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Abstract. The point-line geometry known as a partial quadrangle (introduced by Cameron in
1975) has the property that for every point/line non-incident pair (P, `), there is at most one
line through P concurrent with `. So in particular, the well-studied objects known as generalised
quadrangles are each partial quadrangles. An intriguing set of a generalised quadrangle is a set
of points which induces an equitable partition of size two of the underlying strongly regular
graph. We extend the theory of intriguing sets of generalised quadrangles by Bamberg, Law
and Penttila to partial quadrangles, which gives insight into the structure of hemisystems and
other intriguing sets of generalised quadrangles.

1. Introduction

A set of points I of a generalised quadrangle is defined in [3] to be intriguing if the number of
points of I collinear to an arbitrary point P is a constant h1 if P lies in I, and another constant
h2 if P resides outside of I. For example, a line of a generalised quadrangle is such an object
where h1 is the number of points on a line, and h2 = 1. Eisfeld [16] asks whether such sets have
a natural geometric interpretation, and it is shown in [3] that the intriguing sets of a generalised
quadrangle are precisely the m-ovoids and tight sets introduced by J. A. Thas [22] and S. E.
Payne [20] respectively. If one looks to the point graph of a generalised quadrangle, one will
find a strongly regular graph. The associated Bose-Mesner algebra of this graph decomposes
into an orthogonal decomposition of three eigenspaces of the adjacency matrix, one of which
is the one-dimensional subspace generated by the “all 1’s” vector. The other two eigenspaces
correspond naturally to the two types of intriguing sets; the positive eigenvalue corresponds to
the tight sets, and the negative eigenvalue corresponds to the m-ovoids [3, Theorem 4.1]. In this
paper we consider the algebraic combinatorics of a partial quadrangle.

A partial quadrangle was introduced by P. J. Cameron [7] as a geometry of points and lines
such that every two points are on at most one line, there are s + 1 points on a line, every point
is on t + 1 lines and satisfying the following two important properties:

(i) for every point P and every line ` not incident with P , there is at most one point on `
collinear with P ;

(ii) there is a constant µ such that for every pair of non-collinear points (X, Y ) there are
precisely µ points collinear with X and Y .

With the above specifications, we say that the partial quadrangle has parameters (s, t, µ), or
that it is a partial quadrangle PQ(s, t, µ). Note that the point-graph of this object is strongly
regular (see Section 2).

The only known partial quadrangles, which are not generalised quadrangles, are
• triangle-free strongly regular graphs (i.e., partial quadrangles with s = 1);
• one of three exceptional examples, namely they arise from linear representation of one

of the Coxeter 11-cap of PG(4, 3), the Hill 56-cap of PG(5, 3) or the Hill 78-cap of
PG(5, 4);
• or arise from removing points from a generalised quadrangle of order (s, s2).
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We will now be more precise for this last class of partial quadrangles. Let G be a generalised
quadrangle of order (s, s2) and let P be a point of G. Then by removing all those points P⊥

which are collinear with P results in a partial quadrangle PQ(s− 1, s2, s(s− 1)) (see [8, pp. 4]).
We will often refer to this construction as a generalised quadrangle minus the perp of a point.
Similarly, we can remove a certain type of m-ovoid from G to obtain a partial quadrangle [8,
Prop. 2.2]. A hemisystem (of points) of G, where s is odd, is a set of pointsH of G such that every
line meets H in (s + 1)/2 points (i.e., it is an m-ovoid with m = (s + 1)/2). By considering the
incidence structure restricted to H, we obtain a partial quadrangle PQ((s− 1)/2, s2, (s− 1)2/2).
In 2005, Cossidente and Penttila [11] constructed new hemisystems of the classical generalised
quadrangle Q−(5, q), and thus new partial quadrangles, and this work has recently been extended
in [1] to every flock generalised quadrangle.

For generalised quadrangles, it has been shown that an m-ovoid and an i-tight set intersect in
mi points [3, Theorem 4.3]. From this observation, one can prove or reprove interesting results
in the forum of generalised quadrangles. For partial quadrangles, the theory still holds; there
are two types of intriguing sets according to the parity of the associated eigenvalue, and there is
a similar “intersection result” (see Section 2.3). In Section 3, we investigate and in some cases
classify, the intriguing sets of triangle-free strongly regular graphs; the thin partial quadrangles.
The section that follows concerns the two known families of thick partial quadrangles which arise
from (i) deleting the perp of a point, or from (ii) deleting a hemisystem. In both cases, we look
to the deleted point set, which we nominate as “infinity”, and analyse the situation for when an
intriguing set of the ambient generalised quadrangle gives rise to an intriguing set of the partial
quadrangle obtained by removing infinity. In the case of a generalised quadrangle minus the
perp of a point, we give some strong combinatorial information in Section 5 on the structure
of incumbent intriguing sets, which manifests in a characterisation of the positive intriguing
sets arising from tight sets of the ambient generalised quadrangle, and a characterisation of the
negative intriguing sets. The intriguing sets of partial quadrangles obtained from hemisystems
have less combinatorial structure, however, we are able to deduce certain relationships between
intriguing sets of the ambient generalised quadrangle and the partial quadrangle (see Section
6). In Section 7, we return to isolated examples of partial quadrangles, and this time on the
exceptional examples arising from caps of projective spaces via linear representation.

2. Some algebraic graph theory and intriguing sets

2.1. Intriguing sets of strongly regular graphs. A regular graph Γ, with v vertices
and valency k, is strongly regular with parameters (v, k, λ, µ) if (i) any two adjacent vertices are
both adjacent to λ common vertices; (ii) any two non-adjacent vertices are both adjacent to µ
common vertices. If A is the adjacency matrix of the strongly regular graph Γ, then A has three
eigenvalues and satisfies the equation A2 = kI +λA+µ(J−I−A) where I is the identity matrix
and J is the all-ones matrix. The all-ones vector 1 is an eigenvector of A with eigenvalue k. The
remaining two eigenvalues e+ and e− satisfy the quadratic equation x2 = k + λx + µ(−1 − x).
Hence µ− k = e+e− and λ − µ = e+ + e−. (Since A has 0 trace, we deliberately write e+ and
e− since one eigenvalue must be non-negative and the other is negative).

As mentioned in the introduction, a strongly regular graph comes equipped with its Bose-
Mesner algebra, the 3-dimensional matrix algebra generated by A, I and J . Now the Bose-
Mesner algebra of a strongly regular graph is a commutative algebra of real symmetric matrices,
and so it has an orthogonal decomposition into idempotents. Moreover, there exist so-called
minimal idempotents E0, E1, E2 such that the product of any two is zero, and such that they
add up to the identity matrix. To obtain these matrices, one can take the Gram matrices of
the orthogonal projections to the three eigenspaces of A. So for a strongly regular graph with
eigenvalues k (the valency), e+ and e−, we can take the following minimal idempotents (n.b., n
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is the size of A):

E0 =
1
n

J,

E1 =
1

e+ − e−

(
A− e−I − k − e−

n
J

)
,

E2 =
1

e− − e+

(
A− e+I − k − e+

n
J

)
.

All of the above content is standard in the theory of association schemes and can be found in a
textbook such as [17].

We say that a proper subset of vertices I of a strongly regular graph Γ is an intriguing set
with parameters (h1, h2) if there are two constants h1 and h2 such that the number of elements
of I adjacent to any vertex of I is h1, and the number of elements of I adjacent to any vertex
of Γ \ I is h2. So necessarily, the subgraph induced by I is regular of valency h1. We will call
h1 and h2 the intersection numbers of I, and note that we have made a slight difference here in
comparison to the definition in [3]; our parameter h1 will always be one less than the analogue
in [3] due to “adjacency” being an anti-reflexive relation. It turns out (see Lemma 2.1) that
h1 − h2 is an eigenvalue of the adjacency matrix, hence h1 6= h2, and so we define I to be a
positive or negative intriguing set according to whether h1 − h2 is equal to e+ or e−.

From the algebraic graph theoretic point of view, an intriguing set of a strongly regular graph
is a set of vertices whose characteristic vector is annihilated by one of the minimal idempotents
E1 or E2. This simple observation allows us to design algorithms to search for intriguing sets.
A characteristic vector of a set of points has values 0 or 1, so an intriguing set corresponds to a
set of rows of a minimal idempotent which add to the zero vector. One can reduce the problem
by taking the row echelon reduced form of the given minimal idempotent or by using subgroups
of the induced permutation group on the points to obtain collapsed matrices with constant row
sums.

The following results follow in the same way as in [2] (see also [16]). We use the notation
1I for the characteristic vector of I.

Lemma 2.1. Let I be an intriguing set of a strongly regular graph Γ, and let the intersection
numbers of I be h1 and h2. Let v and k be the number of vertices and the valency of Γ respectively,
and let A be the adjacency matrix of Γ. Then:

(i) (h1 − h2 − k)1I + h21 is an eigenvector of A with eigenvalue h1 − h2;
(ii) |I| = h2v/(k − h1 + h2).

Proof. The proof of (i) is just a straight-forward calculation, so we provide the proof
for part (ii). Let A be the adjacency matrix of Γ. Since A is a real symmetric matrix, the
eigenvector (h1 − h2 − k)1I + h21 is orthogonal to the all-ones vector 1 with eigenvalue k. So
((h1 − h2 − k)1I + h21) · 1 = 0 and hence:

−(h1 − h2 − k)1I · 1 = h21 · 1
from which the conclusion follows. �

Lemma 2.2. Let I+ and I− be positive and negative intriguing sets respectively of a strongly
regular graph Γ and let v be the total number of vertices. Then

|I+ ∩ I−| = |I+||I−|/v.

Proof. Just as in [2, Theorem 4], we use the fact that the eigenvectors corresponding to
I+ and I− (see Lemma 2.1) are orthogonal from which the result easily follows. �

One can obtain new intriguing sets by taking unions of disjoint intriguing sets of the same
type. Moreover, the complement of an intriguing set is also intriguing, and of the same type.
These observations will be important in the study of intriguing sets of strongly regular graphs.
The proof of the next lemma is easy and is left to the reader.
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Lemma 2.3. Suppose we have a strongly regular graph Γ and let A and B be two intriguing
sets of the same type, that is, they give rise to eigenvectors with the same eigenvalue. Then:

(a) If A ⊂ B, then B \ A is an intriguing set of the same type as B and A;
(b) If A and B are disjoint, then A ∪ B is an intriguing set of the same type as A and B;
(c) The complement A′ of A in Γ is an intriguing set of the same type as A.

Below we give a simple example of how to determine (by hand) the intriguing sets of the
Petersen graph.

2.2. Example: Intriguing sets of the Petersen graph. The two minimal idempotents
we will consider of the Petersen graph are:

E1 =1
6



3 1 −1 −1 1 1 −1 −1 −1 −1
1 3 1 −1 −1 −1 −1 1 −1 −1
−1 1 3 1 −1 −1 −1 −1 −1 1
−1 −1 1 3 1 −1 1 −1 −1 −1

1 −1 −1 1 3 −1 −1 −1 1 −1
1 −1 −1 −1 −1 3 1 −1 −1 1
−1 −1 −1 1 −1 1 3 1 −1 −1
−1 1 −1 −1 −1 −1 1 3 1 −1
−1 −1 −1 −1 1 −1 −1 1 3 1
−1 −1 1 −1 −1 1 −1 −1 1 3

,

E2 = 1
15



6 −4 1 1 −4 −4 1 1 1 1
−4 6 −4 1 1 1 1 −4 1 1

1 −4 6 −4 1 1 1 1 1 −4
1 1 −4 6 −4 1 −4 1 1 1
−4 1 1 −4 6 1 1 1 −4 1
−4 1 1 1 1 6 −4 1 1 −4

1 1 1 −4 1 −4 6 −4 1 1
1 −4 1 1 1 1 −4 6 −4 1
1 1 1 1 −4 1 1 −4 6 −4
1 1 −4 1 1 −4 1 1 −4 6

.

To obtain the intriguing sets, we first look for rows of E1 which add to the zero vector. We
will identify the vertices of the Petersen graph, and hence the rows of E1, with {1, 2, . . . , 10}.
Since the Petersen graph is vertex transitive, we may suppose without loss of generality that 1 is
in our putative intriguing set I. It turns out that the stabiliser of 1 in the automorphism group
of the Petersen graph has as orbits {2, 5, 6} and {3, 4, 7, 8, 9, 10}. We can see this by looking at
the values in the first column of E1. So we may suppose without loss of generality that 3 ∈ I.
So far, our two rows of I add to 1

6(2, 2, 2, 0, 0, 0,−2,−2,−2, 0). It turns out that I can only be
one of {1, 3, 4, 6, 8, 9}, {1, 3, 5, 7, 8, 10} or {1, 3, 7, 9}; and we can exclude the first two since the
collection of intriguing sets is closed under complements and hence we can regard only those of
size at most 5. The set {1, 3, 7, 9} corresponds to a 4-coclique of the Petersen graph. In fact,
there are in total five 4-cocliques of the Petersen graph.

For the second minimal idempotent E2, we similarly assume that 1 and 2 are contained in our
putative intriguing set I. The sum of the first two rows of E2 is 1

15(2, 2,−3, 2,−3,−3, 2,−3, 2, 2),
and in order to cancel this vector, we must complete I to one of {1, 2, 3, 4, 5}, {1, 2, 3, 6, 10},
{1, 2, 5, 8, 9}, or {1, 2, 6, 7, 8}. It then follows that the twelve pentagons (5-cycles) are intriguing
sets of the Petersen graph.

2.3. Intriguing sets of partial quadrangles, the basics. Let P be a point-line incidence
structure whose point graph is strongly regular. Then a set of points of P is an intriguing set if
it corresponds to an intriguing set of the point graph. We will use the symbol ⊥ to denote the
collinearity relation on points, so P⊥ will denote the set of all points collinear to P . However,
we will also extend the graph theoretic notion of adjacency to geometries by writing P∼ to mean
the set of all points collinear but not equal to P ; that is, the neighbours of P . (Thus our
point graphs have no loops, and our adjacency matrices will have 0’s on the diagonal).

Let G be a generalised quadrangle of order (s, t). The point graph of G is strongly regular
with parameters:

v = (s + 1)(st + 1), k = s(t + 1), λ = s− 1, µ = t + 1,
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and hence has three eigenvalues, one of which is the valency k. The other two eigenvalues,
commonly known as the principal eigenvalues, are s−1 and −t−1. The eigenvalues of the point
graph of a partial quadrangle with parameters (s, t, µ) are accordingly:

the valency s(t + 1)
positive e+ := (−µ− 1 + s +

√
(µ− 1− s)2 + 4st)/2

negative e− := (−µ− 1 + s−
√

(µ− 1− s)2 + 4st)/2.

From the above definition, a nonempty subset of points I of a partial quadrangle PQ(s, t, µ)
is intriguing if there are two constants h1 and h2 such that

|P∼ ∩ I| =

{
h1 if P ∈ I,
h2 otherwise

where P runs over the points of the partial quadrangle. In other words, if A is the adjacency
matrix of the point graph, then I is intriguing if and only if its characteristic function 1I satisfies
the following relation:

A1I = (h1 − h2)1I + h21

where 1 is the “all 1’s” map. Recall from Lemma 2.1 that h1 − h2 is an eigenvalue of A. So a
positive intriguing set has h1 − h2 = e+ and a negative intriguing set has h1 − h2 = e−. The
number of points of the partial quadrangle is

s(t + 1)(µ + st)
µ

+ 1.

3. Intriguing sets of the known thin partial quadrangles

A thin partial quadrangle is simply a triangle-free strongly regular graph. There are only
seven known such graphs (see [10, Chapter 8]) and we explore and classify below the intriguing
sets of these geometries, for which many of the well-known interesting regular subgraphs of these
graphs predominate. Firstly, it is not difficult to see that the pentagon contains no intriguing
sets. The Petersen graph was dealt with in Section 2, and so it remains to consider the Clebsch,
Hoffman-Singleton, Gewirtz, M22 and Higman-Sims graphs.

The Clebsch graph on 16 vertices. In the Clebsch graph on 16 vertices, the only negative
intriguing sets are the ten subgraphs isomorphic to 4K2, each stabilised by a group of order 192;
which are maximal subgroups of the full group 24 : S5. As for positive intriguing sets, the only
examples are the forty C4’s, a disjoint pair of C4’s, and complements of these. The Clebsch
graph is small enough that we can give a simple computer-free proof for the negative intriguing
sets. Here is a commonly used construction of the Clebsch graph. We have a special vertex
∞, a set of five vertices V1 = {1, 2, 3, 4, 5} and the subsets of V1 of size two, which we denote
V2 = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}. The vertex ∞ is adjacent to all the members of V1,
the set V1 is a coclique and V2 forms a Petersen graph whereby two elements are adjacent if they
are disjoint. A vertex i in V1 is adjacent to those vertices in V2 whose label contains i as one of
its coordinates (e.g., 3 is adjacent to 23).

Let I be a negative intriguing set of the Clebsch graph with parameters (h1, h2). Since the
Clebsch graph is vertex transitive, we may suppose that ∞ ∈ I. Moreover, the stabiliser of ∞
has V1 and V2 as two of its orbits, so we may also suppose without loss of generality that 1 ∈ I.
Since V1 is a coclique, there are no further elements of V1 inside I, and we know now that h1 = 1.
In fact, I must be a union of edges and have size 8, as h2 = 4. No element of V2 adjacent to 1
can be in I, so we can consider 12 and 15 as external elements. For there to be 4 elements in
I adjacent to 12 (resp. 15), we must have that 34 and 45 are in I. The only edges of V2 with
no vertex adjacent to 1 are {34, 25}, {45, 23} and {35, 24}. By considering 15, we see that all of
these edges must also be inside I and so it follows that I = {∞, 1, 34, 25, 45, 23, 35, 24}. Hence
the only negative intriguing sets are the ten subgraphs isomorphic to 4K2. Alternatively, we
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can look to the minimal idempotent E which annihilates 1I :

−1
8



−5 1 1 1 1 −1 1 1 1 −1 1 1 −1 −1 −1 1
1 −5 1 1 1 1 1 −1 1 1 1 −1 1 −1 −1 −1
1 1 −5 1 1 1 −1 1 1 1 −1 1 −1 1 −1 −1
1 1 1 −5 −1 1 1 1 −1 1 1 1 −1 −1 1 −1
1 1 1 −1 −5 1 1 1 1 −1 −1 −1 1 1 −1 1
−1 1 1 1 1 −5 1 1 −1 1 −1 −1 1 1 1 −1

1 1 −1 1 1 1 −5 1 −1 −1 1 −1 1 −1 1 1
1 −1 1 1 1 1 1 −5 −1 −1 −1 1 −1 1 1 1
1 1 1 −1 1 −1 −1 −1 −5 1 1 1 1 1 −1 1
−1 1 1 1 −1 1 −1 −1 1 −5 1 1 1 1 1 −1

1 1 −1 1 −1 −1 1 −1 1 1 −5 1 1 −1 1 1
1 −1 1 1 −1 −1 −1 1 1 1 1 −5 −1 1 1 1
−1 1 −1 −1 1 1 1 −1 1 1 1 −1 −5 1 1 1
−1 −1 1 −1 1 1 −1 1 1 1 −1 1 1 −5 1 1
−1 −1 −1 1 −1 1 1 1 −1 1 1 1 1 1 −5 1

1 −1 −1 −1 1 −1 1 1 1 −1 1 1 1 1 1 −5


.

The points ∞ and 1 in the above argument correspond to the first and sixth rows above, which
add to −1

8(−6, 2, 2, 2, 2,−6, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0). The only way to cancel this vector out by
adding other rows of E, is to use all remaining rows or just the remainder from the first eight
rows.

The Hoffman-Singleton graph on 50 vertices. The intriguing sets of the Hoffman-
Singleton graph (on 50 vertices) correspond naturally to the maximal subgroups of its automor-
phism group PSU(3, 5).2. For the negative intriguing sets, we have one-hundred 15-cocliques
(stabilised by A7), the 252 subgraphs isomorphic to 5C5 (each stabilised by a 51+2

+ : 8 : 2)
and pairs of disjoint 15-cocliques (each stabilised by an M10). The positive intriguing sets are
also very interesting: the 525 Petersen subgraphs (stabiliser: 2S5.2), a pair of disjoint Petersen
subgraphs (stabiliser: D20) and three disjoint Petersen subgraphs (stabiliser: GL(2, 3) : 2). The
remaining intriguing sets are complements of those above, and by computer, these are fully
classified.

The Gewirtz graph on 56 vertices. By computer, the only negative intriguing sets of the
Gewirtz graph (on 56 vertices) are the forty-two 16-cocliques, the 105 subgraphs isomorphic to
6C4, the 480 Coxeter subgraphs (the graph on the antiflags of the Fano plane), the 112 Sylvester
subgraphs (the complement is 10K2) and complements of these. The only positive intriguing
sets are isomorphic to the six regular subgraphs on 14 vertices shown below, and those of greater
size obtained from a union of disjoint subgraphs or the complement of such a subgraph. The six
different types of positive intriguing sets of size 14 form single orbits under the automorphism
group of the Gewirtz graph.

Subgraph Aut. group Subgraph Aut. group Subgraph Aut. group

D28 D14 C2 × S4

D8 D12 PSL(3, 2) : C2

Table 1. The positive intriguing sets of size 14 in the Gewirtz graph. The first
is a circulant and the last is the co-Heawood graph.



INTRIGUING SETS IN PARTIAL QUADRANGLES 7

The Higman-Sims M22-graph on 77 vertices. Two of the natural subgraphs of the M22-
graph are the 21-cocliques and the odd graphs O4. These, and their complements, are the only
negative intriguing sets of the M22-graph. A full classification of the positive intriguing sets of
the M22-graph was not possible by computer. However, we do have complete information of the
positive intriguing sets which admit a nontrivial automorphism group. There are two interesting
positive intriguing sets which generate all the known examples. The first is a particular regular
subgraph on 11 vertices (see the figure below) and the second is the incidence graph of the
complement of a biplane on 11 points (i.e., 22 vertices). There exist disjoint triples of subgraphs
of the first kind, and there exist disjoint pairs consisting of one of each type of subgraph.

Figure 1. Circulant on 11 vertices.

The Higman-Sims graph on 100 vertices. The only negative intriguing sets of the
Higman-Sims graph are the 704 Hoffman-Singleton subgraphs. The known positive intriguing
sets are as follows: (i) a tetravalent circulant on 10-vertices (see the figure below), (ii) the graph
which Brouwer [5] calls BD(K5) (which is K5,5 minus a matching), (iii) bipartite on 20 vertices,
(iv) point-plane non-incidence graph of PG(3, 2) (30 vertices), (v) 2-coclique extension of the
Petersen graph (20 vertices), (vi) a regular subgraph on 40 vertices which Brouwer [5] denotes
“a pair of splits from the same family”, a union of up to three disjoint subgraphs of type (i),
and a union of up to three disjoint subgraphs of type (ii). The positive intriguing sets admitting
a group that does not have order a power of 2, have been classified.

Figure 2. Tetravalent circulant on 10 vertices.

4. Intriguing sets of generalised quadrangles and their interaction with embedded
partial quadrangles

Before we embark on an investigation into intriguing sets of partial quadrangles which arise
from point sets of generalised quadrangles, it will be necessary to revise before-hand some
of what we know about intriguing sets of generalised quadrangles. As was mentioned in the
introduction, an intriguing set of a generalised quadrangle is either an m-ovoid or an i-tight set.
An m-ovoid is a set of points such that every line meets it in m points, and it is a negative
intriguing set of the generalised quadrangle; that is, the difference h1 − h2 of its intersection
numbers h1 = m(t + 1) − t − 1 and h2 = m(t + 1) is negative (where t + 1 is the number of
lines on a point). An i-tight set T is a set of points of a generalised quadrangle P (of order
(s, t)) such that the average number of points of T collinear with a given point of P equals the
maximum possible value, namely i+ s. A set of points is tight if it is i-tight for some i > 1. The
two intersection numbers here are h1 = i + s − 1 and h2 = i, and so their difference h1 − h2 is
positive.
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As the name suggests, m-ovoids are generalisations of ovoids. An ovoid of a generalised
quadrangle is a set of points which partitions the lines, that is, a 1-ovoid. The simplest tight
sets are the 1-tight sets, which one can prove are the lines of a generalised quadrangle [20].
Hence the point set covered by a partial spread (a set of disjoint lines) is a ubiquitous example
of a tight set of points. For more information on intriguing sets of generalised quadrangles, we
refer the reader to [3].

The partial quadrangles that we study in the following two sections are subsets of points of
generalised quadrangles, and hence, we will make use of the following notion of “intriguing at
infinity”.

Definition 4.1 (Intriguing at infinity). Let G be a generalised quadrangle of order (s, s2)
and let ∞ be a set of points of G such that G \∞ is a partial quadrangle. Then a set of points
I of G is said to be intriguing at infinity (with respect to ∞) if there are two constants a1 and
a2 such that

|Y ⊥ ∩ I ∩∞| =

{
a1 Y ∈ I \∞
a2 Y /∈ I ∪∞.

Theorem 4.2. Let G be a generalised quadrangle of order (s, s2) and let ∞ be a set of points
of G such that G \ ∞ is a partial quadrangle. Let I be an intriguing set of G with parameters
(h1, h2). Then I \ ∞ is an intriguing set of the partial quadrangle G \ ∞ if and only if I is
intriguing at infinity.

Proof. Let A be the adjacency matrix of the point graph of G and let B be the adjacency
matrix for the point graph of G \∞. Let S be the matrix whose rows are indexed by the points
of G, and whose columns are indexed by the points of G \ ∞, such that the (i, j)-th entry of S
is equal to 1 if the i-th point of G is equal to the j-th point of G \∞, and 0 otherwise. Then

ST AS = B and ST S = I.

When we write 1PQ
H we mean the function 1H restricted to the partial quadrangle. By supposi-

tion, we have that

A1I = (h1 − h2)1I + h21.

Denote by ∞′ the complement of ∞. Note that I is intriguing at infinity if and only if there
exist non-negative integers a1 and a2 such that

ST A1I∩∞ = (a1 − a2)1PQ
I\∞ + a21

PQ
∞′ .

On the other hand, I \ ∞ is intriguing in the partial quadrangle if and only if there exist
non-negative integers h′1 and h′2 such that

B1PQ
I\∞ = (h′1 − h′2)1

PQ
I\∞ + h′21

PQ
∞′ .

Now A1I∩∞ = A(1I−1I∩∞′) = (h1−h2)1I+h21−A1I\∞ and so I is intriguing at infinity
if and only if there exist non-negative integers a1 and a2 such that

(a1 − a2)1PQ
I\∞ + a21

PQ
∞′ = (h1 − h2)1PQ

I\∞ + h21
PQ
∞′ − ST A1I\∞.

When we rearrange this equation, we obtain

ST A1I\∞ = ((h1 − a1)− (h2 − a2))1PQ
I\∞ + (h2 − a2)1PQ

∞′

which is equivalent to B1PQ
I\∞ = ((h1 − a1)− (h2 − a2))1PQ

I\∞ + (h2 − a2)1PQ
∞′ . Therefore I \ ∞

is an intriguing set of the partial quadrangle G \∞ if and only if I is intriguing at infinity. �
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5. Partial quadrangles obtained by removing a point from a generalised
quadrangle

Let G be a generalised quadrangle of order (s, t) and let P be a point of G. Then the derived
geometry with

points the points of G not collinear to P
lines the lines of G not incident with P .

is a (0, 1)-geometry, that is, for every point P and line ` which are not incident in this
geometry, there is at most one point on ` collinear with P . The point graph of this geometry
will be strongly regular if and only if there is a constant c such that for any two noncollinear
points X and Y of G, not in P⊥, there are c points of G which are collinear with all three points
X, Y and P . This property occurs when and only when the parameter t is equal to s2 (see
[4] or [7]), in which case c = s + 1, and then we obtain a partial quadrangle with parameters
(s − 1, s2, s(s − 1)). In the following lemma, we summarise the algebraic data needed to work
with these kinds of partial quadrangles.

Lemma 5.1. Let G be a generalised quadrangle of order (s, s2), let P be a point of G, and let
I be an intriguing set of the partial quadrangle G \P⊥ with intersection numbers (h′1, h

′
2). Then

we have the following information:

Case Associated eigenvalue Size
Negative intriguing set −s2 + s− 1 h′2s
Positive intriguing set s− 1 h′2s

2/(s− 1)
Point set (s− 1)(s2 + 1) s4

Table 2. Eigenvalues and sizes of intriguing sets of G \ P⊥.

Theorem 5.2. Let G be a generalised quadrangle of order (s, s2) and let ∞ = P⊥ where P
is a point of G. Let I be an intriguing set of G with parameters (h1, h2) and which is intriguing
at infinity with parameters (a1, a2). Then I \ ∞ is an intriguing set with the same parity as I
and we have the following possibilities for (a1, a2):

Parity Case a1 a2 |I ∩ P⊥|
m-ovoid P /∈ I m(s + 1)− s m(s + 1) m(s2 + 1)

P ∈ I m(s + 1)− 2s m(s + 1)− s m(s2 + 1)− s2

i-tight set P /∈ I i/s i/s i
P ∈ I (i− 1)/s + 1 (i− 1)/s + 1 i + s

Table 3. Possibilities for (a1, a2).

Proof. Recall that the negative and positive eigenvalues for G are −s2 − 1 and s − 1,
whilst they are −s2 + s − 1 and s − 1 for G \ P⊥. However, we must have that h1 − h2 and
(h1 − a1) − (h2 − a2) are eigenvalues for the respective geometries. In Table 4, we outline the
possibilities for these values depending on the four possible cases. We use the notation “− → +”
(for example) to denote the case that I is negative intriguing and I \∞ is positive intriguing.

h1 − h2 (h1 − a1)− (h2 − a2) a1 − a2

− → − −s2 − 1 −s2 + s− 1 −s
− → + −s2 − 1 s− 1 −s2 − s
+→ − s− 1 −s2 + s− 1 s2

+→ + s− 1 s− 1 0

Table 4. Eigenvalues for the four possible cases.
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Since a1, a2 6 s2 + 1, we can rule out immediately the second case above. Moreover, since
|Y ⊥∩P⊥∩Z⊥| = s+1 for any three pairwise non-collinear points Y, P, Z, and since there exists
a point Y ∈ I \ ∞ and a point Z ∈ (G \ ∞) \ I, it follows that a1 − a2 6 s2 − s. So the third
case in the above list is ruled out too. Hence parity is preserved. Now we see what happens at
infinity. Recall from Lemma 2.1 that if I has associated eigenvalue e and I \P⊥ has associated
eigenvalue e′ (in the partial quadrangle), then

|I| = h2

s(s2 + 1)− e
(s + 1)(s3 + 1) and |I \ P⊥| = h2 − a2

(s− 1)(s2 + 1)− e′
s4.

Since I is intriguing we have

|P∼ ∩ I| =

{
h2 + e P ∈ I
h2 P /∈ I.

Negative case: In the first case of Table 4, s2 + 1 divides h2, and

|I ∩ P⊥| = |I| − |I \ P⊥| = h2(s3 + 1)
s2 + 1

− (h2 − a2)s = a2s−
h2(s− 1)

s2 + 1
.

As we know that I is an m-ovoid (for some m), h2 = m(s2 +1) and we have the following values:

Case a1 a2 |I ∩ P⊥|
P /∈ I m(s + 1)− s m(s + 1) m(s2 + 1)
P ∈ I m(s + 1)− 2s m(s + 1)− s m(s2 + 1)− s2

Positive case: In the last case of Table 4, we have

|I ∩ P⊥| = |I| − |I \ P⊥| = h2(s + 1)− h2 − a2

s− 1
s2 =

a2s
2 − h2

s− 1
.

As we know that I is an i-tight set (for some i), h2 = i and we have the following values:

Case a1 a2 |I ∩ P⊥|
P /∈ I i/s i/s i
P ∈ I (i− 1)/s + 1 (i− 1)/s + 1 i + s

�

5.1. Positive intriguing sets. We now characterise the positive intriguing sets of a partial
quadrangle obtained from removing the perp of a point of a generalised quadrangle G, which are
induced from intriguing sets of G.

Theorem 5.3 (Positive Intriguing ←→ Lines at Infinity). Let G be a generalised quadrangle
of order (s, s2) and let ∞ = P⊥ where P is a point of G. Let I be a positive intriguing set of G,
and let y = (i − 1)/s + 1 if P ∈ I, or let y = i/s if P /∈ I. Then I \ ∞ is an intriguing set of
G \∞ if and only if I ∩∞ consists of y lines through P .

Proof. First suppose that I is a positive intriguing set of G. Then |I| = (s + 1)i, for some
i. Assume that I intersects ∞ in y lines through P . Then we have

y =

{
i/s P /∈ I
(i− 1)/s + 1 P ∈ I

and it follows that I is intriguing at infinity with parameter y, and hence by Lemma 4.2, I \∞
is an intriguing set of G \∞.

Conversely, let I be a positive intriguing set of G and suppose that I is intriguing at infinity
with parameters (a1, a2). By Lemma 4.2, we have that a1 = a2 = y with

y =

{
i/s P /∈ I
(i− 1)/s + 1 P ∈ I.
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By counting pairs (Y, (Z,Z ′)) with Y ∈ I \ ∞ and Z,Z ′ ∈ I ∩ ∞ with Y ∼ Z, Y ∼ Z ′ and
Z 6∼ Z ′, we have

s4y(y − 1)/2 = s2x

where x denotes the number of pairs (Z,Z ′) as above. Hence x = s2y(y − 1)/2. From Lemma
4.2, we also know that the equation |I ∩ ∞ \ {P}| = ys is independent of whether P ∈ I or
P /∈ I. Finally, it is easy to see that a set of ys points in P⊥ \ {P} has the minimum number
y(y − 1)/2s2 of non-collinear pairs (or the maximum number ys(s − 1)/2 of collinear pairs) if
and only if it consists of y lines through P . �

Remark 5.4 (Q(4, q) −→ Positive Intriguing). Let G be the generalised quadrangle Q−(5, q)
and let P be a point of G. Consider a Q(4, q) embedded in Q−(5, q). Then Q(4, q) \ P⊥ is a
positive intriguing set of G \ P⊥ if and only if Q(4, q) ∩ P⊥ is a tangent hyperplane to Q(4, q).

5.2. Negative intriguing sets. Segre [21] proved that if an m-ovoid of Q−(5, q) exists,
then m = (q +1)/2; that is, it is a hemisystem. Thas [22] extended this result to all generalised
quadrangles of order (s, s2), s odd. We have an alternative proof of Thas for when the m-ovoid
has a particular property. Suppose P is a partial quadrangle obtained from removing the perp
of a point from G. If an m-ovoid meets P in a negative intriguing set, then it follows from the
theorem below that m = (s + 1)/2.

Theorem 5.5 (Negative Intriguing −→ Hemisystems). Let G be a generalised quadrangle of
order (s, s2), and let ∞ = P⊥ where P is a point of G. If I is an m-ovoid of G and I \∞ is an
intriguing set of G \∞, then s is odd and I is a hemisystem (m = (s + 1)/2) of G.

Proof. Let I be an m-ovoid of G, with 0 < m < s + 1, and suppose that I is a negative
intriguing set of G \ ∞. Then by Lemma 4.2 and Theorem 5.2, I is intriguing at infinity with
parameters (a1, a2), where

a1 =

{
m(s + 1)− s P /∈ I
m(s + 1)− 2s P ∈ I

and

a2 =

{
m(s + 1) P /∈ I
m(s + 1)− s P ∈ I

.

Moreover

|I ∩∞| =

{
m(s2 + 1) P /∈ I
m(s2 + 1)− s2 P ∈ I

.

First assume P ∈ I, then |I \∞| = ms3−ms2 + s2. Counting pairs (Y, (Z,Z ′)) with Y ∈ I \∞
and Z,Z ′ ∈ I ∩∞ with Y ∼ Z, Y ∼ Z ′ and Z 6∼ Z ′ we have

a1(a1 − 1)(ms3 −ms2 + s2)/2 + a2(a2 − 1)(s4 −ms3 + ms2 − s2)/2 = s2x

where x denotes the number of pairs (Z,Z ′) as above. Hence x = a1(a1 − 1)(ms−m + 1)/2 +
a2(a2 − 1)(s2 −ms + m − 1)/2. On the other hand, since I is an m-ovoid of G and P ∈ I we
also know that x = (m− 1)2(s2 +1)s2/2. According to Table 4 we have that a1 = m(s+1)− 2s
and a2 = a1 + s, in this case. Comparing the two values of x obtained, we have

2m2 − 3(s + 1)m + (s + 1)2 = 0

from which it follows that m = (s + 1)/2.
Next assume that P /∈ I, then |I \ ∞| = ms3 − ms2. Counting pairs (Y, (Z,Z ′)) with

Y ∈ I \∞ and Z,Z ′ ∈ I ∩∞ with Y ∼ Z, Y ∼ Z ′ and Z 6∼ Z ′ we have

a1(a1 − 1)(ms3 −ms2)/2 + a2(a2 − 1)(s4 −ms3 + ms2)/2 = s2x

where x denotes the number of pairs (Z,Z ′) as above. Hence x = a1(a1−1)(ms−m)/2+a2(a2−
1)(s2−ms+m)/2. On the other hand, since I is an m-ovoid of G and P /∈ I we also know that
x = m2(s2 + 1)s2/2. Comparing the two values of x obtained, we have

m(2m− (s + 1)) = 0
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from which it follows that m = (s + 1)/2. �

Moreover, for hemisystems we have

Lemma 5.6 (Hemisystem −→ Negative Intriguing). Let I be a hemisystem of a generalised
quadrangle G of order (s, s2), s odd. Let P be a point of G. Then I \P⊥ is a negative intriguing
set of G \ P⊥ if and only if |Y ⊥ ∩ I ∩ P⊥| is a constant over all P and Y not both in I.

Proof. Follows from Theorem 5.2. �

Open question: For every m-ovoid O of a generalised quadrangle G of order (s, s2), does there
exist a point P such that O \ P⊥ is an intriguing set of the associated partial quadrangle?
(Compare with Theorem 5.5).

Lemma 5.7 (Cone−→ Negative Intriguing). Let G be the generalised quadrangle of order
(s, s2) and let P be a point of G. For every point Z ∈ P⊥, the set of points Z⊥ \P⊥ is a negative
intriguing set of G \ P⊥ with parameters (s− 1, s2).

Proof. Let Z be a point of P⊥ and let I be the set of points of G \ P⊥ contained in Z⊥.
(Clearly if Z = P we get the empty set, so assume that Z 6= P ). Let X be a point in I. Then
the only points of Z⊥ collinear with X lie on the line XZ. Moreover, every point but Z on this
line is not in P⊥. So there are s − 1 points collinear with X (and not equal to X) in I. Now
let Y be a point not in I, but in G \ P⊥. Now Y is not collinear to Z, and we want to know
how many points of G are collinear with both Y and Z, but not on the line ZP . This number is
µ− 1 = s2. Therefore, I is a negative intriguing set of G \ P⊥ with parameters (s− 1, s2). �

So from Lemma 5.6 and Lemma 5.7, we have two ways to obtain negative intriguing sets
of a partial quadrangle which is a generalised quadrangle minus the perp of a point: namely,
from unions of disjoint cones, and from hemisystems. We conjecture that these are the only two
possible types of negative intriguing sets.

Conjecture 5.8. Let G be a generalised quadrangle of order (s, s2) and let P be a point of
G. If I is a negative intriguing set of the partial quadrangle G \ P⊥, then either:

(i) There exist points Z1, . . . , Zn of P⊥ such that I =
⋃n

i=1

(
Z⊥

i \ P⊥)
, or

(ii) There exists a hemisystem H of G such that I = H \ P⊥.

We are able to provide a partial answer to the above conjecture via the results remaining
in this section. A proof of this conjecture would be a significant step in improving Thas’ result
that an m-ovoid of a generalised quadrangle of order (s, s2), with s odd, is a hemisystem (see
[22, Corollary 2]). Conjecture 5.8 aims to extend Theorem 5.5 to weighted m-ovoids. However,
it seems this problem is very difficult.

Let A be the adjacency matrix of a strongly regular graph Γ. Let S be a set of points
equipped with integral weights. Then the characteristic vector 1S is just a vector with integer
entries. We say that S is a weighted intriguing set if there exist integers a and b such that
A1S = a1S + b1. Recall that there are three eigenspaces of A, namely V 0, V +, V −, where
V 0 is one-dimensional and V + and V − correspond with the positive and negative principal
eigenvalues of A respectively. We say that a weighted intriguing set S is a weighted m-ovoid if
1S ∈ V 0 ⊥ V −. If Γ is the point graph of a generalised quadrangle, then this is equivalent to
having the property that 1S ·1` = m for all lines `. Consider a generalised quadrangle G of order
(s, s2), and let Z be a point of G. Let S be the set of all points collinear with Z, and give every
point of S the weight 1, except the point Z, which will have weight −s+1. Then S is a weighted
1-ovoid as A1S = −s21S + s21. We can extrapolate this example by taking the perps of a set of
noncollinear points Z1, Z2, . . . , Zm, a union of cones, which results in a weighted m-ovoid. We
will show below (Theorem 5.10) that a negative intriguing set of G\P⊥ extends to a weighted
m-ovoid of G, and therefore Conjecture 5.8 simplifies to the statement that if S is a weighted
m-ovoid of G such that S\P⊥ is a (not weighted) negative intriguing set of G\P⊥, then S is a
hemisystem or a union of cones.
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For the identity and “all-ones” matrices, we will sometimes use a subscript which describes
the size of the matrix. For example, IP⊥ and JP⊥ denote the corresponding square matrices
with |P⊥| rows and columns.

Lemma 5.9. Let G be a generalised quadrangle of order (s, s2) and let P be a point of G. Order
the points of G so that the points of P⊥ appear last, with P last of all. Let A be the adjacency
matrix of the point-graph of G, and let B be the adjacency matrix of the partial quadrangle G\P⊥

such that

A =
[

B C
CT D

]
.

Let λ = −s2 − 1. Then:
(a) D − λIP⊥ is invertible and moreover

s3(s2 + 1)(s + 1)(D− λI)−1 = (s4 + s3 + s− 1)I + J − (s2 + 1)D− s(M + MT ) + s(s2 + s− 1)E

where

M :=

[ 0 ··· 0 0
...

...
...

0 ··· 0 0
1 ... 1 0

]
and E :=

[ 0 ··· 0
...

...
0

0 ··· 0 1

]
.

(b) C(D − λI)−11P⊥ = 1PQ.
(c) If I is a negative intriguing set of G \ P⊥ with parameters (h′1, h

′
2), then

CCT1I = s31I + s|I|1PQ

and
C(D − λI)−1CT1I = s1I + h′21PQ.

Proof. (a) Since D is the adjacency matrix for P⊥, the eigenvalues for D are s − 1 and −1.
Since λ < −1, it follows that D − λIP⊥ is invertible. Now we apply D − λIP⊥ to our proposed
formula for the inverse (D − λIP⊥)−1:

(D − λIP⊥)((s4 + s3 + s− 1)I + J − (s2 + 1)D − s(M + MT ) + s(s2 + s− 1)E) =

(s4 + s3 + s− 1)D + DJ − (s2 + 1)D2 − s(DM + DMT ) + s(s2 + s− 1)DE−
λ(s4 + s3 + s− 1)I − λJ + λ(s2 + 1)D + λs(M + MT )− λs(s2 + s− 1)E.

Recall that the last row and column of D represent the point P . To compute the (i, j)-entry
of D2, we note that if i, j 6= s3 + s + 1, then

D2(i, j) = J(i, j) + (s− 1)I(i, j) + (s− 2)D(i, j).

So to complete the equation, we consider what happens when i = j = s3 + s + 1. We then see
that

D2 = J + (s− 1)I + (s− 2)D + s3E.

Also, it is not difficult to see that DM = J −M −MT −E, DE = MT , DJ = sJ + s3(M + E)
and DMT = (s− 1)MT + (s3 + s)E. So our equation simplifies to the following:

(D−λIP⊥)((s4 +s3 +s−1)I +J− (s2 +1)D−s(M +MT )+s(s2 +s−1)E) = s3(s2 +1)(s+1)I

from which the desired conclusion follows.

(b) Note that C1P⊥ = (s2 + 1)1PQ, CJ1P⊥ = (s2 + 1)(s3 + s + 1)1PQ, CM1P⊥ = CE1P⊥ = 0
(the zero vector) and CMT1P⊥ = (s2 + 1)1PQ. Now

D1P⊥ = s1P⊥ + (0, . . . , 0, s3)

and hence
CD1P⊥ = s(s2 + 1)1P⊥ + C(0, . . . , 0, s3) = s(s2 + 1)1PQ.

A little calculation then shows that C(D − λI)−11P⊥ = 1PQ.

(c) First we prove that CCT1I = s31I + s|I|1PQ. Let Pi and Pj be the i-th and j-th points
of the partial quadrangle. The (i, j) entry of CCT is the number of points of P⊥ which are
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collinear with both Pi and Pj . Now if Pi and Pj are collinear, that is B(i, j) = 1, then the
only point of P⊥ collinear to both Pi and Pj is the point of intersection of P⊥ with the line
joining Pi and Pj ; so CCT (i, j) = 1 in this case. Otherwise, if B(i, j) = 0, then there are
s + 1 points of P⊥ collinear to all three points P , Pi and Pj (recall that this was a property
of the ambient generalised quadrangle G for G \ P⊥ to be a partial quadrangle). Therefore,
CCT = (s + 1)JPQ − sB + (s2 − s)IPQ and hence

CCT1I = (s + 1)JPQ1I − sB1I + (s2 − s)IPQ1I

= (s + 1)|I|1PQ − s((−s2 + s− 1)1I + h′21PQ) + (s2 − s)1I
= s31I + s|I|1PQ.

Now we list some formulae which can be worked out with some simple geometric arguments:

CMCT = CMT CT = CECT = 0,

CJCT = (s2 + 1)2JPQ,

CDCT = (s2 + 1)JPQ − CCT .

The last of these formulae will serve as a demonstration of how to compute all of them. The
matrix DCT measures the number of points of P⊥ which are collinear with two points, one from
P⊥ and the other from the partial quadrangle. Upon applying C, we see see that CDCT =
(s2 + 1)JPQ − CCT . From the above calculations, we arrive at

s3(s2 + 1)(s + 1)C(D − λI)−1CT1I = s(s2 + 1)(s + 1)CCT1I

= s3(s2 + 1)(s + 1)
(
s1I + h′21PQ

)
.

Therefore, C(D − λI)−1CT1I = s1I + h′21PQ. �

Theorem 5.10 (Negative intriguing set −→ weighted m-ovoid). Let G be a generalised
quadrangle of order (s, s2), s odd, and let P be a point of G such that G \ P⊥ is a partial
quadrangle. Suppose I is a negative intriguing set of the partial quadrangle G \ P⊥. Then there
is a subset I∗ of points of P⊥, equipped with integral weights, such that I ∪ I∗ is a weighted
m-ovoid of G.

Proof. Suppose that I is a negative intriguing set of G \P⊥ with parameters (h′1, h
′
2). Let

λ be the negative eigenvalue of A (i.e., −s2 − 1), let h2 be a positive integer, and let

v = (D − λIP⊥)−1(−CT1I + h21P⊥).

We will show that there is a value of h2 such that v is an integer valued vector and hence
represents a weighted subset I∗ of points of P⊥. If we also show that v corresponds naturally
to an eigenvector of A (see Lemma 2.1), then it will follow that I ∪ I∗ is a weighted intriguing
set in G. We show first that 1I + v − α1GQ is an eigenvector of A with eigenvalue λ, where
α = h2/((s + 1)(s2 + 1)). We apply A to our proposed eigenvector:

A (1I + v − α1GQ) =A1I + Av − αs(s2 + 1)1GQ

=
[

B1I + Cv
CT1I + Dv

]
− αs(s2 + 1)1GQ.

By Lemma 5.9,

Cv = −C(D − λI)−1CT1I + h21PQ = −s1I − h′21PQ + h21PQ

= −
(
(λ + s)1I + h′21PQ

)
+ λ1I + h21PQ = −B1I + λ1I + h21PQ

and hence B1I + Cv = λ1I + h21PQ. We also have

CT1I + Dv = CT1I + λv − CT1I + h21P⊥ = λv + h21P⊥ .
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Hence,

A(1I + v − α1GQ) =A1I + Av − αs(s2 + 1)1GQ =
[

B1I + Cv
CT1I + Dv

]
− αs(s2 + 1)1GQ

=
[
λ(1I − α(s + 1)1PQ)
λ(v − α(s + 1)1P⊥)

]
+ αsλ1GQ

=λ(1I + v − α1GQ).

So 1I + v−α1GQ is an eigenvector of A with eigenvalue λ. Note that this is true no matter
what choice we make for the value of h2. We will show that there exist values of h2 such that v is
integer valued. Suppose h2 is divisible by s2 + 1 and let X = h2/(s2 + 1). A tedious calculation
shows that if we restrict v to the points of P⊥ \ {P}, then

v|P⊥\{P} =
−CT1I

s2
+ X1P⊥\{P}.

We then look at the action of v on the point P to derive

v|{P} =
|I|
s2

+ X(1− s).

Recall from Theorem 5.2 that |I| is divisible by s2, so v|{P} is an integer. By simple geometric
arguments, we know that

DCT1I = −CT1I + |I|
(
1P⊥\{P} + (s2 + 1)1P

)
.

So
(D − λIP⊥)CT1I = s2CT1I + |I|(D − λIP⊥)1P

and hence
CT1I = s2(D − λIP⊥)−1CT1I + |I|1P

as D − λIP⊥ is invertible. Hence every entry of CT1I is divisible by s2, thus proving that v is
integer valued. �

Corollary 5.11 (Negative intriguing set of the right size ←→ Hemisystem). Let G be a
generalised quadrangle of order (s, s2), s odd, and let P be a point of G such that G \ P⊥ is a
partial quadrangle. Suppose I is a negative intriguing set of the partial quadrangle G \ P⊥ such
that |I| is either

s2(s2 − 1)/2 or s2(s2 + 1)/2.

Then there is a subset I∗ of points of P⊥ such that I ∪ I∗ is a hemisystem of G.

Proof. Suppose that I is a negative intriguing set of G \P⊥ with parameters (h′1, h
′
2). Let

λ be the negative eigenvalue of A (i.e., −s2 − 1), let h2 be a positive integer, and let

v = (D − λIP⊥)−1(−CT1I + h21P⊥).

By Theorem 5.10, if h2 is divisible by s2 + 1, then v is integer valued. Recall that

v|P⊥\{P} =
−CT1I

s2
+

h2

s2 + 1
1P⊥\{P} and v|{P} =

|I|
s2

+
h2

s2 + 1
(1− s).

Let X = h2/(s2 + 1). Then
∑

v = X(s3 + 1)− |I| and

v · v =
1ICCT1T

I
s4

− 2X
|I|(s2 + 1)

s2
+ X2(s3 + s) +

(
|I|
s2

+ X(1− s)
)2

=
|I|
s

+
(s + 1)|I|2

s4
− 2X

|I|(s + 1)
s

+ X2(s3 + s2 − s + 1).
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So

v · v −
∑

v =
|I|
s

+
(s + 1)|I|2

s4
− 2X

|I|(s + 1)
s

+ X2(s3 + s2 − s + 1)−X(s3 + 1) + |I|

=X2(s3 + s2 − s + 1) + X

(
−2|I|(s + 1)

s
− s3 − 1

)
+
|I|
s

+
(s + 1)|I|2

s4
+ |I|.

Now suppose |I| = s2(s2 − 1)/2. Then it turns out that

v · v −
∑

v =
(

(s3 + s2 − s + 1)X − s + 1
2

(s3 + s2 − s + 1)
) (

X − (s− 1)(s3 + 3s2 + s− 1)
2(s3 + s2 − s + 1)

)
and hence v is a zero vector if and only if X = (s+1)/2. That is, if we let h2 = (s2 +1)(s+1)/2,
then v is a characteristic function for a subset I∗ of P⊥, and the union of I with I∗ forms a
negative intriguing set of the generalised quadrangle G. By Theorem 5.5, I ∪I∗ is a hemisystem
of G. A similar argument holds for the case |I| = s2(s2 + 1)/2. �

5.3. Examples of intriguing sets of Q−(5, q). Segre [21] proved that for q = 3, there is
just one hemisystem up to equivalence, and it was long thought to be the only example of such
an object. However, Cossidente and Penttila [11] constructed an infinite family of hemisystems
of Q−(5, q) admitting PΩ−(4, q), together with a special example for q = 5 admitting the triple
cover of A7.

There are many tight sets of Q−(5, q), simply because there are many partial spreads of
Q−(5, q). However, some interesting examples arise from Cameron-Liebler line classes. A set of
lines L of PG(3, q) is said to be a Cameron-Liebler line class if there exists a constant i such
that L meets every (regular) line spread of PG(3, q) in i elements. Such a set of lines gives rise
to an i-tight set of Q−(5, q) as follows: first note that every spread of the symplectic generalised
quadrangle W(3, q) is a spread of PG(3, q), and so the set of lines of L in W(3, q) meets each
spread of W(3, q) in i elements. Hence, by dualising, we obtain an i-tight set of Q(4, q) (see [3,
Corollary 4.11]). By embedding, we produce an i-tight set of Q−(5, q). The Cameron-Liebler
line classes can only give rise to tight sets of Q−(5, q) which consist of a line, a pair of skew
lines, or a complement of one of these [9]. However, much more is known about the existence
and non-existence of Cameron-Liebler line classes, and so we refer the interested reader to [18]
or [12] for more on this topic. Finally we note that a Q(4, q) embedded in Q−(5, q2) (subfield
embedding) is (q + 1)-tight, and the points of Q(4, q2) which are collinear but not equal to their
conjugate forms a q(q2 − 1)-tight set of Q−(5, q2) (see [2, Theorem 8]).

6. Partial quadrangles obtained from a hemisystem

Recall that a hemisystem H of a generalised quadrangle G of order (s, s2), s odd, is a set of
(s3 +1)(s+1)/2 points of G such that every line of G is incident with exactly (s+1)/2 elements
of H. From H, we construct a partial quadrangle PQ(H) as follows:

points the points of H
lines the lines of G.

The parameters are thus ((s − 1)/2, s2, (s − 1)2/2). Since the complement of a hemisystem is
again a hemisystem, we may regard this construction as removing “infinity”, where “infinity” is
a hemisystem.

Lemma 6.1. Let G be a generalised quadrangle of order (s, s2) (s odd), let H be a hemisystem
of G, and let I be an intriguing set of the partial quadrangle PQ(H) with intersection numbers
(h′1, h

′
2). Then we have the following information:
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Case Eigenvalue Size
Negative intriguing set (−s2 + s− 2)/2 h′2(s + 1)
Positive intriguing set s− 1 h′2(s

3 + 1)/(s− 1)2

Point set (s− 1)(s2 + 1)/2 (s + 1)(s3 + 1)/2

Table 5. Eigenvalues and sizes of intriguing sets of PQ(H).

Theorem 6.2. Let G be a generalised quadrangle of order (s, s2), s odd, and let H be a
hemisystem of G. Let I be an intriguing set of G with parameters (h1, h2). If I \ H is an
intriguing set of the partial quadrangle G \ H, then we have the following possibilities for the
intersection numbers (a1, a2) at infinity:

a1 − a2 a2 |I \ H|
− → − −(s2 + s)/2 – (m(s2 + 1)− a2)(s + 1)
− → + −(s2 + s) – (m(s2 + 1)− a2)(s3 + 1)/(s− 1)2

+→ − (s2 + s)/2 i/2 i(s + 1)/2

Table 6. Possibilities for intersection numbers (a1, a2).

Proof. The positive eigenvalues for G and G \ H are both equal to s − 1. However, the
negative eigenvalues differ: −s2− 1 for G and (−s2 + s− 2)/2 for G \H. Now we must have that
h1 − h2 and (h1 − a1)− (h2 − a2) are eigenvalues for the respective geometries:

Case h1 − h2 (h1 − a1)− (h2 − a2) a1 − a2 a2 |I \ H|
(i) − → − −s2 − 1 (−s2 + s− 2)/2 −(s2 + s)/2 – (m(s2 + 1)− a2)(s + 1)
(ii) − → + −s2 − 1 s− 1 −(s2 + s) – (m(s2 + 1)− a2)(s

3 + 1)/(s− 1)2

(iii) + → − s− 1 (−s2 + s− 2)/2 (s2 + s)/2 i/2 i(s + 1)/2

(iv) + → + s− 1 s− 1 0 i/2 s2−1
s2−s+1

i(s + 1)/2

Table 7. Details on the intersection numbers.

(i) Suppose that I is an m-ovoid and I \ H is negative intriguing. Then |I| = m(s3 + 1)
and hence

|I \ H| = m(s2 + 1)− a2

(s− 1)(s2 + 1)− (−s2 + s− 2)
(s + 1)(s3 + 1) = (m(s2 + 1)− a2)(s + 1).

(ii) Suppose that I is an m-ovoid and I \ H is positive intriguing. Again we have |I| =
m(s3 + 1), but now we obtain

|I \ H| = m(s2 + 1)− a2

(s− 1)2
(s3 + 1).

(iii) Suppose that I is an i-tight set and I \ H is negative intriguing. Then

|I \ H| = i− a2

(s− 1)(s2 + 1)− (−s2 + s− 2)
(s3 + 1)(s + 1) = (i− a2)(s + 1).

Since H is a hemisystem, we have that |H∩I| = (s+1)i/2. So |I \H| = |I|− |H∩I| =
(s + 1)i/2. This gives (i− a2)(s + 1) = (s + 1)i/2 and hence a2 = i/2.

(iv) Suppose that I is an i-tight set and I \ H is positive intriguing. Then |I| = i(s + 1)
and hence

|I \ H| = i− a2

(s− 1)(s2 + 1)− 2(s− 1)
(s3 + 1)(s + 1) =

i− a2

(s− 1)2
(s3 + 1).

Since H is a hemisystem, we have |H ∩ I| = (s + 1)i/2. So |I \ H| = |I| − |H ∩ I| =
(s+1)i/2 and we obtain i−a2

(s−1)2
(s3 +1) = (s+1)i/2 and therefore a1 = a2 = i/2 s2−1

s2−s+1
.

If we now compare with Lemma 6.1, we arrive at the equation

2h′2(s
3 + 1) = i(s− 1)(s2 − 1).
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However, since we know a2, and h′2 = h2 − a2, we can substitute h′2 in the above
equation and we obtain

2(1− s2 − 1
2(s2 − s + 1)

)(s3 + 1) = (s− 1)(s2 − 1)

which implies that 2s = 0; a contradiction.
�

Corollary 6.3. Let G be a generalised quadrangle of order (s, s2), s odd, and let H be a
hemisystem of G. Both an (s + 1)-tight set and an (s2 + 1)-tight set of G never yield intriguing
sets of PQ(H). Furthermore, Q+(3, q) and Q(4, q) embedded in Q−(5, q), never yield intriguing
sets of PQ(H).

Proof. A Q+(3, q) embedded in Q−(5, q) is a (q + 1)-tight set and a Q(4, q) section is a
(q2+1)-tight set. Suppose I is an (s+1)-tight set of G such that I\H is a negative intriguing set
of PQ(H) (the only case allowed by Theorem 6.2). Then we observe immediately a contradiction
because h1 − a1 is negative. In the case that I is an (s2 + 1)-tight set of G, the parameter a1 is
equal to s2 + (s + 1)/2. Now a1 is the number of points of I ∩ H which are collinear with an
arbitrary point of I \H. Therefore, a1 is divisible by (s + 1)/2, which implies that s + 1 divides
2s2 + s + 1 = (2s− 1)(s + 1) + 2; a contradiction. So an (s + 1)-tight set and an (s2 + 1)-tight
set of G never induce intriguing sets of PQ(H). �

Examples exist for the first and third cases of Theorem 6.2 which we demonstrate in what
follows. For the second case of Theorem 6.2, we do not have any examples when the generalised
quadrangle is Q−(5, s). In this generalised quadrangle, an m-ovoid is a hemisystem and we
believe that only negative intriguing sets can arise in the partial quadrangle.

Conjecture 6.4. Let G be a generalised quadrangle of order (s, s2), s odd, and let H be a
hemisystem of G. Let I be another hemisystem of G. Then I \ H is a negative intriguing set of
the partial quadrangle G \ H.

The authors are not aware of a situation in which the above situation is violated, and a
proof of this fact would be a surprising result on the nature of hemisystems.

Lemma 6.5 (Nice Cone−→ Negative Intriguing). Let G be a generalised quadrangle of order
(s, s2) (s odd), let H be a hemisystem of G, and let Z be a point of H. If the complement of H
is intriguing at infinity for the partial quadrangle G \ Z⊥, then Z⊥ \ H is a negative intriguing
set with parameters ((s− 1)/2, (s2 + 1)/2) of the partial quadrangle G \ H

Proof. Let X ∈ Z⊥ \ H. The points of Z⊥ collinear with X lie on the line ZX, and this
line meets H′ in (s + 1)/2 points. So X is collinear with precisely h′1 = (s − 1)/2 other points
of Z⊥ \ H. Now suppose that X /∈ Z⊥ \ H. So in particular X is not in Z⊥ and hence we can
use the fact that G \Z⊥ is a partial quadrangle. Since H′ is intriguing at infinity for the partial
quadrangle G \ Z⊥, there exists a constant a2 such that |X⊥ ∩H′ ∩ Z⊥| = a2. Now by Lemma
5.6, this value of a2 is (s2 + 1)/2. �

If we have a partial spread S of a generalised quadrangle G, and a point X not covered by
any line of S, then X is collinear with exactly one point of each member of S. If half of these
points of collinearity are contained in a hemisystem, then we might obtain an intriguing set of
the associated partial quadrangle.

Lemma 6.6 (Nice Partial Spread−→ Negative Intriguing). Let G be a generalised quadrangle
of order (s, s2), s odd, and let H be a hemisystem of G. Let I be a set of points covered by a
partial spread of c lines of G where c is even. If I is intriguing at infinity, then for every point
X not in I, half of the c points of I collinear with X are contained in H, and I \H is a negative
intriguing set of the partial quadrangle G \ H with parameters ((c− s2 + s)/2− 1, c/2).

Proof. It follows from Theorem 6.2. �
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Such partial spreads as those described in Lemma 6.6 have been found by computer for small
q in Q−(5, q). Therefore we have examples in which a tight set of the generalised quadrangle
induces negative intriguing sets of the partial quadrangle arising from a hemisystem.

Remark 6.7. A positive intriguing set with h′2 = 1 has size (s3 + 1)/(s− 1)2 which is only
an integer when s = 2, 3. Now let O be a maximal partial ovoid of a generalised quadrangle
G of order (s, s2). If O is an intriguing set with parameters (h′1, h

′
2) of PQ(H), then h′1 = 0

and hence O is a negative intriguing set with h′2 = (s2 − s + 2)/2. In this case, we would have
|O| = (s2 − s + 2)(s + 1)/2 = (s3 + s + 2)/2, which happens to be the theoretical upper-bound
for the size of a partial ovoid of Q−(5, s) given by De Beule, Klein, Metsch, and Storme [13].
In Q−(5, 3), there is a set of points of size 16 that is a negative intriguing set of PQ(H) where
H is Segre’s hemisystem. It happens to be the unique maximal partial ovoid of Q−(5, 3) first
discovered by Ebert and Hirschfeld [15].

7. Partial quadrangles that have a linear representation

A k-cap of a projective space PG(n, q) is a set of k points with no three collinear. Calderbank
[6] proved using number-theoretic arguments that if a partial quadrangle is a linear represen-
tation then q > 5 or it is isomorphic to the linear representation of one of the following: (i)
An ovoid O of PG(3, q); (ii) A Coxeter 11-cap of PG(4, 3); (iii) A Hill 56-cap of PG(5, 3); (iv) A
78-cap of PG(5, 4); (v) A 430-cap of PG(6, 4). Tzanakis and Wolfskill [23] then proved that if
q > 5, we must be in the first case. The examples in the first case are equivalent to the partial
quadrangles obtained from removing the special point ∞ from a Tits generalised quadrangle
T3(O) of order (q, q2), where O is an ovoid of PG(3, q). Hence we have just three known excep-
tional partial quadrangles arising from (i) the Coxeter 11-cap (yielding a PQ(2, 10, 2)), (ii) the
Hill 56-cap (yielding a PQ(2, 55, 20)) and (iii) the so-called Hill 78-cap (yielding a PQ(3, 77, 14)).
(It is still an open problem whether there exists a 430-cap of PG(6, 4) or not.) For more details
on these caps, we refer the reader to Hill’s paper [19].

Lemma 7.1 (Hyperplane −→ Intriguing). Let Γ be a partial quadrangle with a linear repre-
sentation in PG(n, q), corresponding to a cap K of PG(n, q) ⊂ PG(n + 1, q). Let π be the set of
affine points in some hyperplane of PG(n + 1, q) different from π∞ = PG(n, q). Then π is an
intriguing set of Γ with parameters

((q − 1)|π ∩ K|, |K \ π|).

Proof. Let P be a point of π. Then for every point Q of π∩K, there are q−1 affine points
on QP , other than P , which are collinear with P . Hence in total we have (q − 1)|π ∩ K| other
points of the partial quadrangle collinear with P . Now suppose P is not in π. Then clearly a
point of K ∩ π is not on a line connecting P with a point of π. Since every line not in π must
meet π in a point, it follows that the intersection number is |K \ π| in this case. �

The example in the lemma above could either be a negative or positive intriguing set de-
pending on the intersection of the given hyperplane with the cap.

Lemma 7.2. Let I be an intriguing set with intersection numbers (h′1, h
′
2) of one of the three

exceptional partial quadrangles. Then we have the following information:

Coxeter 11-cap Hill 56-cap Hill 78-cap
Case Eigenvalue Size Eigenvalue Size Eigenvalue Size

Negative intriguing set −5 9h′2 −23 (27/5)h′2 −22 16h′2
Positive intriguing set 4 (27/2)h′2 4 (27/4)h′2 10 (128/7)h′2
Point set 22 243 112 729 234 4096

Table 8. Eigenvalues and sizes for intriguing sets of the exceptional partial quadrangles.

By Lemma 7.1, the affine points in a hyperplane will have associated eigenvalue q|π∩K|−|K|
and so |π ∩K| is 2 or 5 for the Coxeter 11-cap, 11 or 20 for the Hill 56-cap, and 14 or 22 for the
Hill 78-cap.
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Lemma 7.3 (Nice Secundum −→ Positive intriguing). Let Γ be a partial quadrangle with a
linear representation in PG(n, q), corresponding to a cap K of PG(n, q) ⊂ PG(n + 1, q). Let S
be a secundum of PG(n + 1, q) such that every hyperplane π containing S meets K in a constant
number of points. Then the affine points of S form an intriguing set of Γ with parameters

((q − 1)|S ∩ K|, |S ∩ π| − |S ∩ K|).

Proof. Let X be a point of S, and let C be a point of K. If C /∈ S, then there are no affine
points of S incident with XC, but if C ∈ S, then the affine points on the line XC are all in
S. So regardless of how S meets the cap K, it is clear that there are 1 + (q − 1)|K ∩ S| points
collinear with X in the associated partial quadrangle. So our first parameter is (q − 1)|K ∩ S|.
Now we look to the case that X is not a point of S, and again, let C be a point of K. Clearly
XC is not contained in S, but it may be disjoint from S or meet S in a point. Let π be the
hyperplane XS. Now if C ∈ S, then XC cannot meet S in another point since otherwise XC
would be contained in S. If C were not in π, then the unique point of intersection of XC with
π would be X, and hence XC would not contain any points of S. So suppose C ∈ π \ S. Now
XC is a line of π, and S is a hyperplane of π, thus XC meets S in a point. Moreover, it is
clear that this point of intersection is an affine point, and so the lines XC which meet S in a
point are precisely those for which C ∈ (π ∩K) \ (S ∩K). Hence, the affine points of S form an
intriguing set with second parameter equal to |S ∩ π| − |S ∩ K|. �

We remark that there are secunda of PG(5, 3) which meet the Coxeter 11-cap in 3 points,
and hence every hyperplane containing such a secundum must meet the Coxeter 11-cap in 5
points. Similarly, there are secunda of PG(6, 3) which meet the Hill 56-cap in 8 points, and such
that every incident hyperplane meets this cap in 20 points. Finally, we also have secunda of
PG(6, 4) for the Hill 78-cap which satisfy the hypotheses of Lemma 7.3. Below we give some
other examples which were found by computer.

7.1. Coxeter 11-cap. The permutation group induced on the Coxeter 11-cap is M11, and
the full stabiliser of the cap in PGL(6, 3) is 35 : (M11×2). We note that this group is also the full
automorphism group of the associated partial quadrangle. There were many negative intriguing
sets found by computer, and we report on those which were deemed interesting. There is a
negative intriguing set of size 45 admitting M10, and it is thus far, the only known negative
intriguing set of this size. Similarly, there are only two known negative intriguing sets of size
54, admitting groups of size 108 and 864 respectively. There is an intriguing set of size 81 which
is the complement of the union of three hyperplanes (with stabiliser of size 648). There are
at least two copies of M9 : 2 in the automorphism group; one meets the normal elementary
abelian subgroup 35 trivially, the other in a subgroup of order 32. These two groups give rise to
intriguing sets of size 63 and 108, the former is the complement of the disjoint union of negative
intriguing sets of size 45.

There is a positive intriguing set of size 27 which is the complement of the union of 11
hyperplanes, each meeting the cap in 5 points. Its stabiliser is D18 × S3. As noted above, there
are solids of PG(5, 3) meeting the cap in 3 points, and hence we have positive intriguing sets of
size 27. All known examples arise from a sequence of unions and complements of elements in
the orbits of these two examples of size 27.

7.2. Hill 56-cap. The permutation group induced on the Hill 56-cap is PSL(3, 4).2, and
the full stabiliser of the cap in PGL(7, 3) is 36 : (2.PSL(3, 4).2). We note that this group is also
the full automorphism group of the associated partial quadrangle. The only known negative
intriguing set found so far is the set of affine points contained in a hyperplane meeting the cap
in 11 points. As for positive intriguing sets, we have hyperplanes on 20 cap points, solids on 4
cap points, and thousands of other examples which are too numerous to list here. Most of these
had stabilisers of order 27 or 54.

7.3. Hill 78-cap. The permutation group induced on the Hill 78-cap is (13 : 6)× C3, and
the full stabiliser of the cap in PΓL(8, 4) is 37 : ((C117 : C3) : 2). We note that this group is
also the full automorphism group of the associated partial quadrangle. Probably due to the
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fact that this partial quadrangle has less symmetry than the other examples above, there were
many intriguing sets found, and none believed to be particularly interesting to the authors.
The smallest negative intriguing set found had size 512 (so with parameters (10, 32)), and the
smallest positive intriguing set had size 128 (parameters (17, 7)) and hence attains the minimum
size. Most of the intriguing sets found had their full stabiliser acting regularly on them.

8. Concluding remarks

We introduced the definition of an intriguing set via strongly regular graphs, and although
much of the interest so far has been on intriguing sets of generalised quadrangles and par-
tial quadrangles, it may perhaps also be interesting to investigate the intriguing sets of other
particular families of strongly regular graphs.
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