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Abstract

In this paper, we investigate some properties of partial covers of PG(n, q).
We show that a set of q + a hyperplanes, q ≥ 81, a < (q− 1)/3, or q > 13
and a ≤ (q − 10)/4, that does not cover PG(n, q), does not cover at
least qn−1 − aqn−2 points, and that this bound is sharp. In the planar
case, we show that if there are at most q + a non-covered points, q ≥ 81,
a < (q − 1)/3, the non-covered points are collinear. In this case, the
bound on a is sharp. Moreover, for PG(n, q), we show that for q ≥ 81 and
a < (q− 1)/3, or q > 13 and a ≤ (q− 10)/4, if the number of non-covered
points is at most qn−1, then all non-covered points are contained in one
hyperplane.

1 Introduction

Let PG(n, q) denote the n-dimensional projective space over the finite field Fq

with q elements, where q = ph, p prime, h ≥ 1. We denote the number of points
in PG(n, q) by θn, i.e., θn = qn+1−1

q−1 .
Let C be a family of q + a hyperplanes of PG(n, q). Denote by C(P ) the set

of hyperplanes of C containing P . A (q + a)-cover C of PG(n, q) is a family C of
q + a different hyperplanes in PG(n, q) such that |C(P )| ≥ 1,∀P ∈ PG(n, q). A
partial (q + a)-cover S is a set of q + a hyperplanes such that there is at least
one point Q in PG(n, q) such that |S(Q)| = 0. A point H for which |S(H)| = 0,
is called a hole.

A blocking set of PG(n, q) is a set B of points such that each hyperplane of
PG(n, q) contains at least one point of B. A blocking set B is called trivial if
it contains a line of PG(n, q). If a hyperplane contains exactly one point of a
blocking set B in PG(n, q), it is called a tangent hyperplane to B, and a point
P of B is called essential when it belongs to a tangent hyperplane to B. A
blocking set B is called minimal when no proper subset of B is also a blocking
set, i.e., when each point of B is essential. A blocking set of PG(n, q) is called
small if it contains less than 3(q + 1)/2 points.

It is clear that a cover of PG(n, q) is a dual blocking set. Dualizing the
above definitions yields that a cover C is called trivial if it contains all hyper-
planes through a certain (n − 2)-space, minimal if no proper subset of C is a
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cover, and small if it contains less than 3(q + 1)/2 hyperplanes. A hyperplane
π is essential to a cover C if there is a point P ∈ π such that C(P ) = {π}

The following reducibility result, proven for n = 2 in [6, Remark 3.3], will
be used in this article.

Result 1. [5, Corollary 1] A blocking set B of size smaller than 2q in PG(n, q)
is uniquely reducible to a minimal blocking set.

We extend the following result of Blokhuis and Brouwer to general dimension
in Theorem 10.

Result 2. [2] Let B be a blocking set in PG(2, q). If |B| = 2q − s, then there
are at least s + 1 tangent lines through each essential point of B.

Finally, for q a prime, we use the following result, proven by Blokhuis [1] for
n = 2, which shows that a small blocking set in PG(n, q), q prime, is trivial.

Result 3. [4] Let B be a non-trivial blocking set in PG(n, p), where p is an odd
prime. Then

|B| ≥ 3(p + 1)/2.

2 Partial covers of PG(2, q)

In this section, we investigate planar partial (q+a)-covers. We show that, under
the condition that q > 13 and a ≤ (q − 10)/4 or q ≥ 81 and a < (q − 1)/3, the
number of holes is at least q− a (Theorem 8), and if the number of holes is not
too large, all holes are collinear (Theorems 4 and 6).

In Corollary 9, we show that if q is prime, a partial (q + a)-cover contains q
lines through a fixed point.

Theorem 4. Let S be a partial (q+a)-cover of PG(2, q), with 0 ≤ a ≤ (q−10)/4,
q > 13, with at most q +a holes. Then there are at most q holes and these holes
are collinear.

Proof. Denote the set of holes by H, denote |H| by x, and assume that x ≤ q+a.
Suppose that there are three non-collinear points in H, otherwise the theorem
is proven. The set H can be covered by at most (x + 1)/2 lines, denote the set
of these lines by L. The set S ∪L is a cover in PG(2, q). Since the size of S ∪L
is at most q+a+(q+a+1)/2 ≤ 2q, there is a unique minimal cover C contained
in S ∪ L (Result 1).

Let `y be a y-secant to H with y ≤ (q − 3a − 1)/2. Interchanging `y by y
other lines gives, together with the lines of S, another cover C′, with |C ∪ C′| ≤
q + a + (q + a + 1)/2 + (q − 3a− 1)/2 ≤ 2q. Hence, by the unique reducibility
property, there is a unique minimal cover contained in C ∪ C′, hence in C ∩ C′.
This minimal cover does not contain `y. This implies that to cover the holes,
only lines with more than (q − 3a − 1)/2 holes are essential, we will call them
long secants.

If there is exactly one long secant, then the theorem is proven. Remark that
if there is only one long secant and there are q holes, then a = 0, since otherwise,
there would be more than q + 1 lines through a point.
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Suppose that there are exactly z long secants essential to cover the holes.
These z long secants, together with the q + a lines of S, form a cover C′′. Then
there is a line L with less than (q+a+1+

(
z
2

)
)/z holes. Suppose to the contrary

that any line contains at least (q + a + 1 +
(
z
2

)
)/z holes, then there are at least

z(q+a+1+
(
z
2

)
)/z−

(
z
2

)
= q+a+1 > q+a holes, a contradiction. We construct a

new cover by replacing this line L with less than (q+a+1+
(
z
2

)
)/z random lines,

one through each hole on L. In total, with the z long secants and the lines of S,
this set of lines constitutes a cover C′′′ of size at most q+a+z+(q+a+1+

(
z
2

)
)/z.

If

q + a + z + (q + a + 1 +
(

z

2

)
)/z ≤ 2q, (1)

the unique reducibility property (Result 1) shows that there is a minimal cover
contained in C′′ ∩ C′′′, which does not contain the line L. This implies that the
line L was not essential to the cover C′′, a contradiction. It is easy to see that
for z ≥ 2 and z < 9, inequality (1) holds for a ≤ (q − 10)/4 and q > 13. Hence,
there are at least 9 long secants essential to the minimal cover C′′. On each of
these secants, there are at least (q − 3a − 1)/2 holes, hence we have at least
9(q − 3a− 1)/2− 9 · 8/2 holes. But

9(q − 3a− 1)/2− 36 > q + a

if a < (7q − 63)/25. Since a ≤ (q − 10)/4, and (q − 10)/4 < (7q − 63)/25, the
theorem follows.

T. Szőnyi and Zs. Weiner proved the following theorem (see [8]).

Result 5. [8, Theorem 6.3] Let B be a point set in PG(2, q), q ≥ 81, of size less
than 3(q+1)/2. Denote the number of 0-secants of B by δ, and assume that δ is
at most q

√
q/3 when |B| < q +

√
q and at most q2

3(|B|−q) otherwise. Then B can
be obtained from a blocking set by deleting at most 2δ/q points of this blocking
set.

Using this result, for q ≥ 81 and a < (q− 1)/3, we can improve on Theorem
4.

Theorem 6. Let S be a partial (q + a)-cover of PG(2, q), with at most q + a
holes, with 0 ≤ a < (q− 1)/3, q ≥ 81. Then there are at most q holes and these
holes are collinear.

Proof. If the number of holes is smaller than q, the theorem is proven by Result
5 since 2δ/q < 2q/q = 2. Suppose that there are at least q and at most q + a
holes, then Result 5 shows that the holes lie on at most 2 lines. Repeating the
arguments of Theorem 4 yields a contradiction if a < (q − 1)/3, except for the
case that the holes are collinear (and hence, the number of holes is at most q).
This proves Theorem 6.

Remark 7. The bound a < (q − 1)/3 is sharp. Let a = (q − 1)/3 and let S be
a set of q − 1 lines Li through a point P , and a + 1 other lines through a fixed
point, lying on one of the lines Li. Then there are 2(q − a − 1) < q + a holes,
lying on two lines.
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Theorem 8. Let S be a partial (q+a)-cover of PG(2, q), then there are at least
q − a holes, with a < (q − 1)/3, q ≥ 81 or a ≤ (q − 10)/4, 13 < q.

Proof. Theorems 4 and 6 show that either there are more than q + a holes, and
the theorem holds, or that there are at most q holes, all on the same line, say
M . Hence, S ∪ {M} is a cover C of size q + a + 1, which can be reduced to a
minimal cover C′ of size q + a′ + 1. Dualizing C′ gives a minimal blocking set B
of q + a′ + 1 points. Then Result 2 shows that every point of B lies on at least
q − a′ tangent lines to B. This implies that any point of the dual of C lies on
at least (q − a′) − (a − a′) = q − a tangent lines. Dualizing again yields that
every line of C contains at least q − a points only lying on this line of C. Now
removing the line M shows that there are at least q − a holes.

Corollary 9. A partial (p+a)-cover S of PG(2, p), p prime, with a < (p−1)/3,
p ≥ 81 or a ≤ (p − 10)/4, 13 < p, with at most p + a holes, consists of p lines
through the same point R and a random lines l1, . . . , la, not through R.

Proof. It follows from Theorems 4, 6 and 8 that the holes are contained in one
line, say M . Then the lines of S, together with M , constitute a cover C of size
q + a + 1 < 3(p + 1)/2. Result 3, together with Result 1, shows that the unique
minimal cover contained in C is the set of all lines through a point R. It is clear
that the line M is one of the lines through R. The other a lines are random,
but do not contain R.

3 Partial covers of PG(n, q)

In this section, we extend results of Section 2 to general dimension. Theorem
16 extends Theorem 8. Corollary 17 shows that if q is prime, a partial (q + a)-
cover, with at most qn−1 holes, a < (q− 1)/3, q ≥ 81 or a ≤ (q− 10)/4, 13 < q,
contains q hyperplanes through a fixed (n − 2)-space. In Theorem 15 we show
that, if there are at most qn−1 holes, the holes are contained in a hyperplane.

Before proving these theorems, we need the extension of Result 2 to general
dimension.

Theorem 10. The number of tangent hyperplanes through an essential point of
a blocking set B of size q +a+1, |B| ≤ 2q, in PG(n, q) is at least qn−1−aqn−2.

Proof. The arguments of this proof are based on the proof of Proposition 2.5 in
[7].

For n = 2, Result 2 proves this theorem. Assume by induction that the
theorem holds for all dimensions i ≤ n − 1. Let B be a blocking set in π =
PG(n, q). Since |B| ≤ 2q, there is an (n − 2)-space L in π that is skew to B.
Let H be a hyperplane through L. Embed π in PG(2n − 2, q). Let P be a
PG(n− 3, q), skew to π, in PG(2n− 2, q). Then 〈B,P 〉, the cone with vertex P
and base B, is a blocking set with respect to the (n−1)-spaces of PG(2n−2, q).
Let H∗ 6= H be a hyperplane through L only sharing one point Q with B. Since
|B| is at most 2q, there are at least 2 tangent hyperplanes through L, hence H∗

can be chosen different from H.
Let S be a regular (n − 2)-spread through L and 〈Q,P 〉 in W , the (2n −

3)-dimensional space spanned by L and 〈Q,P 〉. Using the André-Bruck-Bose
construction (see [3]), this yields a projective plane PG(2, qn−1) = ΠW . The
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arguments of [7, Proposition 2.5] show that H defines a line ` in ΠW , only having
essential points of the blocking set B̄ of size 1+(q +a)qn−2 = qn−1 +aqn−2 +1,
where B̄ is the blocking set in PG(2, qn−1), corresponding to 〈B,P 〉. This
number of points comes from 〈Q,P 〉 at infinity, which is one point of the blocking
set, and the q + a affine points Ri of B, all on a cone 〈Ri, P 〉 with qn−2 affine
points. Result 2 shows that any essential point lies of B̄ on at least qn−1−aqn−2

tangent lines to the blocking set B̄ in ΠW . We will show that the number of
tangent lines through an essential point of the blocking set B̄ in ΠW is a lower
bound on the number of tangent hyperplanes through an essential point of B
in PG(n, q).

A tangent line through an affine essential point R corresponds to an (n−1)-
space 〈R,Ω〉, with Ω a spread element of S. The space 〈R,Ω〉 is not necessarily
a tangent hyperplane to B in PG(n, q). Note that Ω 6= 〈Q,P 〉, since both are
spread elements and cannot coincide since 〈Q,P 〉 is an element of the blocking
set, hence 〈R,Q,P 〉 cannot be a tangent space.

The projection of 〈R,Ω〉 from P onto PG(n, q) is an (n − 1)-dimensional
space through R in PG(n, q) which is skew to Q since Ω ∩ 〈Q,P 〉 = ∅, and
which only has R in common with B since 〈Ω, R〉 ∩ 〈B,P 〉 = {R}. Hence, this
projection is a tangent (n − 1)-space through R to B in PG(n, q). So we have
shown that any tangent line in R to B̄ gives rise to a tangent hyperplane to B.
If any tangent line to B̄ in R gives rise to a different tangent hyperplane to B,
the theorem is proven.

Let η be a tangent hyperplane to B in R which is the projection of two
tangent lines 〈Ω, R〉 and 〈Ω′, R〉. The dimension of 〈η, P 〉 is 2n − 3, and
dim(〈η, P 〉 ∩ W ) = 2n − 4. A hyperplane of PG(2n − 3, q) contains exactly
one element of a regular (n− 2)-spread. Since it contains Ω and Ω′, Ω = Ω′. So
η is the projection of at most one such (n− 1)-space.

Lemma 11. Let S be a partial (q +a)-cover of PG(n, q), a < q. If all holes are
contained in a hyperplane π of PG(n, q), then there are at least qn−1 − aqn−2

holes.

Proof. The hyperplanes of S, together with the hyperplane π that contains
all holes, form a cover of size q + a + 1, in which π is an essential hyperplane.
Dualizing gives a blocking set B of size q+a+1, where the dual of π is an essential
point. Theorem 10 shows that the dual of π lies on at least qn−1−aqn−2 tangent
hyperplanes to B. Dualizing again shows that π contains at least qn−1 − aqn−2

points that are only covered by π. Removing π shows that there are at least
qn−1 − aqn−2 holes.

Remark 12. The bound in Lemma 11 is sharp. Let S be the set of q hyperplanes
through a fixed (n − 2)-space πn−2. Let H be the hyperplane through πn−2,
which is not chosen. Take a hyperplanes for which the (n − 2)-dimensional
intersections with H, go through a common (n − 3)-space of πn−2, then there
are exactly qn−1 − aqn−2 holes.

Lemma 13. Let S be a partial (q + a)-cover of PG(n, q), n ≥ 3, a < (q − 1)/3
with q ≥ 81 or a ≤ (q− 10)/4 with 13 < q, with at most qn−1 holes. A line that
contains 2 holes, contains at least a + 3 holes.
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Proof. Let L be a line with x holes, x < q − a. If there are at most q + a holes
in a plane through L, Theorems 4, 6 and 8 show that in this plane, there are at
least q − a holes, which are all collinear.

This implies that any of the planes through L contains at least q + a + 1
holes. This implies that there are at least

θn−2(q + a + 1− x) + x

holes in PG(n, q), which has to be at most qn−1. If x = a + 2, θn−2(q + a + 1−
a− 2) + a + 2 > qn−1, a contradiction. Hence, x is at least a + 3.

Lemma 14. Let S be a partial (q + a)-cover of PG(n, q), n ≥ 3, a < (q − 1)/3
with q ≥ 81 or a ≤ (q− 10)/4 with 13 < q, with at most qn−1 holes. Then every
hole lies on more than qn−2/2 lines with at least q − a holes.

Proof. Let R be a hole. There is a line L through R containing only covered
points and R, otherwise there would be at least θn−1 +1 holes. A plane through
L contains either at most q − 1 holes on a line through R, different from L, or
it contains at least q + a holes different from R.

Suppose that there are A planes through L with at most q−1 holes different
from R. Then the number of holes is at least

A(q − a− 1) + (θn−2 −A)(q + a) + 1,

which has to be at most qn−1. Suppose that A = qn−2/2; we obtain a contradic-
tion. Hence, there are more than qn−2/2 planes with at most q holes. Theorems
4, 6 and 8 state that in each of these planes, there is a line through R containing
at least q − a− 1 other holes, and all holes in such a plane lie on this line.

Theorem 15. Let S be a partial (q + a)-cover with at most qn−1 holes, a <
(q − 1)/3 with q ≥ 81 or a ≤ (q − 10)/4 with 13 < q. Then the holes are
contained in one hyperplane of PG(n, q).

Proof. For n = 2, this is proven in Theorem 4. Suppose by induction that this
theorem holds for any dimension i ≤ n− 1.

First, we show that there is a hyperplane π of PG(n, q) with at most qn−2

holes. Let R be a hole. There is a line L through R containing only covered
points and R. Suppose that all planes through L contain more than q holes,
then there would be at least θn−2q + 1 holes, a contradiction. Suppose that
there is an x-dimensional space πx with at most qx−1 holes. Then there is an
(x + 1)-dimensional space containing πx with at most qx holes. Otherwise, the
number of holes would be at least θn−x−1(qx +1− qx−1)+ qx−1, a contradiction
if x ≤ n − 1. Hence, by induction, there is a hyperplane π of PG(n, q) with at
most qn−2 holes.

Using the induction hypothesis, all holes in π are contained in an (n − 2)-
dimensional space πn−2 of π. Moreover, Lemma 11 shows that the number of
holes in πn−2 is at least qn−2 − aqn−3.

There are at least θn−2(q − a − 1) + 1 holes in PG(n, q) since every plane
through L contains at least q − a − 1 extra holes. Hence, there is certainly a
hole R′ that is not contained in πn−2.

Now we distinguish between two cases.
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Case 1: All lines through R′ with at least q−a holes are lines which intersect
πn−2. Lemma 14 shows that there are at least qn−2/2 such lines. Since a line
through two holes contains at least a + 3 holes (see Lemma 13), counting the
holes in 〈R′, πn−2〉 yields that this number is at least

qn−2(q − a− 1)/2 + (qn−2 − aqn−3 − qn−2/2)(a + 2) + 1.

If all holes are contained in 〈R′, πn−2〉, the theorem is proven. Suppose now
that not all holes are contained in the hyperplane 〈R′, πn−2〉. Let R′′ be a hole
not in 〈R′, πn−2〉. Connecting R′′ with all the holes in 〈R′, πn−2〉 yields at least
(a+2)(qn−2(q−a− 1)/2+(qn−2−aqn−3− qn−2/2)(a+2)+1)+1 holes, which
is more than qn−1, a contradiction.

Case 2: There is a line through R′ with at least q− a holes skew to πn−2.
This yields at least

(q − a)(qn−2 − aqn−3)(a + 1) + qn−2 − aqn−3 + q − a > qn−1

holes, a contradiction.

Theorem 16. Let S be a partial (q + a)-cover of PG(n, q), a < (q − 1)/3 with
q ≥ 81 or a ≤ (q − 10)/4 with 13 < q. Then there are at least qn−1 − aqn−2

holes.

Proof. This follows immediately from Theorem 15 and Lemma 11.

Corollary 17. A partial (p + a)-cover S of PG(n, p), p prime, a < (p − 1)/3
with p ≥ 81 or a ≤ (p − 10)/4 with 13 < p, with at most pn−1 holes, consists
of p hyperplanes through a common (n− 2)-space π and a random hyperplanes,
not through π.

Proof. It follows from Theorem 15 that the holes are contained in one hyper-
plane, say µ. Then the hyperplanes of S, together with µ, constitute a cover C
of size p + a + 1 < 3(p + 1)/2. Result 3, together with Result 1, shows that the
unique minimal cover contained in C is the set of all hyperplanes through an
(n− 2)-space π. Since this set covers PG(n, p) entirely, the hyperplane µ is one
of the hyperplanes through π. The other a hyperplanes are random, but do not
contain π.
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