other hand, let S ′ be a partial spread of Q(4n+2, q). Every element
G of S ′ lies in two generators of Q+(4n + 3, q); one of each type. Thus there
exists a unique set S of generators of type 1 in Q+(4n + 3, q) with the property
that the intersection of the elements of S with π defines S ′. Furthermore, since
S ′ is a partial spread of Q(4n + 2, q), two different elements of S can share at
most a point. But since the intersection of two generators of type 1 must be of
odd dimension, this means that each two generators in S must be skew, i.e. S
is a partial spread of Q+(4n + 3, q).

This establishes a one-to-one correspondence between the partial spreads of
Q+(4n + 3, q) which only contain generators of type 1 and the partial spreads
of Q(4n + 2, q), which proves the theorem.

The same proof shows the equivalence between the maximality of the partial
spread of Q+(4n + 3, q) and the induced partial spread of Q(4n + 2, q). �

4 Proof techniques

We now present a number of the most important techniques involved in obtain-
ing the results of the tables.

4.1 Double counting

Double counting is one of the most basic proof techniques in combinatorics. One
of the simplest applications of double counting in this topic on partial spreads
and partial ovoids is the non-existence of ovoids in Q−(2n + 1, q), W (2n + 1, q),
and H(2n, q2) for n > 1, see [46]. We demonstrate the technique for Q−(2n +
1, q). For a classical finite polar space P , let O(P ) be the size of the largest
partial ovoids of P .

Theorem 10 (see [29])
For n ≥ 3, we have

O(Q−(2n + 1, q)) ≤ qn + 1
qn−1 + 1

(O(Q−(2n− 1, q))− 2) + 2. (1)

Proof. Let O be a partial ovoid of Q−(2n+1, q), with |O| = O(Q−(2n+1, q)).
Let θ be the polarity of PG(2n + 1, q) corresponding to Q−(2n + 1, q). Let
x, y ∈ O, with x 6= y. Define π = (xy)θ. Then π is a (2n − 1)-dimensional
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subspace and π ∩Q−(2n + 1, q) is an elliptic quadric Q−(2n− 1, q) = Q. Since
x, y ∈ πθ, we conclude that π ∩ O = ∅.

Now we count the number N of pairs (u, v), with u ∈ Q, v ∈ O\{x, y}, such
that uv is a line of Q−(2n + 1, q). For each possible v, the point u must lie in
the non-singular quadric (xyv)θ ∩Q−(2n + 1, q). This quadric contains q2n−2−1

q−1

points, i.e. N = (O(Q−(2n + 1, q))− 2) q2n−2−1
q−1 .

On the other hand, for each u ∈ Q, the points of O ∩ uθ define a partial
ovoid in uθ/u. Since x, y ∈ O ∩ uθ, for each possible u ∈ Q, there exist at most
O(Q−(2n− 1, q))− 2 corresponding points v of O. Therefore we have
N ≤ (qn−1−1)(qn+1)

q−1 (O(Q−(2n− 1, q))− 2).
All together we get:

(O(Q−(2n + 1, q))− 2)
q2n−2 − 1

q − 1
≤ (qn−1 − 1)(qn + 1)

q − 1
(O(Q−(2n− 1, q))− 2).

Simplifying, we get (1). �

Perhaps the most surprising application of double counting is the case of
H(2n + 1, q2).

Lemma 11 (see [29])
LetO be an ovoid of H(2n+1, q2). Let π be a plane which intersects H(2n+1, q2)
in a polar space of type H(2, q2). Let m = |π ∩ O| ≥ 2.

Then there exists an ovoid O′ of H(2n−1, q2) and a plane π′, which intersects
H(2n− 1, q2) in a polar space of type H(2, q2), and with |π′ ∩ O′| > m.

An inductive application of this lemma gives the following corollary.

Corollary 12 (see [29])
The hermitian polar space H(2n + 1, q2), n > q3, has no ovoid.

This bound is weaker than the bound found by algebraic methods (see Sub-
section 4.4), but it gives additional information about the possible ovoids in
small dimension. In [13], J. De Beule and K. Metsch use Lemma 11 together
with the classification of ovoids of H(3, 4) to prove that H(5, 4) has no ovoid.

We will not prove Lemma 11 in this article. Instead, we will present a similar
argument for hyperbolic quadrics.

Lemma 13
Assume that the hyperbolic quadric Q+(2n+1, q), n > 2, has an ovoid O. Let π
be a 3-dimensional space that contains m ≥ 1 points of O and which intersects
Q+(2n + 1, q) in an elliptic quadric Q−(3, q).

Then the number a of points of O that generate together with π a 4-space
that intersects Q+(2n + 1, q) in a cone over the elliptic quadric Q−(3, q) is

a = qn−1 − qn−2 − q + 1 + m(qn−2 − 1).
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Proof. The proof is inspired by Thas [48].
Let b be the number of points of O that generate together with π a 4-space

that intersects Q+(2n + 1, q) in a parabolic quadric Q(4, q). Then a + b =
qn + 1−m.

Now we count the number N of pairs (P,O) with the following properties:
P lies in Q+(2n + 1, q) ∩ π⊥, O is a point of O not in π, and PO is a line of
Q+(2n + 1, q).

Now π⊥ intersects Q+(2n + 1, q) in an elliptic quadric Q−(2n− 3, q). Each
point of that Q−(2n− 3, q) is connected to qn−1 + 1 points of the ovoid O, thus

N =
(qn−2 − 1)(qn−1 + 1)

q − 1
(qn−1 + 1−m).

For each of the a points O that generate together with π a 4-space that
contains a cone over the elliptic quadric Q−(3, q), we find that 〈π,O〉⊥ intersects
Q+(2n + 1, q) in a cone over an elliptic quadric Q−(2n − 5, q), not containing
any points of O, for otherwise these points of O would be collinear with the
points of O in π. Thus each of these points is counted in (qn−3−1)(qn−2+1)

q−1 q + 1
pairs.

Similarly, for each of the b other points of O \ π, we find that 〈π,O〉⊥
intersects Q+(2n+1, q) in a parabolic quadric Q(2n−4, q), i.e. these points are
counted in q2n−4−1

q−1 pairs. Thus

N = a(
(qn−3 − 1)(qn−2 + 1)

q − 1
q + 1) + b

q2n−4 − 1
q − 1

.

Now we have two linear equations in a and b. Solving the system proves the
lemma. �

As a corollary, we obtain the following result.

Corollary 14
Q+(2n + 1, q), n > q2, has no ovoid.

Proof. Suppose that Q+(2n + 1, q) has an ovoid. Then we can find a 3-
dimensional space π intersecting Q+(2n + 1, q) in an elliptic quadric Q−(3, q)
that contains at least 3 points of the ovoid. By Lemma 13, there exists a cone
over that elliptic quadric that contains more than 3 points of O. Projecting this
cone, we find an ovoid of Q−(2n−1, q) with a 3-dimensional space π′ intersecting
Q−(2n + 1, q) in an elliptic quadric Q−(3, q) that contains at least 4 points of
this ovoid.

Repeating the argument n− 2 times, we find an ovoid of Q+(5, q) which has
n+1 points inside a 3-space intersecting Q+(5, q) in an elliptic quadric Q−(3, q).
Since Q−(3, q) has only q2 + 1 points, we find n ≤ q2. �
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4.2 Extension results

Extension results have the following form.

Suppose that a partial ovoid or partial spread of a classical finite polar space
P has almost as many points or generators as an ovoid or spread of P , then it
can be extended to an ovoid or spread of P .

Depending on whether an ovoid or a spread exists or not, we either obtain
a spectrum result or an upper bound on the size of a partial ovoid or spread.
Let us have a look at an example.

Theorem 15 (see [30])
Suppose that S is a maximal partial spread of Q(4, q). Then either S is a spread
or |S| ≤ q2 − q + 1.

Proof. Put δ := q2 + 1 − |S|. We assume that 0 < δ < q and derive a
contradiction. Let H be the set of δ(q + 1) points of Q(4, q) not covered by the
elements of S. We call these points holes. Since S is maximal, H contains no
line.

Embed Q(4, q) in the natural way in PG(4, q). Every hyperplane of PG(4, q)
meets Q(4, q) in 1 (mod q) points. As |S| = q2 + 1 − δ, it follows that every
hyperplane meets H in δ (mod q) points. As δ < q, this implies that every
hyperplane contains at least δ holes.

Consider a hole P . The tangent hyperplane P⊥ on P meets Q(4, q) in a cone
with vertex P over a parabolic quadric Q(2, q). Every line of S meets P⊥ in a
unique point. As P⊥ contains q2 + q + 1 points of Q(4, q), then P⊥ contains
q + δ holes. If π is a plane of P⊥, then each of the q hyperplanes on π other
than P⊥ contains at least δ holes. As the number of holes is (q + 1)δ and as
P⊥ contains more than δ holes, it follows that π must contain a hole. Hence,
P⊥ ∩H meets every plane of P⊥, i.e. the q + δ holes in P⊥ form a blocking set
w.r.t. the planes in P⊥.

Blocking sets which lie in a quadric were studied in [30], where it was shown
that in the case above, the blocking set must contain a line. This is however a
contradiction to the maximality of S. �

Since for q odd, it is known that Q(4, q) has no spread (Table 2), this proves
that a partial spread of Q(4, q), q odd, has at most q2−q+1 elements. This was
first proven in [43]. For q even, Q(4, q) has a spread (Table 2) and the above
result gives us information on the upper part of the spectrum (which was first
proven in [6]). The above proof is the first that works for all q. It can also be
generalised to Q−(5, q).

Theorem 16 (see [30])
Suppose that S is a maximal partial spread of Q−(5, q). Then either S is a
spread or |S| ≤ q3 − q + 1.
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4.3 Ovoids of Q+(7, q)

The hyperbolic quadric Q+(7, q) is the only polar space for which ovoids are
known to exist for some q but no construction is known for all q. Currently,
no ovoids of Q+(7, q) are known for q ≡ 1 (mod 6) and q not a prime. For all
other q, ovoids are known.

The known constructions of ovoids are via coordinates and large automor-
phism groups. As an example of the methods used in this case, we sketch the
construction of ovoids of Q+(7, q), q = ph, p ≡ 2 (mod 3), h odd, found by
Kantor [28].

In Fq, we let ᾱ = αq, Tr(α) = α + ᾱ and N(α) = α · ᾱ.
Let

J =

0 0 1
0 1 0
1 0 0


and let

V = {M | trace(M) = 0, J−1MJ = M̄ tr}

=


α β c

γ a β̄
b γ̄ ᾱ

 ∣∣∣∣α, β, γ ∈ Fq2 , a, b, c ∈ Fq, a + Tr(α) = 0

 .

Q =


α β c

γ a β̄
b γ̄ ᾱ

 | α2 + αᾱ + ᾱ2 + Tr(βγ) + bc = 0


defines a hyperbolic quadric Q+(7, q) on V . Let

O =


0 0 1

0 0 0
0 0 0

 ∪


ρ̄ ρ̄σ N(ρ)

σ̄ N(σ) ρσ̄
1 σ ρ

 ∣∣∣∣Tr(ρ) + N(σ) = 0

 .

Note that PG(3, q) acts 2-transitively on O, so to prove that O is an ovoid, it
is sufficient to see that 0 0 1

0 0 0
0 0 0

 and

0 0 0
0 0 0
1 0 0


are not collinear on Q.

4.4 Algebraic techniques

For each classical finite polar space P, we define the incidence matrix I(P) =
(iP,G), where P runs over all points of P and G runs over all generators of the
polar space P, by iP,G = 1 if P ∈ G and iP,G = 0 if P /∈ G.

Now let O be a partial ovoid of P. For each P ∈ O, choose a generator GP

through P and let O′ = {GP | P ∈ O}.
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The incidence matrix I(P) contains the submatrix (iP,G)P∈O,G∈O′ , which is
the identity matrix. Therefore, I(P) has at least the rank |O|.

Thus we get an upper bound on the size of the partial ovoids in P if we
compute the rank of I(P). We are still free to choose the characteristic of the
underlying field. The appropriate rank to compute is the p-rank, where p is the
characteristic of the field we used in the definition of P.

The determination of the p-ranks is rather complicate, so we state only the
results. For the proofs, see [4, 37].

Result 17
Let q = pe, p prime, e ≥ 1, then

rankp(I(PG(n, q))) =
(

p + n− 1
n

)e

+ 1.

If Q is the incidence structure of all points of a non-singular quadric of PG(n, q)
and all hyperplanes of PG(n, q), then

rankp(I(Q)) =
[(

p + n− 1
n

)
−

(
p + n− 3

n

)]e

+ 1.

If H is the incidence structure of all points of a non-singular hermitian variety
in PG(n, q2) and all hyperplanes of PG(n, q2), then

rankp(I(H)) =

[(
2n + p

2n + 1

)2

−
(

2n + p− 1
2n + 1

)2
]e

+ 1.

If n and q are even, then for any quadric Q∗(n, q),

rankp(I(Q∗(n, q))) = ne + 1.

Again, the exact values for the rank of these incidence matrices imply upper
bounds on the sizes of partial ovoids of the considered classical finite polar
spaces P. In fact, for large dimensions n, depending on the characteristic p of
the underlying field over which P is defined, these dimensions are smaller than
the size of ovoids of P; hence, they exclude the possibility of ovoids of P. For
the precise bounds, we refer to Table 1.

It is remarkable that even the p-rank of the incidence matrix of PG(n, q)
already excludes ovoids in large dimensions.

4.5 Counting of triples

In 1982, Glynn introduced a new counting technique to prove a lower bound
on the size of maximal partial spreads of PG(3, q) [17]. By the Klein corre-
spondence, this is equal to a result on small maximal partial ovoids of Q+(5, q).
The proof of Glynn becomes simpler inside Q+(5, q); indeed it has a simple
generalisation to (hyperbolic) quadrics of any dimension.
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Theorem 18 (see [12])
A maximal partial ovoid of Q+(5, q) has at least 2q points. A maximal partial
ovoid of Q+(2n + 1, q), n ≥ 3, has at least 2q + 1 points.

Proof. Let O be a maximal partial ovoid of Q+(2n + 1, q). Let w = |O| and
denote by ni the number of points of Q+(2n+1, q)\O that are joined to exactly
i points of O by lines of Q+(2n + 1, q). Then we have:∑

i

ni = |Q+(2n + 1, q)| − w,∑
i

nii = wq|Q+(2n− 1, q)|,∑
i

nii(i− 1) = w(w − 1)|Q+(2n− 1, q)|,∑
i

nii(i− 1)(i− 2) = w(w − 1)(w − 2)|Q(2n− 2, q)|.

The first equation just states that every point of Q+(2n+1, q)\O is counted
once. The second equation is obtained by double counting pairs (u, v), with
u ∈ Q+(2n+1, q)\O and v in O, such that uv is a line of Q+(2n+1, q). The third
equation is obtained by counting triples (u, v1, v2), with u ∈ Q+(2n+1, q)\O and
v1 6= v2 in O, such that uv1 and uv2 are lines of Q+(2n+1, q). The last equation
is obtained by counting quadruples (u, v1, v2, v3), with u ∈ Q+(2n + 1, q)\O
and v1, v2, v3 distinct points of O, such that uv1, uv2 and uv3 are lines of
Q+(2n + 1, q). Note that three points of O always span a plane that meets
Q+(2n+1, q) in a conic Q(2, q), so that their polar space intersects Q+(2n+1, q)
in a parabolic quadric Q(2n− 2, q).

As the partial ovoid O is maximal, we have n0 = 0. Hence,

0 ≤
∑

i

ni(i− 1)(i− 3)(i− 4)

=
∑

i

nii(i− 1)(i− 2)− 5
∑

i

nii(i− 1) + 12
∑

i

nii− 12
∑

i

ni.

Solving this inequality, we obtain w > 2q−1 for n = 2 and w > 2q for n ≥ 3.
�

4.6 A geometric property of H(2n + 1, q2)

This section is devoted to results that use a special property of hermitian spaces,
first proven in [48].

Result 19
Let π1, π2 and π be mutually skew generators of H(2n+1, q2). Then the points
of π that lie on a line of H(2n + 1, q2), meeting π1 and π2, form a hermitian
variety H(n, q2) in π.
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One of the best applications of this property is an upper bound on the size
of maximal partial spreads of H(3, q2).

Theorem 20 (see [11])
A partial spread of H(3, q2) has at most 1

2 (q3 + q + 2) elements.

Proof. Suppose that S is a partial spread of H(3, q2) and that |S| = q3 +1− δ.
Then the number of points of H(3, q2) not covered by lines of S is h = δ(q2 +1).
We call these points holes.

Consider triples (S1, S2, P ), where S1 and S2 are different elements of S
and where P is a hole. We shall estimate how many of these triples have the
property that the unique line of PG(3, q2) on P that meets S1 and S2 belongs
to H(3, q2).

To do so, we consider a hole P . Then P lies on q + 1 lines of H(3, q2). If
xi, i = 1, . . . , q + 1, is the number of points on the i-th line on P covered by an
element of S, then we have

∑
xi = |S| and hence∑

xi(xi − 1) ≥ (q + 1)
|S|

q + 1

(
|S|

q + 1
− 1

)
.

Since the number of holes is δ(q2 +1), we find a lower bound on the number
of triples.

Now choose a pair (S1, S2) of distinct spread elements. There are q2 + 1
lines of H(3, q2) that meet S1 and S2. These lines cover (q2 + 1)(q2 − 1) points
of H(3, q2) not on S1 and S2. By Result 19, every line of S\{S1, S2} contains
q + 1 of these points. Thus there are (q2 + 1)(q2 − 1)− (|S| − 2)(q + 1) holes.

Together with the lower bound, this gives

|S|(|S|−1)
[
(q2 + 1)(q2 − 1)− (|S| − 2)(q + 1)

]
≥ (q3+1−|S|)(q2+1)|S|

(
|S|

q + 1
− 1

)
.

After simplification, we obtain |S| ≤ 1
2 (q3 + q + 2). �

What makes this bound so remarkable is that for q = 2 and q = 3, the bound
is sharp [15, 16]. But for q ≥ 4, we do not know whether this bound is sharp
[11].

An other theorem that makes use of the geometric property (Result 19) is
the following result on small maximal partial spreads.

Theorem 21 (see [31])
For n ≥ 2 and q ≥ 13, every maximal partial spread of H(2n + 1, q2) has at
least 2q + 3 generators.

In [31], similar geometric properties were proven for Q+(4n + 3, q) and
W (2n + 1, q), leading to lower bounds on small maximal partial spreads in
these polar spaces (see Table 8).
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