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Abstract

Let ∆ be a symplectic dual polar space DW (2n− 1, K) or a Hermitian
dual polar space DH(2n−1, K, θ), n ≥ 2. We define a class of hyperplanes
of ∆ arising from its Grassmann-embedding and discuss several properties
of these hyperplanes. The construction of these hyperplanes allows us to
prove that there exists an ovoid of the Hermitian dual polar space DH(2n−
1, K, θ) arising from its Grassmann-embedding if and only if there exists
an empty θ-Hermitian variety in PG(n − 1, K). Using this result we are
able to give the first examples of ovoids in thick dual polar spaces of rank
at least 3 which arise from some projective embedding. These are also the
first examples of ovoids in thick dual polar spaces of rank at least 3 for
which the construction does not make use of transfinite recursion.

Keywords: symplectic/Hermitian dual polar space, hyperplane, ovoid, Grassmann-
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1 Introduction

1.1 Basic definitions

Let Π be a non-degenerate thick polar space of rank n ≥ 2. With Π there
is associated a point-line geometry ∆ whose points are the maximal singular
subspaces of Π, whose lines are the next-to-maximal singular subspaces of Π and
whose incidence relation is reverse containment. The geometry ∆ is called a dual
polar space (Cameron [2]). There exists a bijective correspondence between the
non-empty convex subspaces of ∆ and the possibly empty singular subspaces of
Π: if α is a singular subspace of Π, then the set of all maximal singular subspaces
containing α is a convex subspace of ∆. If x and y are two points of ∆, then
d(x, y) denotes the distance between x and y in the collinearity graph of ∆. The
maximal distance between two points of a convex subspace A of ∆ is called the
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diameter of A. The diameter of ∆ is equal to n. The convex subspaces of diameter
2, 3, respectively n−1, are called the quads, hexes, respectively maxes, of ∆. The
points and lines contained in a convex subspace of diameter δ ≥ 2 define a dual
polar space of rank δ. In particular, the points and lines contained in a quad
define a generalized quadrangle (Payne and Thas [17]). If ∗1, ∗2, . . . , ∗k are points
or convex subspaces of ∆, then we denote by 〈∗1, ∗2, . . . , ∗k〉 the smallest convex
subspace of ∆ containing ∗1, ∗2, . . . , ∗k. The convex subspaces through a point
x of ∆ define a projective space of dimension n − 1 which we will denote by
Res∆(x). For every point x of ∆, let x⊥ denote the set of points equal to or
collinear with x. The dual polar space ∆ is a near polygon (Shult and Yanushka
[19]; De Bruyn [6]) which means that for every point x and every line L, there
exists a unique point on L nearest to x. More generally, for every point x and
every convex subspace A, there exists a unique point πA(x) in A nearest to x
and d(x, y) = d(x, πA(x)) + d(πA(x), y) for every point y of A. We call πA(x) the
projection of x onto A.

A hyperplane of a point-line geometry S is a proper subspace of S meeting
each line. An ovoid of a point-line geometry S is a set of points of S meeting each
line in a unique point. Every ovoid is a hyperplane. If ∆ is a dual polar space
of rank n ≥ 2, then for every point x of ∆, the set Hx of points of ∆ at distance
at most n − 1 from x is a hyperplane of ∆, called the singular hyperplane of ∆
with deepest point x. If A is a convex subspace of diameter δ of ∆ and HA is a
hyperplane of A, then the set of points of ∆ at distance at most n− δ from HA

is a hyperplane of ∆, called the extension of HA.
Now, suppose ∆ is a thick dual polar space. Then every hyperplane of ∆ is

a maximal subspace by Shult [18, Lemma 6.1]. If H is a hyperplane of ∆ and Q
is a quad of ∆, then either Q ⊆ H or Q ∩ H is a hyperplane of Q. By Payne
and Thas [17, 2.3.1], one of the following cases then occurs: (i) Q ⊆ H, (ii) there
exists a point x in Q such that x⊥∩Q = H ∩Q, (iii) Q∩H is a subquadrangle of
Q, or (iv) Q∩H is an ovoid of Q. If case (i), case (ii), case (iii), respectively case
(iv), occurs, then we say that Q is deep, singular, subquadrangular, respectively
ovoidal, with respect to H.

A full embedding of a point-line geometry S into a projective space Σ is an
injective mapping e from the point-set P of S to the point-set of Σ satisfying
(i) 〈e(P )〉 = Σ and (ii) e(L) := {e(x) |x ∈ L} is a line of Σ for every line L
of S. If e : S → Σ is a full embedding, then for every hyperplane α of Σ,
H(α) := e−1(e(P ) ∩ α) is a hyperplane of S; we will say that the hyperplane
H(α) arises from the embedding e.

1.2 Overview

Let n ∈ N \ {0, 1}, let K be a field and let ζ be a non-degenerate symplectic or
Hermitian polarity of PG(2n−1, K). If ζ is a Hermitian polarity, we assume that
there exists a totally isotropic subspace of maximal dimension n− 1. Notice that
such a subspace always exists in the symplectic case. In the case ζ is a Hermitian
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polarity of PG(2n− 1, K), let θ be the associated involutory automorphism of K
and let K0 be the fix-field of θ.

Let Π be the polar space of the totally isotropic subspaces of PG(2n − 1, K)
(with respect to ζ) and let ∆ be its associated dual polar space. In the symplectic
case, we denote Π and ∆ by W (2n− 1, K) and DW (2n− 1, K), respectively. In
the Hermitian case, we denote Π and ∆ by H(2n−1, K, θ) and DH(2n−1, K, θ),
respectively.

Let π be an arbitrary (n− 1)-dimensional subspace of PG(2n− 1, K) and let
Hπ denote the set of all maximal totally isotropic subspaces meeting π.

Suppose ∆ is the symplectic dual polar space DW (2n − 1, K). We will show in
Section 2.1 that Hπ is a hyperplane of ∆. We call any hyperplane of DW (2n −
1, K) arising from an (n−1)-dimensional subspace π of PG(2n−1, K) a hyperplane
of type (S). (“S” refers to Symplectic.) This class of hyperplanes is already
implicitly described in the literature.

Let G be the Grassmannian of the (n− 1)-dimensional subspaces of PG(2n−
1, K). The points of G are the (n − 1)-dimensional subspaces of PG(2n − 1, K)
and the lines are all the sets {C |A ⊂ C ⊂ B}, where A and B are subspaces
of PG(2n − 1, K) satisfying dim(A) = n − 2, dim(B) = n and A ⊂ B. If α is
an (n − 1)-dimensional subspace of PG(2n − 1, K), then the set of all (n − 1)-
dimensional subspaces of PG(2n − 1, K) meeting α is a hyperplane Gα of the
geometry G (see e.g. [14]). Now, the dual polar space DW (2n − 1, K) can be
regarded as a subspace of G and the hyperplane Gα will give rise to a hyperplane
of DW (2n−1, K). This is precisely the hyperplane Hα of DW (2n−1, K) defined
above.

In the case of the Grassmannian G, there is essentially only one type of hyper-
plane which can be constructed in this way. This is not the case for the symplectic
dual polar space DW (2n − 1, K). The isomorphism type depends on the size of
the radical of π.

In Section 2.1 we will discuss several properties of the hyperplanes of type
(S). Some of these properties turn out to be important for other applications (see
e.g. [8] and [9]). In Section 2.2, we will give an alternative description of these
hyperplanes in terms of certain objects of the dual polar space, and in Section
2.3, we will prove that all these hyperplanes arise from the so-called Grassmann-
embedding of DW (2n− 1, K).

Now, suppose ∆ is the Hermitian dual polar space DH(2n− 1, K, θ).
(i) If π is a totally isotropic subspace, then Hπ is a hyperplane of ∆, namely

the singular hyperplane of ∆ with deepest point π.
(ii) If π is not totally isotropic, then Hπ is not a hyperplane of ∆. If e : ∆ → Σ

denotes the Grassmann-embedding of ∆, then we show in Section 3.1 that there
exists a subspace γπ of co-dimension 2 in Σ such that e(Hπ) = e(P ) ∩ γπ, where
P denotes the point-set of ∆. If α is a hyperplane of Σ through γπ, then H(α)
is a hyperplane of ∆ which (regarded as point-line geometry) contains Hπ as a
hyperplane.
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Any hyperplanes of DH(2n−1, K, θ) which is obtained as in (i) or (ii) is called
a hyperplane of type (H) of DH(2n−1, K, θ). (“H” refers to Hermitian.) Making
use of these hyperplanes of type (H) of DH(2n− 1, K, θ), we prove the following
in Section 3.2.

Theorem 1.1 (Section 3.2) The dual polar space DH(2n − 1, K, θ), n ≥ 2,
has an ovoid arising from its Grassmann-embedding if and only if there exists an
empty θ-Hermitian variety in PG(n− 1, K).

Now, suppose the dual polar space DW (2n − 1, K0) is isometrically embedded
as a subspace in DH(2n − 1, K, θ). (Up to isomorphism, there exists a unique
such embedding, see [11, Theorem 1.5].) Then every ovoid of DH(2n − 1, K, θ)
intersects DW (2n− 1, K0) in an ovoid of DW (2n− 1, K0). By [12, Theorem 1.1],
the full embedding of DW (2n− 1, K0) induced by the Grassmann-embedding of
DH(2n−1, K, θ) is isomorphic to the Grassmann-embedding of DW (2n−1, K0).
By Theorem 1.1, we then have

Corollary 1.2 If there exists an empty θ-Hermitian variety in PG(n − 1, K),
n ≥ 2, then the dual polar space DW (2n − 1, K0) has ovoids arising from its
Grassmann-embedding.

The ovoids alluded to in Theorem 1.1 and Corollary 1.2 are the first examples
(for n ≥ 3) of ovoids in thick dual polar spaces of rank at least 3 which arise from
some projective embedding. They are also the first examples of ovoids in thick
dual polar spaces of rank at least 3 for which the construction does not make use
of transfinite recursion. (Using transfinite recursion it is rather easy to construct
ovoids in infinite dual polar spaces, see Cameron [3].)

In Section 4, we will discuss the finite Hermitian case. We will prove that if π is
an (n− 1)-dimensional subspace of PG(2n− 1, q2) which is not totally isotropic,
then there are precisely q+1 hyperplanes in DH(2n−1, q2) which contain Hπ as a
hyperplane and that all these hyperplanes are isomorphic. Some other properties
of these hyperplanes are investigated.

2 The symplectic case

2.1 Definition and properties of the hyperplanes of type
(S)

Consider in PG(2n− 1, K), n ≥ 2, a symplectic polarity ζ and let W (2n− 1, K)
and ∆ = DW (2n − 1, K) denote the corresponding polar space and dual polar
space. Let π be an (n− 1)-dimensional subspace of PG(2n− 1, K) and let Hπ be
the set of all maximal totally isotropic subspaces meeting π.
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Lemma 2.1 If α is a maximal totally isotropic subspace of W (2n − 1, K), then
dim(π ∩ α) = dim(πζ ∩ α).

Proof. Put β = π ∩ α and k = dim(β). The space βζ has dimension 2n− 2− k
and contains the (n− 1)-dimensional subspaces πζ and α. Hence, dim(πζ ∩ α) ≥
k = dim(π ∩ α). By symmetry, also dim(π ∩ α) ≥ dim(πζ ∩ α). �

Corollary 2.2 Hπ = Hπζ . �

Lemma 2.3 Through every point x of PG(2n − 1, K) not contained in π ∪ πζ,
there exists a maximal totally isotropic subspace disjoint from π (and hence also
from πζ).

Proof. We will prove the lemma by induction on n.
Suppose first that n = 2. Let L be a line through x contained in the plane xζ

and not containing the point xζ ∩ π. Then L satisfies the required conditions.
Suppose next that n ≥ 3. The totally isotropic subspaces through x determine

a polar space of type W (2n− 3, K) which lives in the quotient space xζ/x. Since
dim(xζ ∩π) = n−2 (recall that x 6∈ πζ), the subspace π′ = 〈x, xζ ∩π〉 of xζ/x has
dimension n− 2 (in xζ/x). By the induction hypothesis, there exists a maximal
totally isotropic subspace in W (2n−3, K) disjoint from π′. Hence, in W (2n−1, K)
there exists a maximal totally isotropic subspace through x disjoint from π. �

Proposition 2.4 The set Hπ is a hyperplane of DW (2n− 1, K).

Proof. First, we show that Hπ is a subspace. Let α1 and α2 be two maximal
totally isotropic subspaces meeting π such that dim(α1 ∩ α2) = n − 2 and let
α3 denote an arbitrary maximal totally isotropic subspace through α1 ∩ α2. If
α1 ∩ α2 ∩ π 6= φ, then obviously α3 meets π. Suppose now that α1 ∩ α2 ∩ π = ∅,
α1 ∩ π = {x1} and α2 ∩ π = {x2}. Then (α1 ∩ α2)

ζ = 〈α1, α2〉. So, α3 ⊆ 〈α1, α2〉
meets the line x1x2 and hence also π. In each of the two cases, α3 ∈ Hπ. This
proves that Hπ is a subspace. By Lemma 2.3, Hπ is a proper subspace.

We will now prove that Hπ is a hyperplane. Let β denote an arbitrary totally
isotropic subspace of dimension n − 2 and let Lβ denote the set of all maximal
totally isotropic subspaces containing β. Obviously, Lβ ⊆ H if β ∩ π 6= ∅. If
β ∩ π = ∅, then βζ is an n-dimensional subspace which has (at least) a point x
in common with π. Obviously, 〈β, x〉 is a point of Lβ contained in H. �

Definition. We say that a hyperplane H of ∆ = DW (2n− 1, K) is of type (S) if
it is of the form Hπ for a certain (n−1)-dimensional subspace π of PG(2n−1, K).

Consider the following three types of points in the hyperplane Hπ of ∆ = DW (2n−
1, K).

• Type I: maximal totally isotropic subspaces α for which dim(α ∩ π) =
dim(α ∩ πζ) = 0 and α ∩ π = α ∩ πζ .
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• Type II: maximal totally isotropic subspaces α for which dim(α ∩ π) =
dim(α ∩ πζ) = 0 and α ∩ π 6= α ∩ πζ .

• Type III: maximal totally isotropic subspaces α for which dim(α ∩ π) =
dim(α ∩ πζ) ≥ 1.

For every point x of Hπ, let Λ(x) denote the set of lines through x which are
contained in Hπ. Then Λ(x) can be regarded as a set of points of Res∆(x).

Proposition 2.5 • If α is a point of Type I, then Λ(x) is a hyperplane of
Res∆(x).

• If α is a point of Type II, then Λ(x) is the union of two distinct hyperplanes
of Res∆(x).

• If α is a point of Type III, then Λ(x) coincides with the whole point set of
Res∆(x).

Proof. Let α be a point of Type I and let x denote the unique point contained
in α ∩ π = α ∩ πζ . Let β be an (n− 2)-dimensional subspace of α. If β contains
the point x, then the line of DW (2n − 1, K) corresponding with β obviously is
contained in Hπ. If β does not contain the point x, then βζ ∩ π = {x}, and it
follows that α is the unique point of the line of DW (2n − 1, K) corresponding
with β which is contained in Hπ. [If βζ ∩ π would be a line L, then L must be a
totally isotropic line through x and 〈β, L〉 would be a totally isotropic subspace
of dimension n, which is impossible.] Hence, there exists a unique max A(α)
through α such that the lines of DW (2n− 1, K) through α which are contained
in Hπ are precisely the lines of A(α) through α.

Let α be a point of Type II and let x1 and x2 be the points contained in
α ∩ π and α ∩ πζ , respectively. Let β be an (n − 2)-dimensional subspace of α.
If β contains at least one of the points x1 and x2, then by Lemma 2.1, every
maximal totally isotropic subspace through β meets π, proving that the line of
DW (2n − 1, K) corresponding with β is contained in Hπ. Suppose now that
β ∩ {x1, x2} = ∅. If α′ 6= α is a maximal totally isotropic subspace through
β meeting π in a point x 6= x1, then β = x⊥ ∩ α contains the point x2, a
contradiction. So, if β ∩ {x1, x2} = ∅, then α is the unique point of the line
of DW (2n − 1, K) corresponding with β which is contained in Hπ. It follows
that there are two distinct maxes A1(α) and A2(α) through α such that the lines
through α contained in Hπ are precisely the lines through α which are contained
in A1(α) ∪ A2(α).

If α is a point of Type III, then every (n − 2)-dimensional subspace of α
contains a point of π. It follows that every line through α is contained in Hπ. �

Proposition 2.6 Let M be a max of DW (2n − 1, K) and let x be the point of
PG(2n− 1, K) corresponding with M . Then M is contained in Hπ if and only if
x ∈ π ∪ πζ.
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Proof. If x ∈ π ∪ πζ , then every maximal totally isotropic subspace through x
meets π and hence M ⊆ Hπ. If x 6∈ π ∪ πζ , then M is not contained in Hπ by
Lemma 2.3. �

The following proposition is obvious.

Proposition 2.7 If π is a maximal totally isotropic subspace, then Hπ is the
singular subspace with deepest point π. �

Proposition 2.8 Let n ≥ 3 and suppose that the subspace π is singular. Let x be
a point of π such that π ⊆ xζ. The maximal totally isotropic subspaces through x
define a convex subspace A ∼= DW (2n−3, K) of DW (2n−1, K). Let Gπ denote the
hyperplane of type (S) of A consisting of all maximal totally isotropic subspaces
containing a line of π through x. Then the hyperplane Hπ of DW (2n − 1, K) is
the extension of the hyperplane Gπ of A.

Proof. Let α denote an arbitrary point of DW (2n− 1, K). If α is a point of A,
then α ∈ Hπ since α contains the point x of π.

Suppose now that α does not contain the point x. Let α′ denote the unique
maximal totally isotropic subspace through x meeting α in a space β of dimension
n− 2. Then α′ is the projection of α onto A.

Suppose α ∈ Hπ. If u is a point of α contained in π, then the line xu is
contained in α′, proving that α′ ∈ Gπ. Conversely, suppose that α′ ∈ Gπ. If L
is a line of π through x contained in α′, then L meets the hyperplane β of α′.
Hence, α ∩ π 6= ∅ and α ∈ Hπ.

So, a point of DW (2n− 1, K) not contained in A belongs to Hπ if and only if
its projection on A belongs to Gπ. This proves that Hπ is the extension of Gπ. �

Proposition 2.9 Suppose Hπ is a hyperplane of type (S) of DW (2n− 1, K) and
let A be a convex subspace of DW (2n− 1, K) of diameter at least 2. Then either
A ⊆ Hπ or A ∩Hπ is a hyperplane of type (S) of A.

Proof. Let α be the totally isotropic subspace corresponding with A. If α
meets π, then A ⊆ Hπ. So, we will suppose that α is disjoint from π. Put
dim(α) = n−1− i with i ≥ 2. The totally isotropic subspaces through α define a
polar space W (2i− 1, K) which lives in the quotient space αζ/α. The space αζ is
(n−1+i)-dimensional and hence αζ∩π has dimension at least i−1. Let π′ be the
subspace generated by α and αζ ∩ π. The dimension of the quotient space αζ/α
is 2i − 1 and the dimension of π′ in this quotient space is at least i − 1. If this
dimension is at least i, then every maximal totally isotropic subspace through α
meets αζ ∩ π and hence A ⊆ Hπ. If the dimension is precisely i − 1, then the
hyperplane H ∩ A of A has type (S). �

Proposition 2.10 Every hyperplane Hπ of type (S) of DW (3, K) is either a
singular hyperplane or a grid.
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Proof. In this case π is a line of PG(3, K). If π is totally isotropic, then Hπ is a
singular hyperplane.

If π is not totally isotropic, then the points of Hπ are precisely the lines
meeting π and πζ . The lines of Hπ are the points of π ∪ πζ , see Proposition 2.6.
It is now easily seen that Hπ defines a grid. �

Propositions 2.9 and 2.10 have the following corollary:

Corollary 2.11 A hyperplane of type (S) does not admit ovoidal quads. �

Proposition 2.12 Every hyperplane Hπ of type (S) of DW (5, K) is either a
singular hyperplane or the extension of a grid.

Proof. In this case π is a plane which is always singular. So, Hπ is isomorphic
to the extension of a hyperplane of type (S) in DW (3, K). This proves the
lemma. [In fact, the following holds: if π is totally isotropic, then Hπ is a singular
hyperplane; if π contains a unique singular point, then Hπ is the extension of a
grid.] �

2.2 Alternative description of the hyperplanes

In this section, we will give an alternative description of the hyperplanes of type
(S). We will restrict ourselves to those hyperplanes Hπ, where π is nonsingu-
lar. (This is not so restrictive in view of Proposition 2.8.) The fact that π is
nonsingular implies that dim(π) is odd.

Consider the dual polar space DW (4n− 1, K) with n ≥ 2. Let π be a nonsin-
gular subspace of dimension 2n − 1. Let n1, n2 ≥ 1 such that n1 + n2 = n, and
let πi, i ∈ {1, 2} be a nonsingular subspace of π of dimension 2ni − 1 such that
π2 = πζ

1 ∩ π. Then π1 and π2 are disjoint and 〈π1, π2〉 = π. Let Ωi, i ∈ {1, 2},
denote the set of maxes of DW (4n − 1, K) corresponding with the points of πi.
Then every max of Ω1 intersects every max of Ω2 in a convex subspace of diameter
2n − 2. Let X denote the set of points which are contained in a max of Ω1 and
a max of Ω2.

Proposition 2.13 Hπ consists of those points of DW (4n− 1, K) at distance at
most 1 from X.

Proof. Notice that every point of π is contained in a line which meets π1 and
π2.

Now, let α denote an arbitrary point of Hπ, i.e. α is a totally isotropic
subspace and there exists a point x ∈ α ∩ π. Let L denote a line through x
meeting π1 and π2. There exists a maximal totally isotropic subspace α′ through
L meeting α in at least an (2n−2)-dimensional subspace. Obviously, α′ ∈ X and
d(α, α′) ≤ 1.

Now, let α denote an arbitrary point of DW (4n− 1, K) at distance at most 1
from a point α′ of X. The totally isotropic subspace α′ contains a point x1 ∈ π1
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and a point x2 ∈ π2. Since dim(α ∩ α′) ≥ 2n− 2, the line x1x2 meets α ∩ α′ and
hence also α. This proves that α ∈ Hπ. �

Example. Consider the dual polar space DW (7, K). Suppose Ω1 and Ω2 are two
sets of mutually disjoint hexes satisfying the following properties.

• Every line L meeting two distinct hexes of Ωi, i ∈ {1, 2}, meets every hex
of Ωi. Moreover, the hexes of Ωi cover all the points of L.

• Every hex of Ω1 intersects every hex of Ω2 in a quad.

Let X denote the set of points which are contained in a hex of Ω1 and a hex
of Ω2 and let H be the set of points at distance at most 1 from X. Then H is
a hyperplane of type (S) of DW (7, K) arising from a nonsingular 3-dimensional
subspace.

2.3 The hyperplanes of type (S) arise from embedding

Put I = {1, 2, . . . , 2n} with n ≥ 2. Suppose X is an (n−1)-dimensional subspace
of PG(2n− 1, K) generated by the points (xi,1, . . . , xi,2n), 1 ≤ i ≤ n, of PG(2n−
1, K). For every J = {i1, i2, . . . , in} ∈

(
I
n

)
with i1 < i2 < · · · < in, we define

XJ :=

∣∣∣∣∣∣∣∣∣
x1,i1 x1,i2 · · · x1,in

x2,i1 x2,i2 · · · x2,in
...

...
. . .

...
xn,i1 xn,i2 · · · xn,in

∣∣∣∣∣∣∣∣∣ .

The elements XJ , J ∈
(

I
n

)
, are the coordinates of a point f(X) of PG(

(
2n
n

)
−1, K)

and this point does not depend on the particular set of n points which we have
chosen as generating set for X. The image {f(X) | dim(X) = n − 1} of f is a
so-called Grassmann-variety G2n−1,n−1,K of PG(

(
2n
n

)
− 1, K) which we will shortly

denote by G. If α and β are subspaces of PG(2n − 1, K) satisfying dim(α) =
n − 2 and dim(β) = n, then {f(X) | dim(X) = n − 1, α ⊂ X ⊂ β} is a line of
PG(

(
2n
n

)
− 1, K). For more background information on the topic of Grassmann-

varieties, we refer to Hirschfeld and Thas [15, Chapter 24].

Let X and Y be two (n − 1)-dimensional subspaces of PG(2n − 1, K). Suppose
that X is generated by the points (xi,1, . . . , xi,2n), 1 ≤ i ≤ n, and that Y is
generated by the points (yi,1, . . . , yi,2n), 1 ≤ i ≤ n. Then X ∩Y 6= ∅ if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 x1,2 · · · x1,2n
...

...
. . .

...
xn,1 xn,2 · · · xn,2n

y1,1 y1,2 · · · y1,2n
...

...
. . .

...
yn,1 yn,2 · · · yn,2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

9



i.e., if and only if ∑
J∈(I

n)

(−1)σ(J)XJYI\J = 0, (1)

where σ(J) = (1 + · · ·+ n) + Σj∈Jj. (Expand according to the first n rows.) The
following lemma is an immediate corollary of formula (1).

Lemma 2.14 Let π be a given (n − 1)-dimensional subspace of PG(2n − 1, K)
and let Vπ denote the set of all (n − 1)-dimensional subspaces of PG(2n − 1, K)
meeting π. Then there exists a hyperplane Aπ of PG(

(
2n
n

)
− 1, K) satisfying the

following property: if π′ is an (n − 1)-dimensional subspace of PG(2n − 1, K),
then π′ ∈ Vπ if and only if f(π′) ∈ Aπ. �

Now, consider a symplectic polarity ζ in PG(2n−1, K) and let W (2n−1, K) and
DW (2n− 1, K) denote the associated polar and dual polar spaces. A point α of
DW (2n− 1, K) is an (n− 1)-dimensional totally isotropic subspace. So, f(α) is
a point of G ⊆ PG(

(
2n
n

)
− 1, K). A line β of DW (2n− 1, K) is a totally isotropic

subspace of dimension n− 2 and the points of β (in DW (2n− 1, K)) are all the
(n−1)-dimensional subspaces through β contained in βζ . It follows that f defines
a full embedding egr of DW (2n − 1, K) in a certain subspace PG(N − 1, K) of
PG(

(
2n
n

)
− 1, K). The value of N is equal to

(
2n
n

)
−

(
2n

n−2

)
, see e.g. Burau [1, 82.7]

or De Bruyn [7]. We call egr the Grassmann-embedding of DW (2n− 1, K).

Proposition 2.15 Let π be an (n − 1)-dimensional subspace of PG(2n − 1, K)
and let Hπ denote the associated hyperplane of DW (2n− 1, K). Then Hπ arises
from the Grassmann-embedding of DW (2n− 1, K).

Proof. Let Aπ denote a hyperplane of PG(
(
2n
n

)
−1, K) satisfying the following: an

(n−1)-dimensional subspace π′ of PG(2n−1, K) meets π if and only if f(π′) ∈ Aπ.
Suppose that Aπ contains PG(N − 1, K). Then every maximal totally isotropic
subspace would meet π, which is impossible, see Lemma 2.3. Hence Aπ intersects
PG(N − 1, K) in a hyperplane Bπ of PG(N − 1, K). Obviously, the hyperplane
Hπ of DW (2n− 1, K) arises from the hyperplane Bπ of PG(N − 1, K). �

3 The Hermitian case

3.1 A hyperplane of a hyperplane

Let n ≥ 2, let K0 be a field, let K be a quadratic Galois-extension of K0 and let
θ be the unique non-trivial element in Gal(K/K0). Consider in PG(2n− 1, K) a
nondegenerate θ-Hermitian variety H(2n− 1, K, θ) of maximal Witt-index n and
let ζ denote the Hermitian polarity of PG(2n − 1, K) associated with H(2n −
1, K′, θ). Let ∆ := DH(2n − 1, K, θ) denote the dual polar space corresponding
with H(2n− 1, K, θ). Put I = {1, 2, . . . , 2n}.
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Suppose X is an (n− 1)-dimensional subspace of PG(2n− 1, K) generated by
the points (xi,1, . . . , xi,2n), 1 ≤ i ≤ n. For every J = {i1, i2, . . . , in} ∈

(
I
n

)
with

i1 < i2 < · · · < in, we define

XJ =

∣∣∣∣∣∣∣∣∣
x1,i1 x1,i2 · · · x1,in

x2,i1 x2,i2 · · · x2,in
...

...
. . .

...
xn,i1 xn,i2 · · · xn,in

∣∣∣∣∣∣∣∣∣ .

The elements XJ , J ∈
(

I
n

)
, are the coordinates of a point f(x) of PG(

(
2n
n

)
− 1, K)

and this point does not depend on the particular set of n points with we have
chosen as generating set for X. Now, let PG(

(
2n
n

)
−1, K0) denote the subgeometry

of PG(
(
2n
n

)
−1, K) consisting of all the points of PG(

(
2n
n

)
−1, K) whose coordinates

can be chosen in the subfield K0 ⊆ K. The following proposition follows from
Cooperstein [5] and De Bruyn [10].

Proposition 3.1 ([5], [10]) Let f be the restriction of f to the set of points of
∆ = DH(2n−1, K, θ). Then there exists a projectivity φ of PG(

(
2n
n

)
−1, K) such

that e := φ ◦ f defines a full embedding of ∆ into PG(
(
2n
n

)
− 1, K0).

Definition. The full embedding alluded to in Proposition 3.1 is called the
Grassmann-embedding of DH(2n− 1, K, θ).

Definition. For every hyperplane H of ∆ and for every point x of H, let ΛH(x)
denote the set of lines through x contained in H. Then ΛH(x) is a set of points
of Res∆(x). For a proof of the following proposition, see Cardinali and De Bruyn
[4, Corollary 1.5] or Pasini [16, Theorem 9.3].

Proposition 3.2 Let H be a hyperplane of DH(2n − 1, K, θ) arising from the
Grassmann-embedding of DH(2n− 1, K, θ). Then for every point x of DH(2n−
1, K, θ), ΛH(x) is a possibly degenerate θ-Hermitian variety of Res∆(x) ∼= PG(n−
1, K).

Important remark. In Proposition 3.2, the complete point-set of Res∆(x) must
be regarded as a degenerate θ-Hermitian variety.

Let π be an (n − 1)-dimensional subspace of PG(2n − 1, K) and let Hπ be the
set of all maximal totally isotropic subspaces meeting π. In the following lemma,
we collect some properties of the set Hπ. The proofs of these properties are
completely similar to the ones given in the symplectic case.

Lemma 3.3 (i) If α is a maximal totally isotropic subspace of H(2n − 1, K, θ),
then dim(π ∩ α) = dim(πζ ∩ α). Hence, Hπ = Hπζ .

(ii) For every point x of H(2n − 1, K, θ) \ (π ∪ πζ), there exists a maximal
totally isotropic subspace disjoint from π (and hence also from πζ).

(iii) Hπ is a subspace of DH(2n− 1, K, θ).

11



Proposition 3.4 (i) If π is a totally isotropic (n − 1)-dimensional subspace of
PG(2n−1, K), then Hπ is a hyperplane of DH(2n−1, K, θ), namely the singular
hyperplane of DH(2n− 1, K, θ) with deepest point π.

(ii) If π is not totally isotropic, then Hπ is not a hyperplane of DH(2n −
1, K, θ).

Proof. Part (i) is trivial. So, suppose π is an (n − 1)-dimensional subspace
of PG(2n − 1, K) which is not totally isotropic. Then there exists a point x ∈
π \H(2n− 1, K, θ). Now, xζ is a (2n− 2)-dimensional subspace of PG(2n− 1, K)
containing the (n− 1)-dimensional subspace πζ . By Lemma 3.3 (ii), there exists
a maximal totally isotropic subspace α disjoint from π ∪ πζ . Then α ∩ xζ is an
(n− 2)-dimensional subspace of xζ disjoint from π ∪ πζ . So, α ∩ xζ corresponds
with a line of ∆.

We show that 〈α ∩ xζ , x〉 is the unique (n− 1)-dimensional subspace through
α∩xζ which is contained in (α∩xζ)ζ and which meets π. If this would not be the
case, then (α ∩ xζ)ζ ∩ π contains a line L through x. Then Lζ contains (α ∩ xζ)
and also πζ . Hence, xζ = 〈πζ , α ∩ xζ〉 ⊆ Lζ , a contradiction.

Since x 6∈ H(2n− 1, K, θ), the line corresponding with α ∩ xζ is disjoint from
Hπ. This proves that Hπ is not a hyperplane. �

Let Vπ denote the set of all (n−1)-dimensional subspaces of PG(2n−1, K) meeting
π. Then there exists a hyperplane Aπ of PG(

(
2n
n

)
− 1, K) satisfying the following:

if π′ is an (n − 1)-dimensional subspace of PG(2n − 1, K), then π′ ∈ Vπ if and
only if f(π′) ∈ Aπ (Similar proof as Lemma 2.14). So, with φ as in Proposition
3.1, we have that

e(Hπ) = φ(Aπ) ∩ e(P ),

where P is the point-set of ∆. Now, put φ(Aπ) = βπ and suppose βπ is described
by the equation

∑
J∈(I

n)
aJXJ = 0. Then we denote by β′π the hyperplane of

PG(
(
2n
n

)
−1, K) described by the equation

∑
J∈(I

n)
aθ

JXJ . Then βπ and β′π intersect

PG(
(
2n
n

)
− 1, K0) is a subspace γπ of co-dimension 1 or 2, and

e(Hπ) = βπ ∩ β′π ∩ e(P ) = γπ ∩ e(P ).

If βπ = β′π, then γπ is a hyperplane of PG(
(
2n
n

)
− 1, K0) and Hπ is a hyperplane

of ∆. In that case π is totally isotropic. If βπ 6= β′π, then γπ has co-dimension 2
and Hπ is not a hyperplane. In that case π is not totally isotropic. The following
proposition is now obvious.

Proposition 3.5 Every hyperplane of PG(
(
2n
n

)
−1, K0) through γπ gives rise to a

hyperplane of ∆ which either is equal to Hπ (if π is totally isotropic) or contains
Hπ as a hyperplane (if π is not totally isotropic).

Definition. Any hyperplane which can be obtained as described in Proposition
3.5 is called a hyperplane of type (H). Every singular hyperplane is a hyperplane
of type (H).
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Proposition 3.6 Suppose π is not totally isotropic. Let H be a hyperplane of
∆ which contains Hπ as a hyperplane and let α be a point of H not contained in
Hπ. Then the following properties hold:

(i) The set ΛH(α) of lines through α which are contained in H are precisely
the lines through α meeting Hπ.

(ii) The set ΛH(α), regarded as set of points of Res∆(α), is a possibly degen-
erate θ-Hermitian variety of Res∆(α), which is isomorphic to the θ-Hermitian
variety H(2n− 1, K, θ) ∩ π of π.

Proof. Part (i) is trivial. We will regard α as a totally isotropic (n − 1)-
dimensional subspace of PG(2n − 1, K) which is disjoint from π and hence also
from πζ . For every subspace δ of π, let δµ be the subspace δζ ∩α. Then µ defines
an isomorphism between the projective spaces π and Res∆(α). If p is a point
of π ∩H(2n − 1, K, θ), then the line pµ through α is completely contained in H
since pµ contains two points of H (namely α and 〈p, pζ ∩ α〉). If p is a point of
π \H(2n− 1, K, θ), then (pζ ∩α)ζ contains α and 〈pζ ∩α, p〉 and hence coincides
with 〈α, p〉. Since 〈α, p〉 intersects π in the point p 6∈ H(2n− 1, K, θ), the line pµ

contains a unique point of H, namely α (see part (i)). The proposition follows. �

Proposition 3.7 Suppose π is not totally isotropic. Let H be a hyperplane of ∆
arising from a hyperplane of PG(

(
2n
n

)
− 1, K0) through γπ and let α be a point of

H. Then the following holds.
(i) If α 6∈ Hπ, then ΛH(α) is a θ-Hermitian variety of Res∆(α) which is

isomorphic to the θ-Hermitian variety H(2n− 1, K, θ) ∩ π of π.
(ii) If α ∈ Hπ and the generator α contains a line of π, then ΛH(α) consists

of the whole point-set of Res∆(α).
(iii) If α ∈ Hπ and the generator α intersects π in a point not belonging to

πζ, then ΛH(α) is a degenerate θ-Hermitian variety (a cone) with top an (n −
3)-dimensional subspace of Res∆(α) and with base a Baer subline of a line of
Res∆(α).

Proof. Claim (i) is precisely Proposition 3.6. Claim (ii) is trivial. So, suppose
that the generator α intersects π in a unique point y1 6∈ πζ . Then by Lemma 3.3,
the generator α also intersects πζ in a unique point, say y2. Let Fi, i ∈ {1, 2}
denote the max through α corresponding with yi.

We claim that the lines through α contained in Hπ are precisely the lines
through α contained in F1 ∪ F2. Obviously, every line through α contained in
F1 ∪F2 is also contained in Hπ. Suppose β is an (n− 2)-dimensional subspace of
α not containing y1, y2 and α′ is a maximal totally isotropic subspace through β
meeting π in a point y′1 6= y1. Then since y2 ∈ y′1

ζ and β ⊆ y′1
ζ , α ⊆ y′1

ζ . This is
however impossible since 〈y′1, α〉 is not totally isotropic. So, every line through α
which is not contained in F1 ∪ F2 is also not contained in Hπ.

Now, let W denote the set of hyperplanes of ∆ arising from a hyperplane
of PG(

(
2n
n

)
− 1, K0) through γπ. Then for every H ∈ W , ΛH(α) is a possibly

degenerate θ-Hermitian variety of Res∆(α) containing every line through α which
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is contained in F1 ∪F2. So, either ΛH(α) is the whole set of points of Res∆(α) or
ΛH(α) is as described in (iii) above. Since the hyperplanes of W partition the set
of points of P \Hπ, every line through α not contained in F1∪F2 is contained in a
unique hyperplane of W . This implies that every ΛH(α), H ∈ W , is as described
in (iii) above. �

3.2 Ovoids arising from the Grassmann-embedding of ∆

Up to present, no ovoid is known to exist in a finite thick dual polar space
of rank at least 3. The same conclusion does not hold for infinite thick dual
polar spaces due to constructions using transfinite recursion, see Cameron [3].
An unanswered question up to now was whether there exist ovoids in possibly
infinite thick dual polar spaces of rank at least 3 which arise from projective
embeddings. In this subsection, we will construct the first examples of such
ovoids. In fact we will give necessary and sufficient conditions for the existence
of ovoids of the Hermitian dual polar space DH(2n−1, K, θ) which arise from its
Grassmann-embedding. Recall also that if DH(2n − 1, K, θ) has ovoids arising
from its Grassmann-embedding, then also the dual polar space DW (2n− 1, K0)
has ovoids arising from its Grassmann-embedding since DW (2n− 1, K0) can be
embedded as a subspace in DH(2n− 1, K, θ) such that the projective embedding
of DW (2n− 1, K0) induced by the Grassmann-embedding of DH(2n− 1, K, θ) is
isomorphic to the Grassmann-embedding of DW (2n− 1, K0).

Theorem 3.8 The dual polar space DH(2n − 1, K, θ), n ≥ 2, has ovoids aris-
ing from its Grassmann-embedding if and only if PG(n − 1, K) has an empty
θ-Hermitian variety, in which case there even exists a partition of ovoids arising
from the Grassmann-embedding.

Proof. Suppose H is an ovoid arising from the Grassmann-embedding of DH(2n−
1, K, θ) and let x be a point of H. Then ΛH(x) = ∅ and hence Res∆(x) ∼=
PG(n− 1, K) admits an empty θ-Hermitian variety by Proposition 3.2.

Conversely, suppose PG(n− 1, K) admits an empty θ-Hermitian variety. Let∑n−1
i=0 aijXiX

θ
j (aθ

ij = aji) denote such an empty Hermitian variety (with respect
to a given reference system). Consider then the following Hermitian variety in
PG(2n− 1, K) (again with respect to a certain reference system):

n−1∑
i=0

aijXiX
θ
j + (X0X

θ
n + XnX

θ
0 ) + (X1X

θ
n+1 + Xn+1X

θ
1 )

+ · · ·+ (Xn−1X
θ
2n−1 + X2n−1X

θ
n−1) = 0.

This Hermitian variety is non-singular and its maximal singular subspaces have
maximal possible dimension n− 1 (e.g. X0 = X1 = · · · = Xn−1 = 0). Now, let π
be the subspace Xn = Xn+1 = · · · = X2n−1 = 0 of PG(2n− 1, K). Then Hπ = ∅.
So, if e : ∆ → Σ denotes the Grassmann-embedding of ∆, then there exists a
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subspace γπ of co-dimension 2 in Σ having empty intersection with e(P ), where P
denotes the point-set of DH(2n− 1, K, θ). (Recall e(P ) ∩ γπ = e(Hπ).) Now, let
W denote the set of hyperplanes of DH(2n − 1, K, θ) arising from a hyperplane
of Σ through γπ. If a hyperplane W ∈ W contains a line L, then e(L) meets γπ,
a contradiction. Hence, all elements of W are ovoids and W defines a partition
of DH(2n− 1, K, θ) into ovoids. �

Examples. (1) Let K0 = R, K = C and let θ be the complex conjugation ·.
The Hermitian variety X0X0 +X1X1 + · · ·+Xn−1Xn−1 of PG(n− 1, C) is empty.
Hence, DH(2n−1, C, ·) and DW (2n−1, R) admit partitions in ovoids with each
ovoid arising from the Grassmann-embedding of the dual polar space.

(2) Let K0 = Q, K = Q(
√

2) and let θ be the automorphism q1 +
√

2q2 7→ q1−√
2q2 (q1, q2 ∈ Q) of Q(

√
2). The Hermitian variety Xθ+1

0 +Xθ+1
1 + · · ·+Xθ+1

n−1 = 0

of PG(n−1, Q(
√

2)) is empty. Hence, DH(2n−1, Q(
√

2), θ) and DW (2n−1, Q)
admit partitions in ovoids.

4 Discussion of the finite Hermitian case

Let H(2n − 1, q2), n ≥ 2, be a nonsingular Hermitian variety in PG(2n − 1, q2)
and let ∆ = DH(2n − 1, q2) be the associated dual polar space. Let P denote
the point-set of ∆ (i.e. the set of generators of H(2n− 1, q2)). Notice that every
quad of ∆ is isomorphic to DH(3, q2) ∼= Q−(5, q) and that every hyperplane of
Q−(5, q) is either a Q(4, q)-subquadrangle or a singular hyperplane (see Payne
and Thas [17]). Let e : ∆ → Σ = PG(

(
2n
n

)
− 1, q) be the Grassmann-embedding

of ∆.
Let π be an (n − 1)-dimensional subspace of PG(2n − 1, q2) which is not a

generator of H(2n − 1, q2) and let Hπ be the set of generators of H(2n − 1, q2)
meeting π. Then by the above, we know that there exists a subspace γπ of
co-dimension 2 in Σ such that Hπ = e−1(γπ ∩ e(P )). Let β̃π and β̃′π be two

hyperplanes of Σ such that γπ = β̃π ∩ β̃′π.

Lemma 4.1 Let α be a hyperplane of Σ through γπ, let H(α) be a hyperplane of
∆ arising from α and let Q be a quad of ∆. Then one of the following holds:

(1) Q ∩H(α) = Q and Q ∩Hπ = Q;
(2) Q ∩H(α) = Q and Q ∩Hπ is a Q(4, q)-subquadrangle of Q;
(3) Q ∩H(α) = Q and Q ∩Hπ = x⊥ ∩Q for a point x of Q;
(4) Q ∩H(α) is a Q(4, q)-subquadrangle of Q and Q ∩Hπ = Q ∩H(α);
(5) Q∩H(α) is a Q(4, q)-subquadrangle of Q and Q∩Hπ is a (q+1)×(q+1)-

grid of Q ∩H(α);
(6) Q∩H(α) is a Q(4, q)-subquadrangle of Q and Q∩Hπ is a classical ovoid

of Q ∩H(α);
(7) Q∩H(α) is a Q(4, q)-subquadrangle of Q and Q∩Hπ = x⊥ ∩ (Q∩H(α))

for a point x of Q ∩H(α);
(8) Q ∩H(α) = x⊥ ∩Q for a point x of Q and Q ∩Hπ = Q ∩H(α);
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(9) Q ∩H(α) = x⊥ ∩Q for a point x of Q and Q ∩Hπ is a line contained in
Q ∩H(α);

(10) Q ∩ H(α) = x⊥ ∩ Q and Q ∩ Hπ ⊆ Q ∩ H(α) is a classical ovoid of a
Q(4, q)-quad of Q;

(11) Q ∩H(α) = x⊥ ∩Q and Q ∩Hπ ⊆ Q ∩H(α) is the union of q + 1 lines
through x contained in a Q(4, q)-subquadrangle through x.

Proof. Obviously, Hπ = H(β̃π) ∩ H(β̃′π) = H(β̃π) ∩ H(α) = H(β̃′π) ∩ H(α).

Hence, Hπ∩Q = (H(α)∩Q)∩ (H(β̃π)∩Q). Now, H(α)∩Q (H(β̃π)∩Q) is either
Q, a Q(4, q)-subquadrangle of Q or a singular hyperplane of Q. Combining all

possibilities for H(α) ∩ Q and H(β̃π) ∩ Q, one readily finds the 11 possibilities
mentioned in the lemma. �

Now, consider the following graph Γ on the vertex set P \ Hπ. Two vertices y1

and y2 are adjacent whenever one of the following conditions is satisfied:

(i) d(y1, y2) = 1 and the line y1y2 meets Hπ;

(ii) d(y1, y2) = 2, 〈y1, y2〉 ∩ Hπ is the union of q + 1 lines through a point z
which is collinear with y1 and y2;

(iii) d(y1, y2) = 2, 〈y1, y2〉 ∩Hπ is a line L and πL(y1) = πL(y2).

For every point x of P \Hπ, let

• Ax be the hyperplane of ∆ arising from the hyperplane 〈e(x), γπ〉 of Σ;

• Cx be the component of Γ containing x;

• Bx = Cx ∪Hπ.

Lemma 4.2 For every point x of P \Hπ, Ax ⊆ Bx.

Proof. For every i ∈ {0, . . . , n}, consider the following property (Pi):

(Pi): If y1, y2 ∈ Ax \Hπ such that d(y1, y2) = i and y1 ∈ Cx, then also y2 ∈ Cx.

We will prove property (Pi) by induction on i. The lemma then immediately
follows from the fact that x ∈ Ax ∩ Cx and Hπ ⊆ Bx. Property (P0) trivially
holds.

(1) Suppose i = 1 and let y1 and y2 be two points of Ax \Hπ at distance 1 from
each other such that y1 ∈ Cx. Since Hπ is a hyperplane of Ax, the line y1y2 meets
Hπ. Hence, y1 and y2 are adjacent vertices of Γ. Since y1 ∈ Cx, also y2 ∈ Cx.

(2) Suppose i = 2 and let y1 and y2 be two points of Ax \Hπ at distance 2 from
each other such that y1 ∈ Cx. Now, we will apply Lemma 4.1 with α = 〈e(x), γπ〉
(so, H(α) = Ax) and Q = 〈y1, y2〉. Either case (2), (3), (5), (6), (7), (9), (10) or
(11) of the lemma occurs.
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In cases (2), (3), (5), (6), (7) and (10), (Q ∩H(α)) \ (Q ∩Hπ) is connected.
Since y1, y2 ∈ (Q ∩ H(α)) \ (Q ∩ Hπ) and y1 ∈ Cx, it follows that y2 ∈ Cx by
successive application of Step (1).

Suppose case (9) occurs. Then Q∩Hπ is a line L and Q∩H(α) is a singular
hyperplane of Q whose deepest point coincides with πL(y1) = πL(y2) since y1, y2 ∈
(Q∩H(α))\(Q∩Hπ). Hence, y1 and y2 are adjacent vertices of Γ. Since y1 ∈ Cx,
also y2 ∈ Cx.

If case (11) occurs, then again y1, y2 ∈ (Q ∩ H(α)) \ (Q ∩ Hπ) are adjacent
vertices in Γ. Since y1 ∈ Cx, also y2 ∈ Cx.

(3) Suppose i ≥ 3 and let y1 and y2 be two points of Ax \ Hπ at distance i
from each other. Let Λi, i ∈ {1, 2}, denote the set of lines through yi meeting
Hπ. Then Λi is a possibly degenerate Hermitian variety of Res∆(yi). Let Λ′

i,
i ∈ {1, 2}, denote the set of lines of Λi which are contained in ∆′ := 〈y1, y2〉. If Λ′

2

is a hyperplane of Res∆′(y2), then let F denote a max of 〈y1, y2〉 through y2 not
containing all lines of Λ′

2. Otherwise, let F denote an arbitrary max of 〈y1, y2〉
through y2. Since d(y1, y2) ≥ 3, there exists more than 1 line in Λ′

1. Let L1 be
a line of Λ′

1 which is different from the unique line through y1 meeting F . Let z
denote the unique point of L1 at distance d(y1, y2)− 1 from y2. Then 〈z, y2〉 6= F
and there exists a line L2 ∈ Λ′

2 not contained in 〈z, y2〉. Now, every point of L1

has distance i− 1 from L2. Since |L1|, |L2| ≥ 3, there exist points y′1 ∈ L1 \Hπ,
y′2 ∈ L2 \ Hπ at distance i − 1 from each other. By Step (1), y′1 ∈ Cx. By the
induction hypothesis, y′2 ∈ Cx and from Step (1), it follows again that y2 ∈ Cx.
This proves that property (Pi) holds. �

Lemma 4.3 If H is a hyperplane of ∆ containing Hπ as a hyperplane, then
Bx ⊆ H for every point x of H \Hπ.

Proof. It suffices to show that Cx ⊆ H. Since x ∈ H, we must show the
following: if y1 and y2 are two adjacent vertices of Γ such that y1 ∈ H, then also
y2 ∈ H. We distinguish three cases.

(1) d(y1, y2) = 1 and the line y1y2 meets Hπ. Then y2 ∈ H since y1 ∈ H and
Hπ ⊆ H.

(2) d(y1, y2) = 2, 〈y1, y2〉∩Hπ is the union of q+1 lines through a point z which
is collinear with y1 and y2. Since 〈y1, y2〉∩Hπ is a hyperplane of 〈y1, y2〉∩H
and y1 ∈ H, 〈y1, y2〉 ∩H is the singular hyperplane of 〈y1, y2〉 with deepest
point z. It follows that y2 ∈ H.

(3) d(y1, y2) = 2, 〈y1, y2〉 ∩ Hπ is a line L and πL(y1) = πL(y2). Since L =
〈y1, y2〉∩Hπ is a hyperplane of H ∩〈y1, y2〉, H ∩〈y1, y2〉 is a singular hyper-
plane with deepest point on L. Since y1 ∈ H, the deepest point coincides
with πL(y1). Hence, y2 ∈ H since πL(y2) = πL(y1). �

Proposition 4.4 There are q + 1 hyperplanes which have Hπ as a hyperplane.
These are the hyperplanes Ax, x ∈ P \Hπ.
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Proof. Let H be a hyperplane which has Hπ as a hyperplane and let x be a
point of H \Hπ. By Lemmas 4.2 and 4.3, Ax ⊆ H and hence Ax = H since Ax

is a maximal subspace. �

Proposition 4.5 The q + 1 hyperplanes containing Hπ as a hyperplane are all
isomorphic.

Proof. Suppose the radical of π has dimension k ∈ {−1, 0, . . . , n− 2}. Without
loss of generality, we may suppose that H(2n− 1, q2) has equation

(X0X
q
n + XnX

q
0) + (X1X

q
n+1 + Xn+1X

q
0) + · · ·+ (XkX

q
n+k + Xn+kX

q
k)

+Xq+1
k+1 + Xq+1

k+2 + · · ·+ Xq+1
n−1 + Xq+1

n+k+1 + Xq+1
n+k+2 + · · ·+ Xq+1

2n−1 = 0,

and π has equation
π ↔ X0 = X1 = · · · = Xn−1 = 0.

Let ε be an element of Fq2 satisfying εq+1 = −1 and let ε′ be an element of Fq2\{0}
satisfying ε′q = −ε′. Let L denote the following line of ∆:

X0 = ε′ ·Xn, X1 = ε′ ·Xn+1, . . . , Xk = ε′ ·Xn+k,
Xk+1 = ε ·Xn+k+1, . . . , Xn−2 = ε ·X2n−2,
Xn−1 = X2n−1 = 0.

The q + 1 points on this line are given by the equations
X0 = ε′ ·Xn, X1 = ε′ ·Xn+1, . . . , Xk = ε′ ·Xn+k,
Xk+1 = ε ·Xn+k+1, . . . , Xn−2 = ε ·X2n−2,
Xn−1 = ε̄ ·X2n−1,

where ε̄ is one of the q + 1 elements of Fq2 satisfying ε̄q+1 = −1. Obviously, none
of the above points belongs to Hπ. So, L is disjoint from Hπ. It follows that the
hyperplanes Ax, x ∈ L, are all the hyperplanes containing Hπ as a hyperplane.

For every δ ∈ Fq2 satisfying δq+1 = 1, the automorphism (X0, X1, . . . , X2n−1) 7→
(X0, X1, . . . , X2n−2, δ ·X2n−1) of PG(2n − 1, q2) fixes H(2n − 1, q2) set-wise and
hence determines an automorphism θδ of DH(2n−1, q2) fixing Hπ and L set-wise.
Obviously, the group G = {θδ | δq+1 = 1} acts regularly on the line L and hence
also on the set of q + 1 hyperplanes containing Hπ as a hyperplane. �

Proposition 4.6 Let n ≥ 3 and suppose that the hyperplane π is singular. Let x
be a point of π such that π ⊆ xζ. The maximal totally isotropic subspaces through
x define a convex subspace A ∼= DH(2n−3, q2) of DH(2n−1, q2). Let Gπ denote
the set of all maximal totally isotropic subspaces containing a line of π through x.
Let H1, H2, . . . , Hq+1 denote the q + 1 hyperplanes of DH(2n− 1, q2) containing
Hπ as a hyperplane and let G1, G2, . . . , Gq+1 denote the q + 1 hyperplanes of A
containing Gπ as a hyperplane. Let Gi, i ∈ {1, . . . , q + 1}, denote the hyper-
plane of DH(2n − 1, q2) obtained by extending Gi. Then {H1, H2, . . . , Hq+1} =
{G1, G2, . . . , Gq+1}.
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Proof. It suffices to prove that each Gi, i ∈ {1, . . . , q + 1}, contains Hπ as a
hyperplane. Recall that Hπ is a subspace of DH(2n− 1, q2).

(1) We show that Hπ ⊆ Gi. Let α denote an arbitrary maximal totally isotropic
subspace meeting π. If α contains x, then α ∈ A ⊆ Gi. If α does not contain
x, then the unique maximal totally isotropic subspace through x meeting α in
an (n − 2)-dimensional subspace contains the subspace 〈x, α ∩ π〉 and hence is
contained in Gi. It follows that α ∈ Gi.

(2) We show that every line L contained in Gi contains a point of Hπ. We
distinguish three cases:

(2a) L is contained in A. Then every point of L belongs to Hπ.
(2b) L meets A in a unique point. This point belongs to Hπ.
(2c) L is disjoint from A. Then πA(L) is a line of A contained in Gi. Since

Gπ is a hyperplane of Gi, πA(L) contains a point u of Gπ. The unique point of L
collinear with u meets π and hence is contained in Hπ. �

Proposition 4.7 Let H be a hyperplane of DH(2n − 1, q2) having Hπ as a hy-
perplane. Let A be a convex subspace of DH(2n − 1, q2) of diameter at least 2.
Then either A ⊆ H or A ∩H is a hyperplane of type (H) of A.

Proof. We suppose that A is not completely contained in H. Then A ∩ H is
a hyperplane of A. Let α be a totally isotropic subspace corresponding with A.
Since A is not contained in H, α is disjoint from π. Put dim(α) = n− 1− i with
i ≥ 2. The totally isotropic subspaces through α define a polar space H(2i−1, q2)
which lives in the quotient space αζ/α. The space αζ is (n − 1 + i)-dimensional
and hence αζ ∩ π has dimension at least i− 1. Let π′ be the subspace generated
by α and αζ ∩ π. The dimension of the quotient space αζ/α is 2i − 1 and the
dimension of π′ is this quotient space is at least i − 1. Since A is not contained
in H, this dimension is precisely i− 1. Let X denote the set of maximal totally
isotropic subspaces through α meeting αζ ∩ π. (So, X = A ∩ Hπ.) Since every
line of H meets Hπ in either the whole line or a unique point, every line of the
hyperplane H ∩ A of A meets X = A ∩ Hπ is either the whole line or a unique
point. It follows that the hyperplane A ∩ H of A is a hyperplane of type (H).
[Notice that it might be possible that H ∩ A = X. Then H ∩ A is a singular
hyperplane of A (cf. Proposition 3.4).] �

Remark. In the case n = 3 and π is a 2-dimensional subspace of PG(5, q2) inter-
secting H(5, q2) in a unital, the q + 1 hyperplanes containing Hπ as a hyperplane
have already been described in De Bruyn and Pralle [13].
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