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Abstract

In this paper, we first prove some general results on the number of fixed points
of collineations of finite partial geometries, and on the number of absolute points
of dualities of partial geometries. In the second part of the paper, we establish the
number of isomorphism classes of partial geometries arising from a Thas maximal
arc constructed from a (finite) Suzuki-Tits ovoid in a classical projective plane. We
also determine the full automorphism group of these structures, and show that every
partial geometry arising from any Thas maximal arc is self-dual.

1 Introduction

Partial geometries were introduced by Bose [3] in 1963 as a geometric approach to many
strongly regular graphs. Although a number of classes and sporadic examples of (finite)
partial geometries are known, they do not seem to exist in great numbers. In order
to understand the structure of partial geometries better, it seems reasonable to try to
understand how collineations act on them. In particular, a general but pertinent question
is: what can we say about the fixpoints and fixlines of an arbitrary collineation? And can
one say something about the number of absolute points and lines of a duality of a partial
geometry? This paper intends to answer these questions.

The formulae we find for self-dual partial geometries lead us to take a closer look at the
examples of self-dual partial geometries. There are very few of these. The most prominent
examples are the partial geometries arising from a Thas maximal arc of a Desarguesian
projective plane constructed with a Suzuki-Tits ovoid. We show (1) that these examples
are really self-dual (in fact we show that this holds when considering any ovoid of PG(3, q),
with q even). Our methods then allow to (2) determine the full collineation groups of
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these geometries. As an application we show (3) that, for each Suzuki-Tits ovoid, there
are exactly two isomorphism classes of Thas maximal arcs in the classical plane, and
consequently also two isomorphism classes of corresponding partial geometries. Questions
(2) and (3) were also answered by Penttila, but remained unpublished, see [6]. We include
a proof for completeness’ sake. Question (1) was, as far as we know, never treated before
and open since 1974, when Thas introduced these geometries.

2 Generalities

A (finite) partial geometry is an incidence structure S = (P ,L, I), with an incidence
relation satisfying the following axioms

1. each point is incident with t + 1 lines (t ≥ 1) and two distinct points are incident
with at most one line;

2. each line is incident with s + 1 points (s ≥ 1) and two distinct lines are incident
with at most one point;

3. if x is a point and L is a line not incident with x, then there are exactly α
(α ≥ 1) points x1, x2, . . . , xα and α lines L1, L2, . . . , Lα such that xILiIxiIL, i ∈
{1, 2, . . . , α}.

We will say that such a partial geometry is of order (s, t, α). If |P | = v and |B| = b, then

v = (s+1)(st+α)
α

and b = (t+1)(st+α)
α

.

In a finite projective plane of order q, any non-void set of l points may be described as
an {l; n}-arc, where n 6= 0 is the largest number of collinear points in the set. For given
q and n ,n 6= 0, l can never exceed (n − 1)(q + 1) + 1, and an arc with that number of
points will be called a maximal arc (cfr. [2]). It is easily seen that a maximal arc meets
every line in either 0 or n points.

A near polygon is a partial linear space S = (P ,L, I) with the following property: if x is
a point and L is a line not incident with x, then there exists a unique point y incident
with L for which dist(x, y) is minimal. If the maximal distance between two elements is
n, then the near polygon is also called a near n-gon.

We will say that a near polygon is of order (s, t), if there are s + 1 points on every line
and t + 1 lines through every point.
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Let S = (P ,L, I) be a partial geometry of order (t, t, α). Then we define the double of
it as the following geometry: the point set is P ∪ L, the line set is the set of flags of S
(where a flag is an incident point-line pair), and incidence is the natural one.

In this way each partial geometry of order (t, t, α) gives rise to a unique near octagon,
that is, a near 8-gon, of order (1, t), for which the following property holds: for every two
points x and y which lie at distance 6 from each other, there exist precisely α paths of
length 6 from x to y, and for every two points x′ and y′ which lie at distance 4 from each
other there exists precisely 1 shortest path from x′ to y′. We will say that such a near
octagon is of order (1, t; α, 1). Conversely, each near octagon of order (1, t; α, 1) arises
from a partial geometry of order (t, t, α).

We will need the following lemma’s in Section 3. The proofs can be found in [10].

Let A be an adjacency matrix of the point graph of a partial geometry S of order (s, t, α)
with v points, let M = A + (t + 1)I, let θ be an automorphism of S of order n and let
Q = (qij) be the v × v matrix with qij = 1 if xθ

i = xj and qij = 0 otherwise.

Lemma 1 Suppose that ξ and ξ′ are both primitive dth roots of unity, with d a divisor of
n, and let λ be an eigenvalue of M . If at least one of ξλ and ξ′λ is an eigenvalue of QM ,
than they both are and they have the same multiplicity.

Lemma 2 Let ξ be an nth root of unity and λ an eigenvalue of M . Then the multiplicity
of ξλ as an eigenvalue of QM is equal to the multiplicity of ξλj as an eigenvalue of QM j,
with j = 2, 3, · · · .

3 A Benson-type theorem for partial geometries

We now introduce some further notation. Suppose that S = (P ,L, I) is a partial geometry
of order (s, t, α). It is convenient to use the notion of collinearity only for distinct points.
Let D be an incidence matrix of S. Then M := DDT = A + (t + 1)I, where A is an
adjacency matrix of the point graph of S. Let θ be an automorphism of S of order n and
let Q = (qij) be the v × v matrix with qij = 1 if xθ

i = xj and qij = 0 otherwise; so Q is
a permutation matrix. Because M = A + (t + 1)I, the eigenvalues of M are as follows
(cfr. [3]):
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eigenvalues of M multiplicity

0 m0 =
s(s+1−α)(st+α)

α(s+t+1−α)

(s + 1)(t + 1) m1 = 1

s + t + 1− α m2 =
(s+1)(t+1)st
α(s+t+1−α)

Theorem 3 Let S be a partial geometry of order (s, t, α) and let θ be an automorphism
of S. If f0 is the number of points fixed by θ and if f1 is the number of points x for which
xθ 6= x ∼ xθ, then for some integer k there holds

tr(QM) = k(s + t + 1− α) + (1 + s)(1 + t) = (t + 1)f0 + f1.

Proof Suppose that θ has order n, so that (QM)n = QnMn = Mn. It follows that
the eigenvalues of QM are the eigenvalues of M multiplied by the appropriate roots of
unity. Let J be the v × v matrix with all entries equal to 1. Since MJ = (1 + s)(1 + t)J ,
we have (QM)J = (1 + s)(1 + t)J , so (1 + s)(1 + t) is an eigenvalue of QM . Because
m1 = 1, it follows that this eigenvalue of QM has multiplicity 1. Further it is clear that
0 is an eigenvalue of QM with multiplicity m0. For each divisor d of n, let ξd denote
a primitive dth root of unity, and put Ud =

∑
ξi
d, where the summation is over those

integers i ∈ {1, 2, . . . , d− 1} that are relatively prime to d. Then Ud is an integer by [7].
For each divisor d of n, the primitive dth roots of unity all contribute the same number
of times to the eigenvalues ϕ of QM with |ϕ| = s + t + 1− α, because of Lemma 1. Let
ad denote the multiplicity of ξd(s + t + 1− α) as an eigenvalue of QM , with d|n, and ξd

a primitive dth root of unity. Then we have:

tr(QM) =
∑
d|n

ad(s + t + 1− α)Ud + (1 + s)(1 + t),

or

tr(QM) = k(s + t + 1− α) + (1 + s)(1 + t),

with k an integer.

Since the entry on the ith row and ith column of QM is the number of lines incident with
xi and xθ

i , we have tr(QM) = (1 + t)f0 + f1. Hence
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k(s + t + 1− α) + (1 + s)(1 + t) = (1 + t)f0 + f1,

with k an integer. �

Corollary 4 Let S be a partial geometry of order (s, t, α) and let θ be an automorphism
of S. If s, t and α − 1 have a common divisor distinct from 1, then there exists at least
one fixpoint or at least one point which is mapped to a point collinear to itself.

Proof Suppose that there are no fixpoints and no points which are mapped to a collinear
point, hence f0 = f1 = 0. Because of the previous theorem, k(s+ t+1−α)+(1+s)(1+ t)
has to be equal to 0. Hence k(s+ t+1−α)+ s+ t+ st = −1. But because s, t and α− 1
have a common divisor distinct from 1, there exists an integer m which divides s, t and
α − 1. Hence m divides k(s + t + 1− α) + s + t + st, but m does not divide −1 and we
have a contradiction. �

Corollary 5 Let S be a partial geometry of order (s, t, α) and let θ be an involution of
S. If s, t and α− 1 have a common divisor distinct from 1, then there exists at least one
fixpoint or at least one fixline.

Proof This follows immediately from the previous corollary because if there is a point
x which is mapped to a point collinear to x by the involution θ, then the line xxθ is a
fixline. �

We now have a look at the double of a partial geometry of order (t, t, α), which is a near
octagon of order (1, t; α, 1).

If the matrix M of this near octagon is defined as before, then it has the following
eigenvalues (cf. [4]):

eigenvalues of M multiplicity

0 m0 = 1

2t + 2 m1 = 1

1 + t m2 =
2(2−α)(t+α)
α(t+2−α)

t + 1 +
√

2t + 1− α m3 =
2(t+1)t

α(t+2−α)

t + 1−
√

2t + 1− α m4 =
2(t+1)t

α(t+2−α)
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Theorem 6 Let S be a near octagon of order (1, t; α, 1) and let θ be an automorphism
of S. If f0 is the number of points fixed by θ and f1 is the number of points x for which
xθ 6= x ∼ xθ, then for some integers k1, k2 and k3 there holds

k1(1 + t) + k2(1 + t +
√

2t + 1− α) + k3(1 + t−
√

2t + 1− α) + 2(1 + t) = (1 + t)f0 + f1.

Proof Suppose that θ has order n, so that (QM)n = QnMn = Mn. It follows that the
eigenvalues of QM are the eigenvalues of M multiplied by the appropriate roots of unity.
Let J be the v × v matrix with all entries equal to 1. Since MJ = 2(1 + t)J , we have
(QM)J = 2(1 + t)J , so 2(1 + t) is an eigenvalue of QM . Because m1 = 1, it follows that
this eigenvalue of QM has multiplicity 1. Further it is clear that 0 is an eigenvalue of QM
with multiplicity m0 = 1. For each divisor d of n, let ξd denote a primitive dth root of
unity, and put Ud =

∑
ξi
d, where the summation is over those integers i ∈ {1, 2, . . . , d−1}

that are relatively prime to d. Then Ud is an integer by [7]. For each divisor d of n, the
primitive dth roots of unity all contribute the same number of times to the eigenvalues ϕ of
QM with |ϕ| = 1+ t+

√
2t + 1− α and also the primitive dth roots of unity all contribute

the same number of times to the eigenvalues ϕ′ of QM with |ϕ′| = 1 + t −
√

2t + 1− α,
because of Lemma 1. Let ad denote the multiplicity of ξd(1 + t +

√
2t + 1− α) and let bd

denote the multiplicity of ξd(1 + t−
√

2t + 1− α) as eigenvalues of QM , with d|n and ξd

a primitive dth root of unity. Then we have:

tr(QM) =
∑
d|n

ad(1 + t +
√

2t + 1− α)Ud +
∑
d|n

bd(1 + t−
√

2t + 1− α)Ud + 2(1 + t),

or

tr(QM) = k1(1 + t +
√

2t + 1− α) + k2(1 + t−
√

2t + 1− α) + 2(1 + t),

with k1 and k2 integers.
Since the entry on the ith row and ith column of QM is the number of lines incident with
xi and xθ

i , we have tr(QM) = (1 + t)f0 + f1. Hence

k1(1 + t +
√

2t + 1− α) + k2(1 + t−
√

2t + 1− α) + 2(1 + t) = (1 + t)f0 + f1,

with k1 and k2 integers. �

Theorem 7 Let S be a near octagon of order (1, t; α, 1) and let θ be an automorphism
of S. If f0 is the number of points fixed by θ, f1 is the number of points x for which
xθ 6= x ∼ xθ and f2 is the number of points for which dist(x, xθ) = 4, then for some
integers k1, k2 and k3 there holds
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k1(1 + t)2 + k2(1 + t +
√

2t + 1− α)2 + k3(1 + t−
√

2t + 1− α)2 + (2(1 + t))2 =
(2 + t)(1 + t)f0 + (2 + 2t)f1 + f2.

Proof Suppose that M , A and Q are defined as before. Suppose that θ has order n, so
that (QM2)n = QnM2n = M2n. It follows that the eigenvalues of QM2 are the eigenvalues
of M2 multiplied by the appropriate roots of unity. Since M2J = (2(1 + t))2J , we have
(QM2)J = (2(1 + t))2J , so (2(1+ t))2 is an eigenvalue of QM2. By Lemma 2 m1 = 1 and
it follows that this eigenvalue of QM2 has multiplicity 1. Further it is clear that 0 is an
eigenvalue of QM2 with multiplicity m0. For each divisor d of n, let ξd again denote a
primitive dth root of unity, and put Ud =

∑
ξi
d, where the summation is over those integers

i ∈ {1, 2, . . . , d − 1} that are relatively prime to d. Then Ud is an integer [7]. For each
divisor d of n, the primitive dth roots of unity all contribute the same number of times
to the eigenvalues ϕ, respectively ϕ′ and ϕ′′, of QM2 with |ϕ| = (t + 1 +

√
2t + 1− α)2,

respectively |ϕ′| = (t + 1−
√

2t + 1− α)2 and |ϕ′′| = (1 + t)2, because of Lemma 1. Let
ad denote the multiplicity of ξd(1 + t +

√
2t + 1− α)2, let bd denote the multiplicity of

ξd(1 + t−
√

2t + 1− α)2 and let cd denote the multiplicity of ξd(1 + t)2 as eigenvalues of
QM2, with d|n and ξd a primitive dth root of unity. Then we have:

tr(QM2) =
∑
d|n

ad(1 + t +
√

2t + 1− α)2Ud +
∑
d|n

bd(1 + t−
√

2t + 1− α)2Ud+∑
d|n

cd(1 + t)2Ud + (2(1 + t))2,

or

tr(QM2) = k1(1 + t)2 + k2(1 + t +
√

2t + 1− α)2 + k3(1 + t−
√

2t + 1− α)2 + (2(1 + t))2,

with k1, k2 and k3 integers. On the other hand we have

M = A + (1 + t)I
⇒ QM = QA + (1 + t)Q
⇒ tr(QM) = tr(QA) + (1 + t)tr(Q)
⇒ (1 + t)f0 + f1 = tr(QA) + (1 + t)f0

⇒ tr(QA) = f1.

The matrix A2 = (aij) is the matrix with (1 + t) along the main diagonal and on the
other entries we have aij = 1 if dist(xi, xj) = 4 and aij = 0 otherwise. Hence tr(QA2) =
(1 + t)f0 + f2. It follows that
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tr(QM2)
= tr(Q(A + (1 + t)I)2)
= tr(QA2) + 2(1 + t)tr(QA) + (1 + t)2tr(Q)
= (1 + t)f0 + f2 + 2(1 + t)f1 + (1 + t)2f0

= (2 + t)(1 + t)f0 + 2(1 + t)f1 + f2.

�

Theorem 8 Let S be a near octagon of order (1, t; α, 1) and let θ be a nontrivial auto-
morphism of S. If f0 is the number of points fixed by θ, f1 is the number of points x for
which xθ 6= x ∼ xθ, f2 is the number of points for which dist(x, xθ) = 4 and f3 is the
number of points for which dist(x, xθ) = 6, then for some integers k1, k2 and k3 holds

k1(1 + t)3 + k2(1 + t +
√

2t + 1− α)3 + k3(1 + t−
√

2t + 1− α)3 + ((1 + s)(1 + t))3 =
(3(1 + t)2 + (1 + t)3)f0 + (1 + 2t + 3(1 + t)2)f1 + 3(1 + t)f2 + αf3.

Proof Suppose that M , A and Q are defined as before. In the same way as in the proof
of Theorems 6 and 7 we can prove that tr(QM3) = k1(1+ t)3 +k2(1+ t+

√
2t + 1− α)3 +

k3(1 + t −
√

2t + 1− α)3 + (2(1 + t))3, with k1, k2 and k3 integers. On the other hand,
we can calculate that A3 = (aij) is the matrix with 0 along the main diagonal while on
the other entries we have aij = 1 + 2t if xi ∼ xj, aij = α if dist(xi, xj) = 6 and aij = 0
otherwise. Hence tr(QA3) = (1+2t)f1 +αf3. Because of the proof of Theorem 7 we know
that tr(QA2) = (1 + t)f0 + f2, tr(QA) = f1 and tr(Q) = f0. Hence

tr(QM3)
= tr(Q(A + (1 + t)I)3)
= tr(QA3) + 3(1 + t)tr(QA2) + 3(1 + t)2tr(QA) + (1 + t)3tr(Q)
= (1 + 2t)f1 + αf3 + 3(1 + t)((1 + t)f0 + f2) + 3(1 + t)2f1 + (1 + t)3f0

= (3(1 + t)2 + (1 + t)3)f0 + ((1 + 2t) + 3(1 + t)2)f1 + 3(1 + t)f2 + αf3.

�

Note that the integers k1, k2 and k3 in Theorems 6, 7 and 8 are the same by Lemma 2.

Suppose that we have a duality in the underlying partial geometry, then we know that
f0 = 0 and f2 = 0. Because of Theorems 6, 7 and 8 , we have the following equations:
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k1(1 + t) + k2(1 + t +

√
2t + 1− α) + k3(1 + t−

√
2t + 1− α) + 2(1 + t) = f1,

k1(1 + t)2 + k2(1 + t +
√

2t + 1− α)2 + k3(1 + t−
√

2t + 1− α)2 + (2(1 + t))2 =
(2 + 2t)f1,

k1(1 + t)3 + k2(1 + t +
√

2t + 1− α)3 + k3(1 + t−
√

2t + 1− α)3 + (2(1 + t))3 =
(1 + 2t + 3(1 + t)2)f1 + αf3.

Because f0 and f2 are 0, we know that f1 + f3 = 2(t+1)(α+t2)
α

. Hence:

k1 = 0,

k2 = −2(t+1)+f1

2
√

2t+1−α
,

k3 = −−2(t+1)+f1

2
√

2t+1−α
,

f3 = 2(t+1)(α+t2)
α

− f1.

So −2(t+1)+f1

2
√

2t+1−α
has to be an integer. In the case that 2t + 1 − α is not a square, this only

holds if f1 = 2(t + 1). Suppose that 2t + 1− α is a square, then f1 − 2(t + 1) should be a
multiple of 2

√
2t + 1− α. If α is odd, then f1 ≡ 1 + α mod 2

√
2t + 1− α. If α is even,

then f1 ≡ 1 + α +
√

2t + 1− α mod 2
√

2t + 1− α.

Corollary 9 If θ is a duality of a partial geometry of order (t, t, α), with 2t+1−α not a
square, then it has 1 + t absolute points and 1 + t absolute lines, and there are (1 + t)t2/α
points which are mapped to a line at distance 3 and (1 + t)t2/α lines which are mapped to
a point at distance 3.

Corollary 10 Suppose that θ is a duality of a partial geometry of order (t, t, α), with
2t + 1 − α a square. If α is odd, then it has (1 + α)/2 mod

√
2t + 1− α absolute

points and equally many absolute lines. If α is even, then it has (1 + α +
√

2t + 1− α)/2
mod

√
2t + 1− α absolute points and equally many absolute lines.

4 Partial geometries which arise from maximal arcs

We are able to construct a partial geometry from a maximal arc (cfr. [11]). Suppose
that we have a maximal {qn − q + n, n}-arc K (1 < n < q) of a projective plane π of
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order q. Define the points of the partial geometry S as the points of π which are not
contained in K. The lines of S are the lines of π which are incident with n points of
K and the incidence is the incidence of π. This gives us a partial geometry of order
(q − n, q − q/n, q − q/n− n + 1).

Consider an ovoid O and a 1-spread R of PG(3, 2m), m > 0, such that each line of R has
one and only one point in common with O. Let PG(3, 2m) be embedded as a hyperplane H
in PG(4, 2m) = P , and let x be a point of P\H. Call C the set of the points of P\H which
are on a line xy, with y ∈ O. Then the point set C is a maximal {23m−22m +2m, 2m}-arc
of the projective plane π defined by the 1-spread R (cfr. [11]). We will call such maximal
arcs Thas maximal arcs. As described above, we can construct a partial geometry pg(C)
from this arc C having order (22m − 2m, 22m − 2m, 22m − 2m+1 + 1).

An interesting example of this situation occurs when the spread is a regular spread (so
there arises a Desarguesian projective plane of order 22m) and the ovoid is a Suzuki-Tits
ovoid (hence the maximal arc is not a Denniston maximal arc; see [11]). In the following we
determine the isomorphism classes of such maximal arcs and of the corresponding partial
geometries. We also determine the full automorphism groups and correlation groups of
these structures.

In order to do so, and in particular in order to prove that the partial geometries are self-
dual, we first give an alternative description of the maximal arcs in a more homogeneous
setting.

Consider the projective space PG(5, q) and suppose that we have a regular spread S of
lines in this space. It is well known — and easy to see — that the lines of this spread can
be considered as the points of a projective plane PG(2, q2) while the 3-spaces of PG(5, q)
containing q2 + 1 spread lines are the lines of this projective plane. Fix such a 3-space
PG(3, q) and denote by L∞ the corresponding line of PG(2, q2). Let O be an ovoid in
PG(3, q) such that every point of O is incident with a unique line of S. Take a line L
of S outside PG(3, q) and a point x incident with L. Let PG(4, q) be the hyperplane
generated by PG(3, q) and x. Then there is a bijective correspondence β between the
points of PG(4, q) \PG(3, q) and the lines of S not in PG(3, q) given by containment. It is
also obvious that a 3-space distinct from PG(3, q) containing q2 +1 spread lines intersects
PG(4, q) in a plane π which on its turn intersects PG(3, q) in a member of S. Hence the
bijection β described above defines an isomorphism between the two models of PG(2, q2).

Using β, we now see that in PG(5, q), the spread lines corresponding to points of the Thas
maximal arc C defined by O and x are the elements of S not in PG(3, q) that meet a line
xp in a point, where p ∈ O.
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5 Collineations and dualities of the partial geometry

pg(C)

5.1 Duality problem

In this section we show that the partial geometry pg(C), with C a Thas maximal arc in
the Desarguesian projective plane PG(2, q), is self-dual.

Note that, for a given maximal arc C in any projective plane, the set of external lines
of C is a maximal arc C∗ in the dual projective plane, and it has the complementary
parameters, i.e., if C is a maximal {qn− q +n, n}-arc, then C∗ is a (dual) {qh− q +h, h}-
arc, with nh = q. In the case of a Thas maximal arc considered above, we see that
n = h = 2m.

So, in order to prove that the partial geometry related to a Thas maximal arc is self-dual,
it suffices to show that the corresponding Thas maximal arc is “self-dual”, i.e., a Thas
maximal arc C is projectively equivalent with the set C∗ of external lines in the dual
projective plane.

So let C be a Thas maximal arc in PG(2, q2), constructed as above using the ovoid O.
First of all, we remark that the set of tangent planes of O is an ovoid O∗ in the dual of
PG(3, q). Indeed, the set of tangent lines of O is the line set of a symplectic generalized
quadrangle W(q), which arises from a (symplectic) polarity ρ of PG(3, q). This symplectic
polarity maps each point of PG(3, q) onto the plane spanned by the lines of W(q) through
x. Hence it maps each point of O onto its tangent plane. Now it is also clear that O and
O∗ are isomorphic.

Next we consider the following construction of C. We dualize in PG(5, q) the construction
of PG(2, q2) outlined above. The line L not in PG(3, q) of the spread plays the role of
the space PG(3, q); the ovoid O, as a set of points in PG(3, q) is replaced by the set of
hyperplanes (which we will call the dual ovoid in the sequel) spanned by L and the tangent
planes to O in PG(3, q). The space PG(3, q) plays the role of L. The point x plays the role
of the hyperplane X generated by x and PG(3, q). The spread lines in PG(3, q) and the
3-spaces containing L and q2 + 1 spread lines are also interchanged. Let H be an element
of the dual ovoid. We claim that H contains a unique 3-space K containing L and q2 + 1
spread lines. Indeed, K is the 3-space generated by L and the spread line incident with
the point of O obtained by intersecting the tangent plane of O corresponding to H with
O. Now, interpreting the Thas maximal arc in this dual setting in the PG(5, q)-model of
PG(2, q2), this maximal arc consists of those 3-spaces S containing q2 +1 spread lines and
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contained in a hyperplane which contains 〈x, π〉 but not L, where π is a tangent plane of
O. Then S contains the spread line T in π. It is clear that S has no point in common
with the cone xO, and hence defines a line of C∗.

Hence we have shown the following result.

Theorem 11 Let C be a Thas maximal arc in PG(2, q2), arising from an ovoid O in
PG(3, q) by considering the points of the cone xO not in PG(3, q). Then C is isomorphic
to its dual C∗, and there is a duality of PG(2, q2) that interchanges the point x with the
line L∞ = PG(3, q). In particular, the partial geometry which arises from this maximal
arc is self-dual.

We will now apply the Benson-type formulas to this example. We have a partial geometry
of order (s, t, α), with (cf. [11]):

s = t = 22m − 2m and α = 22m − 2m+1 + 1.

And the maximal arc is a {23m − 22m + 2m, 2m}-arc. Hence 2t + 1− α = 22m, which is a
square. In this case α is odd, hence

f1 ≡ 1 + α mod 2m+1

≡ 1 + 22m − 2m+1 + 1 mod 2m+1

≡ 2 mod 2m+1.

We can conclude that if we have a duality in this partial geometry, then there will be at
least one absolute point and one absolute line.

5.2 Automorphism problem

Consider the construction which we described in Section 4. So we have a projective plane
PG(2, q2) and a maximal arc C. Consider the partial geometry which arises from this arc
and a collineation of this partial geometry. Now we will have a look at this collineation in
the projective plane. The points outside the maximal arc are permuted and also the lines
which intersect the maximal arc are permuted. Consider a line outside the maximal arc.
This is a set of q2 +1 points, with the condition that any two of them are non-collinear in
the partial geometry. Hence this line is mapped to a set B of q2 + 1 mutual not collinear
points. Consider a point z of B. From the foregoing, we deduce that every line containing
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z which intersects C non-trivially is a tangent line to B. Hence every point of the maximal
arc is a nucleus of B and because of Theorem 13.43 in [8] and the fact that |C| > q − 1,
B should be a line of the projective plane. Hence also the lines outside K and the points
inside K are permuted and incidence is preserved (because we look at external lines as
sets of points and at maximal arc points as sets of lines). We conclude that a collineation
of the partial geometry, which arises from C, induces a collineation of the projective plane
PG(2, q2).

So we have the following result.

Theorem 12 The collineation group of pg(C) is induced by the collineation group of
PG(2, q2).

Remark 13 The previous theorem holds for all maximal arcs and corresponding partial
geometries.

We will apply this theorem in the next section to give a description of the complete
correlation groups of the partial geometries arising from the maximal arcs in PG(2, q2)
related to the Suzuki-Tits ovoids. But first we determine the isomorphism classes of such
partial geometries.

5.3 Isomorphism problem

The arguments below will require that m > 1 (equivalently, q > 2). Henceforth, we
assume m > 1. At the end we make a remark about the case m = 1.

Consider again the projective space PG(5, q) and a regular spread of lines in this space.
Take a 3-space PG(3, q) containing q2 + 1 spread lines in this 5-space and take a Suzuki-
Tits ovoid O in this 3-space with the property that each point of O is on a unique spread
line. The tangent lines to O form the lines of a symplectic quadrangle W (q) (cf.[8]). The
lines of the spread which lie in this PG(3, q) are lines of W (q). Hence these lines form a
spread S of W (q).

The Suzuki-Tits ovoid determines a unique polarity ρ of W (q) (see [13]; here we require
q > 2). Hence we obtain a set of absolute lines which corresponds with ρ. This set of
lines forms a (Lüneburg-Suzuki-Tits) spread T .

When we take the intersection of the spread S and the spread T , then, by [1], see also [5]
we obtain two possibilities for the intersection number, namely
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q +
√

2q + 1 and q −
√

2q + 1.

It will turn out that the maximal arcs, which we obtain by taking a Suzuki-Tits ovoid,
and for which we obtain q +

√
2q + 1 as intersection number are not isomorphic to those

for which we obtain q−
√

2q + 1 as intersection number. To prove this, we determine the
collineation groups of each maximal arc. Now, by [1], the subgroup of PGL4(q) stabilizing
S and T is dihedral of order 4|S ∩ T |. Taking into account all generalized homologies
with center x and axis PG(3, q) in PG(4, q), one easily sees that the stabilizer of x and
L∞ inside the stabilizer of the maximal arc C in the group PGL2(q

2) : 2 (the extension of
order 2 is due to the unique involution of GF(q2), which is linear over GF(q) in PG(4, q)),
acting on PG(2, q2) is a group of order 4|S ∩ T |(q − 1) isomorphic to the direct product
of the dihedral group of order 4|S ∩ T | and a cyclic group of order q − 1. We now claim
that every collineation stabilizing C must fix x.

We will first prove the following lemma.

Lemma 14 Let O be a Suzuki-Tits ovoid in PG(3, q), q > 2, and let π be a plane that
intersects O in an oval O. Let T be the corresponding Lüneburg-Suzuki-Tits spread. If
q > 8 and p ∈ O, then O\{p} is no non degenerate conic minus a point. If q = 8 and
p ∈ O\{p′}, with p′ the point of O incident with the line of T in π, then O\{p} is no non
degenerate conic minus a point.

Proof By [12] 7.6.13 we can choose the coordinates such that O = {(1, 0, 0, 0)} ∪
{(aθ+2 + aa′ + a′θ, 1, a′, a) : a, a′ ∈ K}, with θ a Tits automorphism, i.e. (xθ)θ = x2,
∀x ∈ GF(q). Since all plane intersections play the same role, we can choose the plane

X3 = 0. The oval O is the point set of the algebraic curve C ′ : X0X
θ
1
−1

+ Xθ
2 = X3 = 0.

Let p ∈ O, q > 8 and assume, by way of contradiction that O\{p} is a non degenerate
conic C minus a point. Then C and C ′ have at least q common points. As q > 2θ, by
the Theorem of Bézout, C is a component of C ′. Hence O is a conic, contradiction. Next,
let q = 8, p ∈ O, p 6= p′, and assume, by way of contradiction, that O\{p} is a non
degenerate conic C minus a point. Here p′ = (1, 0, 0, 0) and O\{p′} is a conic C ′′ minus a
point. The conics C and C ′′ have at least 7 points in common, so coincide. Hence O is a
conic, a contradiction. �

Note that the previous lemma is also true for the infinite case.

Now, all lines of PG(2, q2) through x meet C in an affine Baer subline minus one point.
Consider a point z ∈ C, z 6= x, and let π be a plane through z and through a line of S\T .
Put C ′ = π ∩ C. Then the projection from x of C ′ onto PG(3, q) is a plane intersection
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of O minus a point of the Suzuki-Tits ovoid O satisfying the assumption of Lemma 14.
Hence C ′ is not a Baer subline minus a point in PG(2, q2). So, there are lines through
each other point of C meeting C in a set different from a Baer subline minus one point.
The claim that every collineation of PG(2, q2) stabilizing C must fix x is proved. By
Theorem 11 also L∞ must be fixed by such a collineation. Now one sees that the full
stabilizer of C is a group with a normal subgroup as described above, and corresponding
factor group a group of order m (corresponding to the field automorphisms of GF(q)).

This not only shows that the order of the full collineation group of C, and hence also
of pg(C), is equal to 4m|S ∩ T |(q − 1), q = 2m, but it also shows that the two partial
geometries related to the two different intersections are not isomorphic.

At last we show that two partial geometries pg(C) and pg(C ′) related to two maximal
arcs C and C ′ corresponding to respective Suzuki-Tits ovoids O and O′, for which the
corresponding respective spreads T and T ′ satisfy |S ∩ T | = |S ∩ T ′|, are isomorphic.

First we claim that for a given intersection S∩T (with T a Lüneburg-Suzuki-Tits spread),
T is the only Lüneburg-Suzuki-Tits spread intersecting S in S ∩ T . Indeed, we count the
number of all possible intersections of S with some Lüneburg-Suzuki-Tits spread that
occur. As above, it follows from [1] (see also [5]) that, for ε ∈ {+1,−1}, the intersection
of size q + ε

√
2q + 1 occurs at least

|PGL2(q
2)|

2(q + ε
√

2q + 1)
=

(q2 + 1)q2(q2 − 1)

2(q + ε
√

2q + 1)
=

1

2
(q − ε

√
2q + 1)(q2(q2 − 1)

times. Hence, in total, we have at least (q +1)q2(q2− 1) possible intersections that occur.
But this is equal to the index of the Suzuki group in the symplectic group, namely

q4(q4 − 1)(q2 − 1)

(q2 + 1)q2(q − 1)
,

which is precisely the number of Lüneburg-Suzuki-Tits spreads. Our claim follows.

Now since every two intersections of the same size can be mapped onto each other, while
preserving S, and there are unique Suzuki-Tits ovoids corresponding with them, we con-
clude that the corresponding maximal arcs are isomorphic.

Hence we have shown:

Theorem 15 There are exactly two isomorphism classes of partial geometries pg(C) in
PG(2, 2m), where C is a Thas maximal arc in PG(2, q2) corresponding to a Suzuki-Tits
ovoid (with m > 1 odd). Each such partial geometry is self-dual and each collineation and
duality of pg(C) is induced by a collineation or duality of the projective plane PG(2, q2).

The size of the full correlation group is 8m(2m + ε2
m+1

2 + 1)(2m − 1), with ε ∈ {+1,−1}.
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Remark 16 If q = 2, then any maximal arc in PG(2, 4) is a hyperoval obtained by
adding the nucleus to a conic. The corresponding partial geometry is the unique gener-
alized quadrangle of order (2, 2), which is isomorphic to W(2). Also in this case, the full
collineation group and correlation group is induced by the collineation and correlation
group of PG(2, 4), see for instance [9].
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