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Abstract

We show that a 3-spherical building in which each rank 2 residue is connected
far away from a chamber, and each rank 3 residue is simply 2-connected far away
from a chamber, admits a twinning (i.e., is one half of a twin building) as soon as
it admits a codistance, i.e., a twinning with a single chamber.

1 Introduction

Twin buildings have been introduced by M. A Ronan and J. Tits in the late 1980’s. Their
definition is motivated by the theory of Kac-Moody groups over fields. Kac-Moody groups
are infinite-dimensional generalizations of Chevalley groups and the buildings associated
with the latter are spherical. Spherical buildings have been classified by J. Tits in [Ti74].
This classification relies heavily on the fact that there is an opposition relation on the
set of chambers of a spherical building. The idea in the definition of a twin building is
to extend the notion of an opposition to non-spherical buildings: instead of taking one
building, one starts with two buildings B+,B− of the same type and defines an opposition
relation between the chambers of the two buildings in question. Technically, this is done
by requiring a twinning function between the chamber sets of the two buildings which
takes its values in the Weyl group W . Two chambers x, y of B+ and B− are then defined
to be opposite, if their twinning is the idendity in W .

There are variations of the idea of a twinning. For instance, one can introduce ‘by
restriction’ a twinning between one chamber of B+ and the building B−, seen as an
application from the set of chambers of B− to the Weyl group. A function from the set
of chambers of a building B to its Weyl group and satisfying similar properties to those
of this ‘twinning to a chamber’ will be called a codistance on B. This idea occurs at
various places in the literature (see for instance [Mu98] and [Ro08]). In particular, [Ro08]
is dealing with the question to which extent the existence of a codistance of a building B
restricts its structure. The main result of the present paper ensures that any 3-spherical
building admitting a codistance and satisfying some local condition is in fact one ‘half’
of a twin building. In particular, it is already known if its diagram is simply laced and if
each panel contains at least 4 chambers (see the second remark below).
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Here is the precise statement of our main result. For the definitions and notations we
refer to Sections 2 and 3.

Main result: Let B− = (C−, δ−) be a thick building of 3-spherical type (W, S). Assume
that the following two conditions hold.

(lco) If R is a rank 2 residue of B− containing a chamber c, then the set of chambers
opposite c inside R is connected.

(lsco) If R is a rank 3 residue of B− containing a chamber c, then the set of chambers
opposite c inside R is simply 2-connected.

If there exists a codistance function f : C− → W , then there exists a building B+ = (C+, δ+)
and a mapping δ∗ : (C− × C+) ∪ (C+ × C−) → W such that the following two statements
hold.

a) (B−,B+, δ∗) is a twin building.

b) There exists a chamber c ∈ C+ such that δ∗(c, x) = f(x) for all x ∈ C−.

Remarks

On the conditions

By standard arguments there is no loss of generality if one restricts to the case where the
building in question has irreducible type. In the following remarks this is always assumed.

3-sphericity:If we drop the 3-sphericity condition (together with conditions (lco) and
(lsco)), the conclusion of our main result is not always true. Indeed it is fairly easy to
construct examples of buildings admitting a codistance which cannot be realized as a ‘half
of a twin building’. For instance, it is a trivial fact that each thick building B− of type
Ã1 admits a codistance f . Moreover, it can be shown that B− can be realized as a ‘half
of a twin building’ if and only if panels of the same type have the same cardinality (see
[AB99], [RT99]).

It is an interesting question to wonder which buildings admitting a codistance can or
not be realized as a ‘half of a twin building’. It is most likely that all right-angled buildings
admit a codistance, and that they can be realized as a ‘half of a twin building’ if and only
if panels of the same type have the same cardinality. If there are finite entries different
from 2 in the diagram, the question becomes more delicate. Nevertheless, we expect a
behavior similar to the case of right-angled buildings if there are ‘enough’ infinities in the
diagram. Hence, for the conclusion of our main result to hold, it is natural to assume
that the diagram is 2-spherical (i.e. there are no infinities in the diagram), in which case
panels of the same type always have the same cardinality. By the following remarks, the
conditions asked in addition to 3-sphericity are ‘almost always’ satisfied and therefore
it remains to consider 2-spherical buildings which are not 3-spherical. We have no idea
about what to expect in this case. On the one hand, the methods used in the proof of our
main result completely fail in this more general context. On the other hand we could not
manage to construct counter-examples in the Ã2-case — a case which is well understood
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in a lot of respects. In the opposite direction goes the result of [MVM08] which shows
that certain affine buildings do not admit any codistance.

Condition (lco): By the 3-sphericity assumption, all entries in the diagram are equal to
2, 3 or 4, if the rank is at least 3. It follows from an observation of Cuypers, see [Br93],
that Condition (lco) is satisfied if there is no rank 2 residue isomorphic to the building
associated with B2(2). In particular, Condition (lco) is satisfied if the diagram is simply
laced (i.e. if all entries are 2 or 3).

Condition (lsco): It follows from [Ti86] Corrolaire 2 that Condition (lsco) is satisfied if
the diagram is simply laced and if each panel contains at least 4 chambers. If there are
subdiagrams of type B2 we have to consider buildings of type B3. For those the relevant
results concerning Condition (lsco) may be found in [Ab96]. They imply that Condition
(lsco) is satisfied if each residue of type B3 comes from an embeddable polar space and
if each panel contains at least 17 chambers. The first condition is equivalent to the fact
that any A2-residue corresponds to a desargesian projective plane, and it is very likely
that it can be dropped. Moreover, it is expected that the bound 17 is not optimal.

In view of the remarks above, we have the following corollary of the main result:

Corollary 1: Let B− = (C−, δ−) be a thick, irreducible building of 3-spherical type (W, S)
whose rank is at least 3. Then the conclusions of the main result hold as soon as one of
the following conditions is satisfied:

(1) (W, S) is simply laced and all panels contain at least 4 chambers.

(2) Any residue of type A2 corresponds to a desarguesian projective plane and any panel
contains at least 17 chambers.

An application to simply-laced buildings

Let B = (B+,B−, δ∗) be an irreducible 3-spherical twin building of rank at least 3 whose
diagram is simply laced. Then it is known that B is Moufang (see for instance [AB08])
and therefore each of its spherical residues is Moufang. If we assume in addition that B
is 3-spherical, then all its A2-residues are (up to duality) all isomorphic to the building
associated to a projective plane over a division ring K. If there is a D4-subdiagram, then
K is commutative and those buildings have been classified in [Mu99a]; in particular, they
are of ‘algebraic origin’. If there is no D4-subdiagram, then B is of type An or Ãn for
some n ≥ 3. Those buildings are also known by [Ti74] and [Ti84] and of algebraic origin.
Putting together all these informations we get the following corollary of our main result.

Corollary 2: Let B− be an irreducible, 3-spherical and simply laced building of rank at
least 3 in which each panel contains at least 4 chambers. If B− admits a codistance, then
it is known and in particular of algebraic origin.

Content

The paper is organized as follows. In Section 2, we collect the definitions, known results
and preliminaries that we need. In Section 3, we prove some basic properties of a codis-
tance; most properties are known to be valid for a twinning, but we need to reprove them
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here for a codistance. In Section 4, we show that, under the assumptions of our Main
Result, the complex of chambers with codistance the identity is simply 2-connected (for
any codistance!). In Section 5, we construct bijections between panels that are contained
in a chamber of codistance the identity. These bijections will then be used in Section 6
to define codistances adjacent to a given codistance. Finally, in Section 7, we prove that
all the codistances thus obtained constitute the second half of a twinning, the first half
of which is the original building.

2 Preliminaries

In this section, we recall basic definitions and results.

Chamber systems

Let I be a set. A chamber system over I is a pair C = (C, (∼i)i∈I) where C is a set
whose elements are called chambers and where ∼i is an equivalence relation on the set of
chambers for each i ∈ I, such that if c ∼i d and c ∼j d then either i = j or c = d.

We refer to [AB08, DM07] for the definitions of i-adjacent chambers, galleries, J-
galleries J-residues, i-panels.

Two galleries G = (c0, . . . , ck) and H = (c′0, . . . , c
′
k′) are said to be elementary 2-

homotopic if there exist two galleries X, Y and two J-galleries G0, H0 for some J ⊂ I of
cardinality at most 2 such that G = XG0Y , H = XH0Y . Two galleries G, H are said
to be 2-homotopic if there exists a finite sequence G0, G1, . . . , Gl of galleries such that
G0 = G, Gl = H and such that Gµ−1 is elementary 2-homotopic to Gµ for all 1 ≤ µ ≤ l.
The chamber system C is called simply 2-connected if it is connected and if each closed
gallery is 2-homotopic to a trivial gallery.

Coxeter systems

A Coxeter system is a pair (W, S) consisting of a group W and a set S ⊂ W such that
〈S〉 = W , s2 = 1W 6= s for all s ∈ S and such that the set S and the relations ((st)o(st))s,t∈S

constitute a presentation of W , where o(g) denotes the order of g.
Let (W, S) be a Coxeter system. The matrix M(S) := (o(st))s,t∈S is called the type

or the diagram of (W, S). For an element w ∈ W we put l(w) := min{k ∈ N | w =
s1s2 . . . sk where si ∈ S for 1 ≤ i ≤ k}. The number l(w) is called the length of w. For a
subset J of S we put WJ := 〈J〉 and we call it spherical if WJ is finite.

The following proposition collects several basic facts on Coxeter groups which can be
found in the usual standard references [Bo68] or [Hu90]. These facts will be used without
reference throughout the paper.

Proposition 2.1.: Let (W, S) be a Coxeter system.

a) For w ∈ W, s ∈ S we have {l(ws), l(sw)} ⊂ {l(w)− 1, l(w) + 1}.
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b) For w ∈ W, s, t ∈ S with l(sw) = l(w) + 1 = l(wt) we have l(swt) = l(w) + 2 or
swt = w.

c) For J ⊂ S the pair (WJ , J) is a Coxeter system and if lJ : WJ → N is its length
function, then lJ = l |WJ

.

d) Let w ∈ W and J ⊂ S. Then there exists a unique element wJ ∈ wWJ such that
l(wJt) = l(wJ) + 1 for all t ∈ J . Moreover, we have l(x) = l(wJ) + lJ(w−1

J x) for all
x ∈ wWJ .

e) If J ⊂ S is spherical, then there is a unique element rJ ∈ WJ such that l(rJw) +
l(w) = l(rJ) for all w ∈ WJ ; the element rJ is a non-trivial involution if J 6= ∅.

f) Let w ∈ W and let J ⊂ S be spherical. Then there exists a unique element wJ ∈
wWJ such that l(wJt) = l(wJ)−1 for all t ∈ J and we have wJ = wJrJ . Moreover we
have l(x) = l(wJ)−lJ((wJ)−1x) for all x ∈ wWJ ; in particular, l(wJ)+l(rJ) = l(wJ).

Buildings

Let (W, S) be a Coxeter system. A building of type (W, S) is a pair B = (C, δ) where C
is a set and where δ : C × C → W is a distance function satisfying the following axioms
where x, y ∈ C and w = δ(x, y):

(Bu 1) w = 1 if and only if x = y;

(Bu 2) if z ∈ C is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws, and if, furthermore,
l(ws) = l(w) + 1, then δ(x, z) = ws;

(Bu 3) if s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

For a building B = (C, δ) we define the chamber system C(B) = (C, (∼s)s∈S) where
two chambers c, d ∈ C are defined to be s-adjacent if δ(c, d) ∈ 〈s〉. The rank of a building
B of type (W, S) is |S|.

In this paper all buildings are assumed to be of finite rank and thick (which means that
for any s ∈ S and any chamber c ∈ C there are at least three chambers being s-adjacent
to c).

For any two chambers x and y we set l(x, y) = l(δ(x, y)). We say that a gallery
x0, x1, . . . , xn is minimal if n = l(x0, xn).

In the following proposition we collect several basic facts about buildings. We refer to
[Ro89] and [We03] for the details.

Proposition 2.2.: Let (W, S) be a Coxeter system and let B = (C, δ) be a building of
type (W, S).

a) The chamber system C(B) = (C, (∼s)s∈s) uniquely determines B; in other words,
the s-adjacency relations on C determine the distance function δ.

b) For c ∈ C and J ⊂ S we have RJ(c) = {x ∈ C | δ(c, x) ∈ WJ}.
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c) If d : C × C → N is the numerical distance between two chambers in (C, (∼s)s∈s),
then d = l.

d) Let c ∈ C and let R ⊂ C be a J-residue for some J ⊂ S. Then there exists a
unique chamber x ∈ R such that δ(c, x) = (δ(c, x))J . Moreover, for all y ∈ R one
has δ(c, y) = δ(c, x)δ(x, y) and in particular, l(c, y) = l(c, x) + l(x, y).

Given c ∈ C and a J-residue R of B as in Assertion d) of the previous proposition,
then the chamber x of its statement is called the projection of c onto R and it is denoted
by projR c.

Given two residues R and R′, we define projR R′ by the set {projR c|c ∈ R′}.
Two residues R1 and R2 of a building are called parallel if projR1

: R2 → R1 and
projR2

: R1 → R2 are adjacency-preserving bijections inverse to each other.
The following proposition can be found in [DS87].

Proposition 2.3.: Let R,Q be two residues of a building. Put projR Q := {projR x | x ∈
Q}. Then the following holds:

a) projR Q is a residue contained in R.

b) If R′ := projR Q and Q′ := projQ R are parallel.

Let R be a spherical J-residue of a building of type (W, S). Two chambers x, y of R
are opposite in R whenever δ(x, y) = rJ . Two residues R1 of type K1 and R2 of type
K2 in R are opposite in R if R1 contains a chamber opposite to a chamber of R2 and if
K1 = rJK2rJ .

The following statement is an easy consequence of Theorem 3.28 of [Ti74].

Proposition 2.4.: Let R be a spherical J-residue of a building of type (W, S) and let
R1, R2 be two residues opposite in R. Then R1 and R2 are parallel.

This last proposition is Lemma 2.6 in [CM06].

Proposition 2.5.: Let RI , RJ , RK be residues of respective type I, J, K of a building of
type (W, S). Assume that RI ⊆ RJ . Then we have projRI

RK = projRI
projRJ

RK.

Twin buildings

Let B+ = (C+, δ+),B− = (C−, δ−) be two buildings of the same type (W, S), where (W, S)
is a Coxeter system. A twinning between B+ and B− is a mapping δ∗ : (C+ × C−) ∪
(C− × C+) → W satisfying the following axioms, where ε ∈ {+,−}, x ∈ Cε, y ∈ C−ε and
w = δ∗(x, y):

(Tw 1) δ∗(y, x) = w−1;

(Tw 2) if z ∈ C−ε is such that δ−ε(y, z) = s ∈ S and l(ws) = l(w)− 1, then δ∗(x, z) = ws;

(Tw 3) if s ∈ S, there exists z ∈ C−ε such that δ−ε(y, z) = s and δ∗(x, z) = ws.
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A twin building of type (W, S) is a triple (B+,B−, δ∗) where B+,B− are buildings of
type (W, S) and where δ∗ is a twinning between B+ and B−.

Here is a lemma the proof of which is left to the reader (it follows directly from the
definition above and an easy induction on the length of δ+(x, y)).

Lemma 2.6.: Let ((C+, δ+), (C−, δ−), δ∗) be a twin building of type (W, S). Let x, y ∈ C+

and z ∈ C− be such that δ+(x, y) = δ∗(x, z). Then y and z are opposite. In particular, if
xop = yop, then x = y.

3 Codistance

In this section, we take (W, S) a Coxeter system and B = (C, δ) a building of type (W, S).

Definition 3.1.: A codistance on B is a function f : C → W such that, for all s ∈ S and
P an s-panel of C, there exists w ∈ W with f(x) ∈ {w,ws} for all x ∈ P and P contains
a unique chamber with f -value the longest word of the two.

As an example, if B is half of a twin building and x is a chamber in the other half, the
twinning to x is a codistance on B.

Lemma 3.2.: Let R be a J-residue of B and x be a chamber of R. Then the image of f
restricted to R is f(x)WJ .

Proof: It is obvious by the definition of f that the image is contained in f(x)WJ . Let
w be a word of WJ written as a reduced word as s1s2 . . . sk. Using the fact that for all
s ∈ J and all chamber y ∈ R, there exists at least one chamber s-adjacent to y with
f -value f(y)s, it is easy to prove (by induction on k) that there exists a chamber in R
with f -value f(x)w. 2

Proposition 3.3.: Let R be a spherical J-residue. Then there exists a unique chamber c
in R such that l(f(c)) > l(f(y)) for all y ∈ R \ {c}. This unique chamber will be denoted
by projR f . Moreover for all y ∈ R we have f(y) = f(c)δ(c, y).

Proof: Let y be a chamber in R and w := f(y). By Lemma 3.2, f takes on R its values
in wWJ . Since R is spherical, it is well-known that wWJ contains a unique longest word
wJ . Moreover l(x) = l(wJ)− l((wJ)−1x) for all x ∈ wWJ . By Lemma 3.2, there exists a
chamber c ∈ R with f(c) = wJ .

Let y be a chamber in R. The distance δ(c, y) is in WJ and so can be written as a reduced
word as t1t2 . . . tk. Therefore there is a gallery c = y0 ∼t1 y1 ∼t2 . . . ∼tk yk = y. Using the
fact that l(wJt1 . . . ti) = l(wJ)− i, it is easy to prove by induction that f(y) = wJδ(c, y).
Therefore l(f(y)) = l(wJ)− l(δ(c, y)) = l(f(c))− d(c, y) ≤ l(f(c)) with equality only for
y = c. 2

Proposition 3.4.: Let f be a codistance, let R be a J-residue for some J ⊆ S. Put
lf (R) := min{l(f(x)) | x ∈ R} and Af (R) := {x ∈ R | l(f(x)) = lf (R)}.
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a) Let x ∈ R. Then x ∈ Af (R) if and only if f(x) is the unique shortest word of
f(x)WJ . Moreover, if x, y ∈ Af (R), then f(x) = f(y).

b) Let y ∈ R. Then there exists x ∈ Af (R), such that f(y) = f(x)δ(x, y).

c) If J is spherical, then Af (R) is the set of all chambers opposite to projR f in R.

Proof: Let y ∈ R and put w := f(y).

By Lemma 3.2, {f(y) | y ∈ R} = wWJ . It is well known that there exists a unique
shortest element wJ ∈ wWJ . Moreover l(x) = l(wJ)+ l(w−1

J x) for all x ∈ wWJ . It follows
that Af (R) = {x ∈ R | f(x) = wJ}. This proves Part a) of the proposition.

Let now t1t2 . . . tk be a reduced representation of w−1
J w and let x = y0 ∼t1 y1 ∼t2

. . . ∼tk yk = y be a reduced gallery ending in y. Using the fact that l(wtktk−1 . . . ti+1) =
l(wJt1t2 . . . ti) = l(wJ) + i, it follows from an easy induction on k that x ∈ Af (R). By
construction δ(x, y) = t1t2 . . . tk = w−1

J w = f(x)−1f(y). This finishes Part b).

Let J be spherical. Then x ∈ Af (R) if and only if f(x) = wJ . Let c = projR f so that
f(c) = wJ as in Proposition 3.3. We have seen that f(x) = wJδ(c, x). Since wJ = wJrJ ,
where rJ is the unique longest word of WJ , we can conclude that x ∈ Af (R) if and only
if δ(c, x) = rJ , that is, if and only if x is opposite to c in R.

2

Definition 3.5.: For a codistance f , we denote by f op the set of chambers of C with
f -value 1W .

Lemma 3.6.: Let c be a chamber of C. Then a shortest gallery from c to a chamber in
f op has length l(f(c)).

Proof: It is obvious from the definition of codistance that no chamber at distance
strictly less than l(f(c)) from c can be in f op. Now by Proposition 3.4 with J = S, there
exists x ∈ Af (C) = f op such that f(c) = δ(x, c). Hence a minimal gallery from c to x will
have length l(f(c)). 2

For c ∈ C, we define f op
c = {x ∈ f op|δ(x, c) = f(c)}, that is the set of chambers of f op

closest to c, which is non-empty, by Lemma 3.6.

Lemma 3.7.: The following statements are equivalent:

a) the chamber x is in f op
c ,

b) for any minimal gallery x = x0, x1 . . . , xn = c we have l(f(xi)) = i for all 0 ≤ i ≤ n,

c) there exists a minimal gallery x = x0, x1 . . . , xn = c with l(f(xi)) = i for all 0 ≤ i ≤
n.
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Proof: Assume x ∈ f op
c . Let x = x0, x1 . . . , xn = c be any minimal gallery from x to

c. Since δ(x, c) = f(c), n = l(f(c)). By the axioms of codistance, the f -values of two
adjacent chambers are either equal or have length difference one, hence we must have
l(f(xi)) = l(f(xi−1)) + 1 for all 1 ≤ i ≤ n, which implies b).

Obviously b) implies c).

Assume that there exists a minimal gallery x = x0, x1 . . . , xn = c with l(f(xi)) = i
for all 0 ≤ i ≤ n. Then l(f(x)) = 0, so f(x) = 1W . Assume that f(xi) = δ(x, xi), then
f(xi+1) = δ(x, xi+1). Indeed xi ∼si

xi+1 for some si ∈ S and so f(xi+1) = f(xi) or sif(xi).
Since l(f(xi+1)) 6= l(f(xi)), we are in the second case and f(xi+1) = siδ(x, xi) = δ(x, xi+1).
This proves by induction that f(xi) = δ(x, xi) for all 0 ≤ i ≤ n, and so f(c) = δ(x, c),
which yields a). 2

Lemma 3.8.: Let x ∈ C and w ∈ W such that l(f(x)w) = l(f(x)) + l(w). Then there
exists a unique chamber c of C with f(x)−1f(c) = w = δ(x, c).

Proof: Let s1s2 . . . sk be a reduced word for w. Since l(f(x)w) = l(f(x))+ l(w), we have
l(f(x)s1s2 . . . si) = l(f(x)) + i = 1 + l(f(x)s1s2 . . . si−1). Consider the s1-panel on x, it
follows from the axioms of codistance that this panel contains a unique chamber with f -
value f(x)s1, namely the projection of f on it. Continuing by induction on k, we can easily
build a unique gallery x = x0 ∼s1 x1 ∼ s2 . . . ∼sk

xk = c such that f(xi) = f(x)s1s2 . . . si

for all i. Hence w = δ(x, c) and f(c) = f(x)w, and so c exists.

Assume there exists another chamber c′ with f(x)−1f(c′) = w = δ(x, c′). Hence there
exists a minimal gallery x = x′

0, x
′
1 . . . , x′

k = c′ with l(f(xi)) = f(x) + i for all 0 ≤ i ≤ k,
of type t1, t2, . . . , tk where t1t2 . . . tk = w. On the other hand, since δ(x, c) = w, there is a
minimal gallery of type t1, t2, . . . , tk from x to c. Because f has to lengthen at each step,
we see by induction that this gallery is exactly x = x′

0, x
′
1 . . . , x′

n = c′, and so c = c′. 2

Lemma 3.9.: Let R be a residue of B and c a chamber of R. If x ∈ f op
c then projR x ∈

Af (R) and l(δ(x, projR x)) = lf (R).

Proof: Let J be the type of R and let w = f(c) = δ(x, c). We have l(w) = l(wJ) +
l(w−1

J w). Hence, if s1s2 . . . sk is a reduced word for wJ and sk+1sk+2 . . . sn is a reduced
word for w−1

J w ∈ WJ , then s1s2 . . . sn is a reduced word for w. Consider the gallery
x = x0 ∼s1 x1 ∼s2 . . . ∼sn xn and such that l(f(xi)) = i. Then f(xi) = s1s2 . . . si and in
particular f(xn) = w. By construction we also have δ(x, xn) = w. A chamber satisfying
those two conditions is unique by Lemma 3.8 and therefore xn = c. As w−1

J w ∈ WJ ,
si ∈ WJ for i ≥ k + 1, and so xi ∈ R for i ≥ k. Since l(δ(x, xk)) = l(wJ), which is the
shortest possible for a chamber in R, hence xk = projR x and xk ∈ Af (R) by Proposition
3.4. Moreover δ(x, xk) = f(xk) = wJ = lf (R). 2

Lemma 3.10.: The set f op determines uniquely f .

Proof: Assume there exists a codistance f ′ 6= f on B with f ′ op = f op. Then consider c
at minimal distance from f op under the condition that f ′(c) 6= f(c). Of course, c is not
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in f op. Let c = c0, c1, . . . , cm be a shortest gallery from c to f op. This minimal gallery
has length l(f(c)) by Lemma 3.6. It is also a shortest gallery to f ′ op, and so has length
l(f ′(c)). Therefore l(f(c)) = l(f ′(c)). Now c1 is closer to f op than c, and so f(c1) = f ′(c1).
By the definition of codistance f(c) = f(c1) or f(c1)t (where t is such that c0 ∼t c1). Idem
for f ′. Since l(f(c)) = l(f ′(c)), it implies that f(c) = f ′(c). This contradiction proves
that f = f ′. 2

4 Simple connectedness of f op

In this section we will apply a result proved in [DM07] using filtrations.
Let I be a set and let C = (C, (∼i)i∈I) be a chamber system over I. In the following

we denote the set of non-negative integers by N and the set of positive integers by N0.
A filtration of C is a family F = (Cn)n∈N of subsets of C such that the following holds.

(F1) Cn ⊂ Cn+1 for all n ∈ N,

(F2)
⋃

n∈N Cn = C,

(F3) for each n > 0 if Cn−1 6= ∅ then there exists an index i ∈ I such that for each
chamber c ∈ Cn there exists a chamber c′ ∈ Cn−1 which is i-adjacent to c.

A filtration F = (Cn)n∈N is called residual if for each ∅ 6= J ⊂ I and each J- residue
R the family (Cn ∩R)n∈N is a filtration of the chamber system R := (R, (∼j)j∈J).

For each x ∈ C we put |x| := min{λ ∈ N | x ∈ Cλ}. For a subset X of C we put
|X| := min{|x| | x ∈ X} and aff(X) := {x ∈ X | |x| = |X|}. Note that C0 = aff(C) if we
assume that C0 6= ∅.

We say that a filtration satisfies Condition (lco) if for every rank 2 residue R, aff(R)
is a connected subset of the chamber system R.

We say that a filtration satisfies Condition (lsco) if for every rank 3 residue R, aff(R)
is a simply 2-connected subset of the chamber system R.

Theorem 4.1.:[DM07] Suppose that the residual filtration F = (Cn)n∈N of the chamber
system C satisfies (lco), (lsco) and C0 6= ∅. Then the following are equivalent:

a) C is simply 2-connected;

b) (Cn, (∼i)i∈I) is simply 2-connected for all n ∈ N.

The filtration Ff

We choose an injection w 7→ |w| from W into N such that l(x) < l(y) implies |x| < |y|
for all x, y ∈ W and such that |1W | = 0. Such an injection exists because B is of finite
rank. Let f be a codistance. We define Cn by setting Cn := {x ∈ C | |f(x)| ≤ n}.

The goal of this subsection is to show the following proposition.

Proposition 4.2.: With the definitions above, the family Ff := (Cn)n∈N is a residual
filtration of the chamber system C.

10



Proof: It is obvious that Ff satisfies the axioms (F1) and (F2) and from this it follows
that these axioms also hold ‘residually’.

Let R be a J-residue of C with J 6= ∅ and let |R| := min{k | Ck ∩R 6= ∅}. It follows from
the definition of Ff and by Proposition 3.4 that aff(R) = C|R| ∩ R = Af (R) = {x ∈ R |
f(x) = f(x)J}.
Let 0 < n ∈ N be such that Cn−1 ∩ R 6= ∅. We have to show that there is t ∈ J with
the property that each chamber x in R ∩Cn is t-adjacent to a chamber x′ ∈ R ∩Cn−1. If
Cn ∩ R = Cn−1 ∩ R we can choose t ∈ J arbitrarily and set x′ := x for each x ∈ R ∩ Cn.
Suppose now that R ∩ Cn−1 is properly contained in Cn ∩ R, choose y ∈ R ∩ Cn \ Cn−1

and put w := f(y). Since | · | injects W into N, it follows from the definition of Ff

that f(y′) = w for all y′ ∈ Cn \ Cn−1. On the other hand, there exists x ∈ Af (R)
such that w = f(y) = f(x)δ(x, y) by Assertion b) of Proposition 3.4. As Cn−1 ∩ R 6= ∅
it follows that y 6∈ Af (R) and hence δ(x, y) ∈ WJ \ {1W}. Let t ∈ J be such that
l(δ(x, y)t) = l(δ(x, y)) − 1. As f(x) = f(x)J = wJ and δ(x, y) ∈ WJ it follows that
l(wt) = l(wJδ(x, y)t) = l(wJ) + l(δ(x, y)t) = l(wJ) + l(δ(x, y)) − 1 = l(w) − 1, by a
property of wJ . For any chamber z ∈ R ∩ Cn we choose a chamber z′ ∈ R as follows. If
z ∈ Cn−1 then we put z′ := z. If z ∈ Cn \ Cn−1 then we know that f(z) = w and we
choose z′ ∈ R such that z ∼t z′ 6= z. In the first case, it is obvious that z′ is in R ∩Cn−1;
in the second case we have f(z′) = wt by the definition of f , as wt is shorter than w. It
follows that |wt| < |w| = n and therefore z′ ∈ Cn−1. As t ∈ J we have also z′ ∈ R.

The case J = S is a special case of the consideration above. This shows that Ff satisfies
Axiom (F3). Hence Ff is a residual filtration. 2

Theorem 4.3.: Let B = (C, δ) be a building of type (W, S) and f a codistance on B.
Suppose that the following conditions are satisfied:

(3-sph.) If J ⊆ S is of cardinality at most 3, then J is spherical.

(lco) If J is of cardinality 2, if R ⊂ C is a J-residue and if x ∈ R, then the chamber
system ({y ∈ R | δ(x, y) = rJ}, (∼t)t∈J) is connected.

(lsco) If J is of cardinality 3, if R ⊂ C is a J-residue and if x ∈ R, then the chamber
system ({y ∈ R | δ(x, y) = rJ}, (∼t)t∈J) is simply 2-connected.

Then the chamber system f op is simply 2-connected.

Proof: Let Ff = (Cn)n∈N be the residual filtration of the previous subsection. Note
first that C0 = f op.

Given a spherical J-residue R of B, then aff(R) = Af (R) as we have proved above. By
Assertion c) of Proposition 3.4, we have therefore aff(R) = {x ∈ R | δ(projR f, x) = rJ}
for each such residue, where rJ is the longest word of WJ .

Now Ff satisfies (lco) and (lsco). As it is well-known that C is simply 2-connected (see
for instance Theorem (4.3) in [Ro89]), the claim follows now from Theorem 4.1. 2
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5 Bijections between panels

In this section, B = (C, δ) will be a building of type (W, S) satisfying the hypothesis of
Theorem 4.3 and f will be a codistance on B.

5.1 Preliminaries on panels

The following lemmas are easy.

Lemma 5.1.: Two panels P1 and P2 are parallel if and only if projP2
P1 = P2.

Proof: The first implication is obvious. Assume projP2
P1 = P2. By Proposition 2.3,

the projections of two residues on one another are parallel, therefore projP1
P2 = P1 and

P1 and P2 are parallel. 2

Lemma 5.2.: For two parallel panels P1 and P2 of type s1 and s2 respectively, we must
have s2 = w−1s1w where w := δ(x, projP2

x) does not depend on the choice of x in P1.
Conversely, if δ(x, y) = w, s2 = w−1s1w and l(s1w) = l(w) + 1, then the s1-panel on x is
parallel to the s2-panel on y.

Proof: It is well known that for w ∈ W and s1, s2 ∈ S such that l(s1w) = l(w) + 1 =
l(ws2), we have l(s1ws2) = l(w) + 2 or s1ws2 = w. The result follows easily. 2

The distance δ(x, projP2
x) between two parallel panels P1, P2 will be denoted by

δ(P1, P2).

Definition 5.3.: For s ∈ S, let Xs := {w ∈ W |w−1sw ∈ S and l(sw) = l(w) + 1}. For
w1, w2 ∈ Xs, we say that w1 ≺ w2 if and only if l(w−1

1 w2) = l(w2)− l(w1).

Lemma 5.4.: For w ∈ Xs and a given s-panel P , there exists an w−1sw-panel P ′ parallel
to P and with δ(P, P ′) = w. Let J be a spherical subset of S containing s and let rJ be
the longest word of WJ , then xJ := srJ is in Xs. Moreover, if w ∈ WJ is in Xs, then
w ≺ xJ .

Proof: The first statement is a corollary of Lemma 5.2. We have x−1
J sxJ = rJsrJ which

has length l(rJ) − l(srJ) = 1 and so is an element of S, and l(sxJ) = l(rJ) = l(xJ) + 1,
hence the second statement. Finally l(w−1xJ) = l(w−1srJ) = l(rJsw) = l(rJ) − l(sw) =
l(rJ)− l(w)− 1 = l(xJ)− l(w), hence the third statement. 2

Definition 5.5.: Let Γ be the graph whose vertices are the panels of B with panels
adjacent if there exists a rank 2 residue in which the two panels are opposite. For two
adjacent panels P, Q, there exists a unique rank 2 residue containing P and Q, that will be
denoted by R(P, Q). A path P0, P1, . . . Pk (without repetitions) in Γ is called compatible
if projR(Pi−1,Pi)

P0 = Pi−1 for all 1 ≤ i ≤ k. The number k is the length of that path.
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Lemma 5.6.: Let P, Q be two parallel panels of B and R be a residue containing Q. Then
projR P is a panel parallel to P and to Q. Moreover, if P = P0, P1, . . . Pk = projR P and
projR P = T0, T1, . . . Tl = Q are compatible paths in Γ, the second one contained in R,
then P = P0, P1, . . . Pk = T0, T1, . . . Tl = Q is a compatible path in Γ.

Proof: The projection of a residue on a residue is a residue, so P ′ := projR P is
either a chamber or a panel. Since projQ = projQ projR by Proposition 2.5, we have
Q = projQ P = projQ P ′, and so P ′ cannot be reduced to a chamber and is parallel
to Q by Lemma 5.1. We must have P ′ parallel to projP R by Proposition 2.3. Since
projP R ⊇ projP Q = P , we have projP R = P and P ′ is parallel to P .

We already have projR(Pi−1,Pi)
P0 = Pi−1 for all 1 ≤ i ≤ k by hypothesis. For all 1 ≤ i ≤ l,

we have projR(Ti−1,Ti)
P = projR(Ti−1,Ti)

projR P = Ti−1 by Proposition 2.5 and because
T0, T1, . . . , Tl is a compatible path. This concludes the proof. 2

Lemma 5.7.: Two panels are parallel if and only if there exists a compatible path in Γ
from one to the other.

Proof: The right to left implication will be proved by an induction on the length of
the path. If the path has length one, the result is obvious since opposite panels in a
residue are parallel. Assume we have proved the result for all paths of length strictly
less than k, and assume P = P0, P1, . . . Pk = Q is a compatible path in Γ. By induction
P is parallel to Pk−1. We have projQ = projQ projR(Pk−1,Pk) by Proposition 2.5, and so
projQ P = projQ Pk−1 which is equal to Q since Pk−1 and Q are parallel. By Lemma 5.1,
that means P and Q are parallel.

The left to right implication will be proved by an induction on the distance between the
two panels. Let P, Q be two parallel panels. If l(δ(P, Q)) = 0 then P = Q and the trivial
path P = P0 = Q is compatible. Suppose l(δ(P, Q)) = l > 0 and the result is proved for
all parallel panels at distance strictly less than l. Choose c ∈ P and let d = projQ c. There
exists a chamber e adjacent to d such that l(δ(c, d)) = l(δ(c, e)) + 1. Let R be the unique
rank 2 residue containing Q and e. By Lemma 5.6, projR P = Q′ is a panel parallel to P
and to Q. Since there is a chamber in R closer to P than d, Q cannot be equal to Q′ and
so they are opposite in R (property of rank 2 residues). Moreover l(δ(P, Q′)) < l(δ(P, Q)).
By induction, there exists a compatible path P = P0, P1, . . . Pk = Q′. Since R = R(Q′, Q),
the path P = P0, P1, . . . Pk, Q is compatible. 2

Lemma 5.8.: Let R be a spherical rank 3 residue in B and P , Q be two parallel panels
in R. If there is more than one compatible path contained in R from P to Q, then P and
Q are opposite in R and there are exactly two such paths. Moreover these two paths have
the same length.

Proof: Let P = P0, P1, . . . Pk = Q and P = P ′
0, P

′
1, . . . P

′
l = Q be two compatible paths

in R, and let Q′ = Pk−i = P ′
l−i such that Pk−j = P ′

l−j for all 0 ≤ j ≤ i and Pk−i−1 6= P ′
l−i−1.

Therefore R(Pk−i−1, Pk−i) 6= R(P ′
l−i−1, P

′
l−i).

Choose c ∈ P and let d = projQ′ c. Suppose that P and Q′ are not opposite in R, so that
there exists a chamber e not in Q′ adjacent to d and such that l(δ(c, e)) = l(δ(c, d)) + 1.
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Since there are only two rank 2 residues in R containing a given panel, the rank 2 residue
R′ containing Q′ and e must be either R(Pk−i−1, Pk−i) or R(P ′

l−i−1, P
′
l−i), without loss of

generality we can assume R′ = R(Pk−i−1, Pk−i). Then projR′ P = Pk−i−1 is opposite to Q′

in R′, in contradiction with the existence of e. Therefore P and Q′ are opposite. Since Q′

cannot be the projection of P on any rank 2 residue containing it, Q′ must be equal to
Q. Using this and Lemma 5.7 in the building R, we conclude that for two non-opposite
parallel panels of R, there is exactly one compatible path in R from one to the other.

Let P and Q be opposite in R and let R′ be a rank 2 residue in R containing Q. Then
there is exactly one compatible path P = P0, P1, . . . Pk = Q such that R′ = R(Pk−1, Pk).
Indeed Pk−1 = proj′R P is determined and there is only one compatible path between P
and Pk−1 since they are not opposite. Since there are two rank 2 residues containing Q
in R, there are exactly two compatible path in R from P to Q.

A spherical residue of rank 3 is of type A3, C3, H3, A1 ⊕ A1 ⊕ A1 or A1 ⊕ In. Knowing
the distance between two opposite panels in R and in all rank 2 residues of R, it is easy
to determine the length of compatible paths between opposite panels. A case by case
analysis easily yields that the two compatible paths between two opposite panels have the
same length. 2

Lemma 5.9.: Let P , Q be two parallel panels of B. Then all compatible paths from P to
Q have the same length.

Proof: We will prove this by induction on l(δ(P, Q)).

If l(δ(P, Q)) = 0, then P = Q and the trivial path P = P0 = Q is the only compatible
path from P to Q. Assume l(δ(P, Q)) = L > 0 and we have proved the result for all
parallel panels at distance strictly less than L. Take two compatible paths from P to
Q: P = P0, P1, . . . , Pk = Q and P = P ′

0, P
′
1, . . . , P

′
l = Q. If Pk−1 = P ′

l−1 = Q′, then
l(δ(P, Q′)) < L and so k − 1 = l − 1 and we can conclude.

Assume now Pk−1 6= P ′
l−1, so that R(Pk−1, Pk) 6= R(P ′

l−1, P
′
l ), and let R be the rank 3

residue containing those two rank 2 residues. Let Q′ be the projection of P on R. By
Lemma 5.6, Q′ is parallel to P and Q. Since Pk−1 and P ′

l−1 are not opposite Q′, by
Lemma 5.8, there is exactly one compatible path in R from Q′ to Pk−1, resp. P ′

l−1, they
will be denoted respectively by Q′ = T0, T1, . . . , Tm = Pk−1 and Q′ = T ′

0, T
′
1, . . . , T

′
n =

P ′
l−1. We have Pk−1 = projR(Pk−1,Pk) P = projR(Pk−1,Pk) projR P = projR(Pk−1,Pk) Q′, and

so Q′ = T0, T1, . . . , Tm, Pk = Q is a compatible path. By similar arguments, Q′ =
T ′

0, T
′
1, . . . , T

′
n, P

′
l = Q is also a compatible path. By Lemma 5.8, these two paths in

R must have the same length, and so m = n.

By Lemma 5.7, there is a compatible path from P to Q′, denoted by P = S0, S1, . . . , Sj =
Q′. By Lemma 5.6, the paths P = S0, S1, . . . , Sj = Q′ = T0, T1, . . . , Tm = Pk−1 and
P = S0, S1, . . . , Sj = Q′ = T ′

0, T
′
1, . . . , T

′
m = Pl−1 are both compatible of length j + m. On

the other hand P = P0, P1, . . . , Pk−1 and P = P ′
0, P

′
1, . . . , P

′
l−1 are also compatible paths.

Since l(δ(P, Pk−1)) < L and l(δ(P, P ′
l−1)) < L, we can use the hypothesis of induction,

and so k − 1 = j + m and l − 1 = j + m. We conclude that k = l. 2
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Definition 5.10.: We define the compatible distance between two parallel panels P and
Q to be the length of a compatible path joining them. It will be denoted by lc(P, Q).
Note, that the previous lemma shows that the compatible distance between two parallel
panels is well defined.

By standard arguments using convex hulls and apartments (which are however a bit
lengthy) one can prove the following.

Lemma 5.11.: Let w ∈ Xs and let P, P ′ be s-panels and Q, Q′ be w−1sw-panels such that
δ(P, Q) = w = δ(P ′, Q′). Then lc(P, Q) = lc(P

′, Q′).

Definition 5.12.: Let w ∈ Xs. Then we define its compatible length, denoted by lc(w)
to be the compatible distance between an s-panel P and an w−1sw-panel Q such that
δ(P, Q) = w.

5.2 Bijections

Definition 5.13.: We will say that a residue R is in f op, resp. f op
c , if it contains a

chamber in f op, resp. f op
c . For s ∈ S, let Pop

s (f), resp. Pop
s,c(f), be the set of all s-panels

in f op, resp. f op
c .

Notice that all chambers of a panel in f op are in f op except for one, namely projP f .

Proposition 5.14.: Let P ∈ Pop
s (f), w ∈ Xs and t = w−1sw. Let P ′ be a t-panel with

δ(P, P ′) = w. Then the following conditions are equivalent:

a) P ′ contains a chamber with f -value w;

b) f(x) ∈ {w,wt} for x ∈ P ′ and exactly one chamber of P ′ has f -value wt;

c) P ∈ Pop
s,x(f) for all chambers x of P ′;

d) P ∈ Pop
s,x(f) for some chamber x of P ′;

There exists exactly one panel P ′ satisfying those conditions, and it will be denoted by
π(P, w).

Proof: Conditions a) and b) are equivalent by the definition of a codistance. Assume
P ′ satisfies b). Let x be a chamber with f -value w in P ′. Then δ(projP x, x) = w = f(x).
Since projP x cannot be equal to projP f (otherwise the chamber with f -value wt would
be at distance l(w) from a chamber in f op), projP x ∈ f op

x and P ∈ Pop
s,x(f). Now let

z = projP ′ f be the unique chamber with f -value wt. If y is any chamber of P in fop,
δ(y, z) = wt, so y ∈ f op

z and P ∈ Pop
s,z(f). Obviously c) implies d). Now assume P ′

satisfies d), then P contains y ∈ f op and δ(y, x) = f(x). If y = projP x, then δ(y, x) = w,
otherwise δ(y, x) = sw = wt. In both cases, P ′ contains a chamber with f -value w.

We now prove the existence of such a panel. Let p be the unique chamber of P not in
f op (so f(p) = s). As l(f(p)w) = l(sw) = l(w) + 1, by Lemma 3.8, there exists a unique
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chamber c with sf(c) = w = δ(p, c). Let P ′ be the t-panel on c. By Lemma 5.2, P ′ is
parallel to P and δ(P, P ′) = w. It obviously satisfies a).

Now we want to show that P ′ is unique. Let Q be a t-panel with δ(P, Q) = w satisfying
b). Let x be the chamber of Q with f -value wt = sw = f(p)w. Obviously projP x = p,
so δ(p, x) = w. By Lemma 3.8, a chamber with that property is unique. Therefore x = c
and Q = P ′. 2

Lemma 5.15.: Let Q be a t-panel of B and let w be the shortest word of {f(x)|x ∈ Q}.
Suppose wtw−1 := s ∈ S. Then there exists an s-panel P ∈ Pop

s (f) such that Q = π(P, w).

Proof: Since w−1sw = t and l(sw) = l(wt) = l(w) + 1, we have w ∈ Xs. Let x be a
chamber of Q with f(x) = w. Let y ∈ f op

x so that δ(y, x) = w = f(x). Let P be the
s-panel on y. By construction P is a panel in Pop

s,x(f) which is parallel to Q by Lemma
5.2. Moreover δ(P, Q) = w, hence by Proposition 5.14 Q = π(P, w). 2

Definition 5.16.: For P, Q ∈ Pop
s (f) and w ∈ Xs, we put P ≡w Q if and only if

π(P, w) = π(Q, w). This is an equivalence relation on Pop
s (f). For P ≡w Q, we put

β(P, Q, w) the bijection from P to Q defined by projQ projπ(P,w).

Notice that β(Q,P, w)β(P, Q, w) = 1P and that, by construction, β(P, Q, w) maps
projP f onto projQ f via projπ(P,w) f .

Proposition 5.17.: Let w1, w2 ∈ Xs with w1 ≺ w2 and P, Q ∈ Pop
s (f) with P ≡w1 Q.

Then P ≡w2 Q and β(P, Q, w1) = β(P, Q, w2).

Proof: Let s1s2 . . . sl be a reduced word for w1 and k := l(w2). Since l(w−1
1 w2) =

l(w2) − l(w1), we can write w−1
1 w2 as the reduced word sl+1 . . . sk. Hence the word

s1s2 . . . slsl+1 . . . sk is a word for w2 and since it has length k, it is reduced. Let p, resp.
q, be the unique chamber of P , resp. Q, not in f op. Looking up the proof of Proposition
5.14, we see that π(P, w2) is uniquely determined by a chamber c with f(c) = sw2 and
δ(p, c) = w2. In the process, we built a gallery p = x0 ∼s1 x1 ∼ s2 . . . ∼sk

xk = c such
that f(xi) = ss1s2 . . . si. Notice that xl is the unique chamber at distance w1 from p
with f -value sw1. Similarly we can build a gallery q = x′

0 ∼s1 x′
1 ∼ s2 . . . ∼sk

x′
k = c′

to determine π(Q, w2), and x′
l is the unique chamber at distance w1 from q with f -value

sw1. Since P ≡w1 Q, we must have xl = x′
l and so xi = x′

i for all i ≥ l. Therefore c = c′

and so π(P, w2) = π(Q, w2). This proves the first statement.

¿From each chamber x of P , there exists a gallery of type s1s2 . . . sl to projπ(P,w1) x and a
gallery of type s1s2 . . . sk to projπ(P,w2) x. In both galleries, the i-th chamber is the unique
one with f -value s1s2 . . . si if f(x) = 1W and of f -value ss1s2 . . . si otherwise. Therefore
the first gallery is the beginning of the second one. We can use the same argument for Q.
Therefore we must have β(P, Q, w1) = β(P, Q, w2). 2

Theorem 5.18.: For any two s-panels P, Q in Pop
s (f), we can define a bijection β(P, Q)

from P to Q in such a way that the following hold for all P, Q, R ∈ Pop
s (f) :

a) β(P, P ) = 1P ;
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b) β(Q, P )β(P, Q) = 1P ;

c) β(Q, R)β(P, Q) = β(P, R);

d) β(P, Q)(projP f) = projQ f .

Proof:

For P, Q ∈ Pop
s (f), we say that they are t-adjacent, denoted by P ∼t Q, if there exist

p ∈ P ∩ f op and q ∈ Q∩ f op with p ∼t q. Let P ∼t Q, both in Pop
s (f). Let J = {s, t} and

R be the J-residue containing P and Q. Since R is spherical by the hypothesis on B, xJ :=
srJ ∈ Xs. Notice that π(P, xJ) is a panel opposite to P in R which contains a chamber
with f -value rJ . By Proposition 3.3, R contains only one such chamber, namely projR f .
Hence π(P, xJ) is the unique panel of type x−1

J sxJ = r−1
J srJ containing projR f . Similarly

π(Q, xJ) is the same panel. Therefore P ≡xJ
Q and we put β(P, Q) := β(P, Q, xJ). If

s = t, xJ = 1W , P = Q = π(P, xJ) and β(P, Q) = 1P .

As noticed above, β(P, Q) maps projP f onto projQ f .

Let P, Q ∈ Pop
s (f) and choose p ∈ P ∩ f op and q ∈ Q ∩ f op. By Theorem 4.3,

f op is connected, and so there exists a gallery γ from p to q contained in f op. If
γ = (x0 = p, x1, x2, . . . , xn = q), let Xi be the s-panel containing xi. By definition
those panels are in Pop

s (f) and Xi ∼ti Xi+1 for some ti ∈ S. We define β(γ, P, Q) :=
β(Xn−1, Q) . . . β(X1, X2)β(P, X1). By the above comment β(γ, P, Q) maps projP f onto
projQ f .

We will now show that if γ1 and γ2 are two galleries in f op from a chamber of P to a
chamber of Q, then β(γ1, P, Q) = β(γ2, P, Q). As β(P, P ) = 1P , we can assume γ1 and
γ2 start and finish with the same chamber. Hence this is equivalent to showing that for
a closed gallery γ in f op, β(γ, P, P ) = 1P .

By Theorem 4.3, f op is simply 2-connected. Therefore there exists a finite sequence of
elementary homotopies from the closed gallery γ to a trivial gallery based in p ∈ P such
that all intermediate galleries are contained in f op. Since two galleries differing by an
elementary homotopy are equal except in a rank 2 residue, it is enough to show that
β(γ, P, P ) = 1P for γ in a rank 2 residue in order to prove it in general.

Let γ = (x0, x1, x2, . . . , xn = x0) be a closed gallery in f op contained in a rank 2 residue
R of type {t, u} (where t or u could be equal to s). Let the Xi’s be defined as above.
Consider two consecutive chambers xi and xi+1. They are v-adjacent, where v ∈ {t, u}.
Let J := {s, v} and K = {s, t, u}, which are spherical by the hypothesis on B. Let R be
the K-residue containing x0. We have Xi ∼v Xi+1 and, as seen above Xi ≡xJ

Xi+1 and
β(Xi, Xi+1) = β(Xi, Xi+1, xJ). By Lemma 5.4, xJ ≺ xK , and so, by Proposition 5.17,
Xi ≡xK

Xi+1 and β(Xi, Xi+1) = β(Xi, Xi+1, xK). For all j = 0, 1, . . . , n− 1, π(Xj, xK) is
the panel of type x−1

K sxK containing projR f , which is opposite to Xj in R, we will denote
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it by π(R). We have

β(γ, X0, X0) = β(Xn−1, X0) . . . β(X1, X2)β(X0, X1)
= β(Xn−1, X0, xK) . . . β(X1, X2, xK)β(X0, X1, xK)
= projX0

projπ(R) . . . projX2
projπ(R) projX1

projπ(R)

= projX0
projπ(R) = 1X0

because projπ(R) projXi
= 1π(R). This completes the proof that β(γ1, P, Q) = β(γ2, P, Q)

for γ1 and γ2 two galleries in f op from a chamber of P to a chamber of Q. We put
β(P, Q) := β(γ, P, Q) for γ any gallery in f op from a chamber of P to a chamber of Q.

It is obvious that a), b) and c) are satisfied. Since d) is satisfied for adjacent panels, it
will be satisfied, by induction, for any two panels.

2

Theorem 5.19.: Let P, P ′ ∈ Pop
s (f) with P ≡w P ′ for w ∈ Xs. Then β(P, P ′) =

β(P, P ′, w).

Proof: This is obvious if w = 1W , so assume it is not the case. We will prove the result
by induction on lc(w). Let Q := π(P, w) = π(P ′, w) be a t-panel (i.e. w−1sw = t). By
Lemma 5.11, lc(P, Q) = lc(P

′, Q) = lc(w).

Assume first that lc(w) = 1, so that P and Q are opposite in a rank 2 J-residue R. The
panels P ′ and Q are also opposite in the same residue R. Hence w = xJ = srJ . By
the hypothesis on B, aff(R) = Af (R) = R ∩ f op is connected. Choose p ∈ P ∩ f op and
p′ ∈ P ′ ∩ f op. There exists a gallery γ from p to p′ contained in aff(R). If γ = (x0 =
p, x1, x2, . . . , xn = p′), let Xi be the s-panel containing xi. Those panels are in Pop

s (f)
and in R, and Xi ∼ti Xi+1 for some ti ∈ J . By definition, β(P, P ′) = β(γ, P, P ′) :=
β(Xn−1, P

′) . . . β(X1, X2)β(P, X1). Moreover β(Xi, Xi+1) = β(Xi, Xi+1, xJ) if ti 6= s and
β(Xi, Xi+1) = 1Xi

if ti = s. Therefore β(P, P ′) = β(P, P ′, xJ).

Now assume lc(w) = k > 1 and assume the result is proved for all w′ ∈ Xs with lc(w
′) < k.

Let P = P0, P1, . . . , Pk = Q be a compatible path from P to Q, which exists by Lemma
5.7, and let P ′ = P ′

0, P
′
1, . . . , P

′
k = Q be a compatible path from P ′ to Q with residues

R(Pi, Pi+1) and R(P ′
i , P

′
i+1) of the same type for all 0 ≤ i ≤ k − 1.

Let R be the rank 3 residue containing R(Pk−1, Pk) = R(P ′
k−1, P

′
k), R(Pk−2, Pk−1) and

R(Pk−2, Pk−1). Let J be the type of R, which contains t. Let T = projR P and T ′ =
projR′ P ′, which are panels by Lemma 5.6. Let c ∈ Q. By Proposition 5.14, P ∈ Pop

s,c(f),
so there exists x ∈ P ∩ f op

c . By Lemma 3.9, projR x ∈ Af (R). That means T contains
chambers in Af (R), so whose f -value is wJ . We also have δ(x, projT x) = wJ , so that
T = π(P, wJ). By the same argument, T ′ = π(P ′, wJ) and so T ′ contains chambers in
Af (R). Therefore T and T ′ are s′-panels where s′ = w−1

J swJ ∈ J .

Since Pk−2 is in a compatible path from P , it is parallel to P . By Lemma 5.6, T is a panel
parallel to P and Pk−2. Moreover there exists a compatible path from P to Pk−2 containing
T . Since all compatible paths between two given panels have the same length, the length
of a compatible path from P to T is less or equal to k − 2. Hence lc(wJ) ≤ lc(w)− 2.
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Choose p ∈ T ∩Af (R) and p′ ∈ T ′∩Af (R). Because of the hypothesis on B, there exists a
gallery γ from p to p′ contained in Af (R). If γ = (p = x0, x1, x2, . . . , xn = p′), let Xi be the
s′-panel containing xi and Xi ∼ti Xi+1 for some ti ∈ J for 0 ≤ i ≤ n−1. By Lemma 5.15,
there exists an s-panel Qi ∈ Pop

s (f) such that Xi = π(Qi, wJ) for all 0 ≤ i ≤ n. Of course
we take Q0 = P and Qn = P ′. Since δ(Qi, Xi) = wJ , we have projR Qi = Xi for all 0 ≤
i ≤ n. By Property c) of Theorem 5.18, β(P, P ′) = β(Qn−1, Qn) . . . β(Q1, Q2)β(Q0, Q1).

Let Ji = {s′, ti} ⊂ J , let Ri be the Ji-residue containing Xi and Xi+1 and let wi := wJs′rJi
.

We have w−1
i swi = rJi

s′w−1
J swJs′rJi

= rJi
s′rJi

= ti ∈ Ji, and l(swJs′rJi
) = l(wJrJi

) =
l(wJs′rJi

) + 1 since wJrJi
= wJi

rJi
is the longest word of wJWJi

. Therefore wi ∈ Xs and
π(Qi, wi) = π(Qi+1, wi) is the ti-panel containing the only chamber of Ri with f -value
wJi

rJi
, that is projRi

f . Therefore Qi ≡wi
Qi+1.

Since projRi
Qi = projRi

projR Qi = projRi
Xi = Xi, a compatible path from Qi to Xi (of

length lc(wJ) ≤ k − 2) completed by the panel π(Qi, wi) is a compatible path of length
lc(wi) ≤ k − 1. By induction, this means that β(Qi, Qi+1) = β(Qi, Qi+1, wi).

Let w̃ := wJs′rJ . By a similar argument to the one for wi, w̃ ∈ Xs and π(Qi, w̃) is
the w̃−1sw̃-panel containing projR f . Moreover wi ≺ w̃ for all 0 ≤ i ≤ n − 1. Indeed
l(w−1

i w̃) = l(rJi
s′w−1

J wJs′rJ) = l(rJi
rJ) = l(rJ) − l(rJi

) = l(s′rJ) − l(s′rJi
) = l(wJ) +

l(s′rJ)− (l(wJ) + l(s′rJi
)) = l(w̃)− l(wi). By Proposition 5.17, we have Qi ≡w̃ Qi+1 and

β(Qi, Qi+1, wi) = β(Qi, Qi+1, w̃). Therefore

β(P, P ′) = β(Qn−1, Qn) . . . β(Q1, Q2)β(Q0, Q1)
= β(Qn−1, Qn, w̃) . . . β(Q1, Q2, w̃)β(Q0, Q1, w̃)
= β(P, P ′, w̃).

We have l(w−1w̃) = l(w−1wJs′rJ) = l(rJs′w−1
J w) = l(rJ) − l(s′w−1

J w) because s′w−1
J w ∈

WJ . Moreover l(s′w−1
J w) = l(w−1

J sw) = l(w−1
J wt) = l(wt) − l(wJ) = l(w) + 1 − l(wJ)

because wt ∈ wWJ . Hence l(w−1w̃) = l(rJ) + l(wJ) − 1 − l(w). On the other hand,
l(w̃) − l(w) = l(wJs′rJ) − l(w) = l(wJ) + l(s′rJ) − l(w) = l(wJ) + l(rJ) − 1 − l(w) since
wJs′rJ ∈ wWJ . Therefore w ≺ w̃, and so β(P, P ′, w) = β(P, P ′, w̃). This concludes the
proof.

2

Corollary 5.20.: Let R be a rank 2 residue of B such that lf (R) = min{l(f(x)) | x ∈
R} ∈ Xs and lf (R)−1slf (R) = t ∈ typ(R). Let c ∈ R and P, P ′ ∈ Pop

s,c(f). Then
β(P, P ′)(projP c) = projP ′ c.

Proof: Let w = f(c), J the type of R, so lf (R) = wJ . Let d = projR f , so that
f(d) = wJ , where wJ is the unique longest word of wWJ . From the hypothesis on wJ , we
easily get that swJ ∈ Xs and (swJ)−1s(swJ) = u ∈ J , hence there exists a panel Q through
d, of type u, which is parallel to both P and P ′. Since δ(P, Q) = swJ = wJu = δ(P ′, Q)
and Q contains a chamber with f -value wJu, we have Q = π(P, swJ) = π(P ′, swJ).
Therefore P ≡swJ P ′ and, by Theorem 5.19, β(P, P ′) = β(P, P ′, swJ) = projP ′ projQ.

There exist x ∈ P ∩ f op
c and x′ ∈ P ′ ∩ f op

c . By Lemma 3.7, there exist minimal gal-
leries x = x0, x1, . . . , xn = c and x′ = x′

0, x
′
1, . . . , x

′
n = c with l(f(xi)) = i = l(f(x′

i))
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for all 0 ≤ i ≤ n and going through projP c, resp.projP ′ c. Obviously projP c = x1 if
x1 ∈ P and x0 otherwise. By Proposition 3.3, f(c) = f(d)δ(d, c); moreover l(f(c)) =
l(w) = l(wJ) − l(δ(d, c)) = l(f(d)) − l(δ(d, c)). Hence there is a minimal gallery c =
y0, y1, . . . , ym = d with l(f(yi)) = l(f(c)) + i for all 0 ≤ i ≤ m and going through
projQ c. Obviously projQ c = ym−1 if ym−1 ∈ Q and ym = d otherwise. We have that
x = x0, x1, . . . , xn = y0, y1, . . . , ym = d is a minimal gallery, and so there is a minimal
gallery (which is a subgallery of the previous one) from projP c to projQ c going through
c. Therefore projP c = projP projQ c. By a similar argument, projP ′ c = projP ′ projQ c.

Putting all together, β(P, P ′)(projP c) = projP ′ projQ projP projQ c = projP ′ projQ c =
projP ′ c, because P and Q are parallel.

2

Theorem 5.21.: Let c be a chamber of B and P, P ′ ∈ Pop
s,c(f). Then β(P, P ′)(projP c) =

projP ′ c.

Proof: We will prove this by induction on l(f(c)).

Assume l(f(c)) = 0. If x ∈ f op
c , then δ(x, c) = f(c) = 1W , so f op

c = {c}. Hence P = P ′

contains c, and the statement is obvious since β(P, P ′) = 1P .

Assume l(f(c)) = 1. If f(c) = s, then f op
c consists of all chambers s-adjacent to c

(except for c itself). Hence P = P ′ contains c, and the statement is again obvious. We
now consider the case f(c) = t 6= s. Let R be the {s, t}-residue containing c. Then
lf (R) = 1W satisfies the conditions of Corollary 5.20, and so we are done.

Assume now l(f(c)) = l ≥ 2 and the theorem is proved for all chambers c′ with l(f(c′)) < l.
Let u, t be the last 2 letters in a reduced word for f(c), so that l(f(c)ut) = l(f(c))−2. Let
R be the {u, t}-residue containing c. Therefore lf (R) ≤ l(f(c))− 2. If lf (R) satisfies the
conditions of Corollary 5.20, we are done, so we will assume it does not. If projR P was
a panel, it would be parallel to P and lf (R) would satisfy the above conditions. Hence
projR P is a chamber p. Similarly projR P ′ is a chamber p′. Since P contains a chamber
x in f op

c and projR P = projR x, we have by Lemma 3.9 that p ∈ Af (R), and similarly
p′ ∈ Af (R). Moreover, there exists a minimal gallery from x to c going through p, and
so x ∈ f op

p by Lemma 3.7. Similarly x′ ∈ f op
p′ . By the hypothesis on B, there exists a

gallery p = p0, p1, . . . , pn = p′ (without repetitions) entirely contained in Af (R). For all
1 ≤ j ≤ n, let Qj be the unique panel containing pj−1 and pj, and let zj = projQj

f . Since
l(f(zj)) = lf (R) + 1, we have l(f(zj)) < l for all 1 ≤ j ≤ n. For each 1 ≤ j ≤ n − 1, we
can choose xj ∈ f op

pj
and Pj the s-panel through xj. We also put x0 = x, P0 = P , xn = x′

and Pn = P ′.

By Lemma 3.7, there exists a gallery from xj to pj with f getting strictly longer at each
step for all 1 ≤ j ≤ n − 1. Since l(f(zj)) = l(f(pj)) + 1 = l(f(zj+1)), zj, pj ∈ Qj and
zj+1, pj ∈ Qj+1, by adding a chamber at the end of the previous gallery, we get two
minimal galleries from xj to zj and from xj to zj+1, both with f getting strictly longer at
each step. Hence xj ∈ f op

zj
and xj ∈ f op

zj+1
for all 1 ≤ j ≤ n − 1. Therefore Pj ∈ Pop

s,zj
(f)

and Pj ∈ Pop
s,zj+1

(f) for all 1 ≤ j ≤ n − 1. For a similar reason P = P0 ∈ Pop
s,z1

(f) and
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P ′ = Pn ∈ Pop
s,zn

(f). We conclude that Pi−1, Pi ∈ Pop
s,zi

(f) for all 1 ≤ i ≤ n. Hence, by
induction, β(Pi−1, Pi)(projPi−1

zi) = projPi
zi for all 1 ≤ i ≤ n.

Since projR Pi is a chamber for all 1 ≤ i ≤ n and projections of residues on one another are
parallel, projPi

R is also a chamber, hence projPi
zi = projPi

R = projPi
c and projPi−1

zi =
projPi−1

R = projPi−1
c. Therefore we have β(Pi−1, Pi)(projPi−1

c) = projPi
c.

By Theorem 5.18, β(P, P ′) = β(P ′, Pn−1) . . . β(P1, P2)β(P, P1). We easily conclude that
β(P, P ′) projP c = projP ′ c.

2

6 Adjacent codistances

Definition 6.1.: Two codistances f and g on B are called s-adjacent if Pop
s (f) = Pop

s (g).
We denote it by f ∼s g.

Lemma 6.2.: Let f, g be two codistances on a building B. Let R be a spherical J-residue
in f op. Let s ∈ J . If f and g are s-adjacent, then projR f and projR g are rJsrJ-adjacent
in B.

Proof: Suppose f and g are s-adjacent. Then Pop
s (f) = Pop

s (g), which means that the
s-panels of R in f op and in gop coincide. The rJsrJ -panel P containing d := projR f is
opposite in R to all s-panels of R in f op. Suppose there is another panel P ′ opposite to
those same s-panels. Of course P ′ is also of type rJsrJ . Let d′ := projP ′ f . Then there
exists a minimal gallery from d to d′ which can be extended to a minimal gallery from d
to a chamber c opposite to d, that is a chamber in f op. The s-panel containing c is in
f op, and so should be opposite to both P and P ′, which is not possible. Similarly, the
panel of type rJsrJ containing projR g is the only panel of R opposite in R to all s-panels
in gop. Therefore these 2 panels of type rJsrJ coincide, and so projR f and projR g are
rJsrJ -adjacent. 2

Lemma 6.3.: Let f be a codistance on a building B, and let g be a codistance s-adjacent
to f . Let R be a J-residue in f op, with s ∈ J . Then R is in gop.

Proof: Since R is in f op, R contains a chamber x in f op. The s-panel containing x is in
f op, and so by hypothesis, it is in gop. Since this panel is in R, it means R is in gop. 2

Lemma 6.4.: Let f be a codistance on a k-spherical building B such that f op is connected,
and let g be a codistance s-adjacent to f . Let R be a J-residue of rank ≤ k − 1 in f op,
with s ∈ J . Then projR g determines g uniquely.

Proof: Suppose that g1 and g2 are two codistances s-adjacent to f with projR g1 =
projR g2. By hypothesis, Pop

s (f) = Pop
s (g1) = Pop

s (g2).

We claim that gop
1 ⊆ gop

2 . Let x ∈ gop
1 , then the J-residue Rx containing x is in gop

1 . By
Lemma 6.3, Rx is also in f op. Since f op is connected, there is a gallery x0, x1, . . . , xn in
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f op with x0 ∈ R and xn ∈ Rx. We will show by induction on n that projRx
g1 = projRx

g2.
If n = 0, then P = Q and the result is obvious. Assume that we have shown that for every
J-residue at ”distance” (in the sense described above) at most n−1 of R, the projections of
g1 and g2 coincide. Let R′ be the J-residue containing xn−1. By the induction hypothesis,
projR′ g1 = projR′ g2. We have xn−1 ∼t xn. If t ∈ J then Rx = R′ and we are done.
So assume t 6∈ J , let K = J ∪ {t} (which is spherical by hypothesis) and let R̃ be the
K-residue containing Rx and R′. Then the residue of type opK(J) := {rKurK |u ∈ J}
containing projR̃ f is the only residue of R̃ opposite in R̃ to all J-residues of R̃ in f op,
by similar arguments as in Lemma 6.2. Similarly, the opK(J)-residue containing projR̃ gi

is the only residue of R̃ opposite in R̃ to all J-residues in gop
i , for i = 1, 2. By Lemma

6.3, the sets of J-residues in f op and in gop
i (i = 1, 2) coincide. Therefore these three

opK(J)-residues coincide, let us name it T . As f(y) = f(projR̃ f)δ(projR̃ f, y) for y ∈ R̃,
by Lemma 3.3, we have l(f(y)) = rK − l(δ(projR̃ f, y)) for y ∈ R̃, and so projR′ f =
projR′ projR̃ f . Similarly for g1, g2 and for Rx. We have projR′ g1 = projR′ g2, and so
projR′ projR̃ g1 = projR′ projR̃ g2, with projR̃ g1, projR̃ g2 ∈ T . Since R′ and T are parallel,
it means projR̃ g1 = projR̃ g2, which implies projRx

g1 = projRx
g2 by similar arguments.

This finishes the proof by induction. Since x ∈ gop
1 and, for any y ∈ Rx, g1(y) =

g1(projRx
g1)δ(projRx

g1, y) by Lemma 3.3, we have 1W = rJδ(projRx
g1, x). Therefore

rJ = δ(projRx
g1, x) = δ(projRx

g2, x), which implies that x ∈ gop
2 . By symmetry, we get

gop
1 = gop

2 . We now conclude by Lemma 3.10.

2

Proposition 6.5.: Let C̃ be the set of all codistances on a 3-spherical building B. Then
(C̃, (∼s)s∈S) is a chamber system.

Proof: It follows from the definition that ∼s is an equivalence relation on C̃ for all s ∈ S.
Suppose f ∼s g and f ∼t g for s, t ∈ S and f 6= g. Let J = {s, t}, which is spherical. Let
R be a J-residue in f op. By Lemma 6.4, projR f and projR g are distinct. By Lemma 6.2,
the chambers projR f and projR g are rJsrJ -adjacent and also rJtrJ -adjacent in B. Since
the chambers of B form a chamber system, it means rJsrJ = rJtrJ , and hence s = t. 2

¿From now on, we again assume that B = (C, δ) is a 3-spherical building of type (W, S)
satisfying (lco) and (lsco) and that f is a codistance on B. Let B∗ = (C∗, (∼s)s∈S) be the
chamber system on the connected component of f .

Fix s ∈ S and P̃ in Pop
s (f). For each chamber p of P̃ in f op, we will define another

codistance on B. Let β(p) := {β(P̃ , Q)(p)|Q ∈ Pop
s (f)}. By Theorem 5.18, this set

contains exactly one chamber in each panel of Pop
s (f), none of which being the projection

of f on it.

Theorem 6.6.: For c ∈ B, choose P ∈ Pop
s,c(f), and put

g(c) =

{
sf(c) if projP c ∈ {projP f, β(p) ∩ P}
f(c) otherwise.

Then g is a codistance on B. Moreover g is s-adjacent to f and, for P ∈ Pop
s (f), projP g =

β(p) ∩ P .
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Proof: The function g : C → W is well defined by Theorem 5.21 and by statement d) of
Theorem 5.18. Let Q be a t-panel, so that f(x) ∈ {w,wt} for all x ∈ Q and Q contains
a unique chamber q := projQ f with f -value the longest word of the two, which we can
assume to be wt.

Assume w−1sw = t. Then w ∈ Xs and there exists P ∈ Pop
s (f) parallel to Q with

δ(P, Q) = w. By Proposition 5.14, P ∈ Pop
s,x(f) for all chambers x of Q. Since P and Q

are parallel, projP and projQ are inverse bijections between P and Q. Hence g(x) = f(x)
for all x ∈ Q, except for q whose g-value is sf(q) = swt = w and for projQ(β(p) ∩ P )
whose g-value is sf(projQ(β(p) ∩ P )) = sw = wt. Hence g(x) ∈ {w,wt} and Q contains
a unique chamber with g-value wt.

Now assume w−1sw 6= t. We claim that either g(x) = f(x) for all x ∈ Q or g(x) = sf(x)
for all x ∈ Q. In the first case, it is obvious Q will satisfy the codistance condition for g.
Suppose we are in the second case. Then g(x) ∈ {sw, swt} for all x ∈ Q and Q contains
a unique chamber with g-value swt. We just need to show that l(swt) = l(sw) + 1 to
get that Q satisfies the codistance condition for g. If l(sw) = l(w) + 1, it is known
that either l(swt) = l(w) + 2 or swt = w. Since the second case is excluded, we have
l(swt) = l(w) + 2 = l(sw) + 1. If l(sw) = l(w) − 1 and l(swt) = l(sw) − 1, then
l(swt) = l(w) − 2 = l(wt) − 3, and we get a contradiction, hence if l(sw) = l(w) − 1 we
also get l(swt) = l(sw) + 1.

We now prove the claim. Let x ∈ Q with f -value w, y ∈ f op
x and P the s-panel containing

y, so that P ∈ Pop
s,x(f). If we add the chamber q to a minimal gallery from y to x, we get a

minimal gallery from y to q with the required condition on f , and so, by Lemma 3.7, y ∈
f op

q and P ∈ Pop
s,q(f). Let x′ be another chamber of Q with f -value w and P ′ ∈ Pop

s,x′(f). By
the same argument, P ′ ∈ Pop

s,q(f). By Theorem 5.21, it means β(P, P ′)(projP q) = projP ′ q.
Since P and Q (resp. P ′ and Q) are not parallel, projP Q and projP ′ Q are chambers, and
so projP q = projP x and projP ′ q = projP ′ x′. Therefore β(P, P ′)(projP x) = projP ′ x′, and
so projP x ∈ {projP f, β(p) ∩ P} if and only if projP ′ x′ ∈ {projP ′ f, β(p) ∩ P ′}. Moreover
we also have projP x ∈ {projP f, β(p) ∩ P} if and only if projP q ∈ {projP f, β(p) ∩ P}.
Therefore the claim is proved.

Let P ∈ Pop
s (f). Then P contains chambers in f op and one chamber p with f(p) = s.

Obviously P ∈ Pop
s,p(f), hence projP p = p and so g(p) = sf(p) = 1W . Hence p ∈ gop and

P ∈ Pop
s (g). Let P be a s-panel not in Pop

s (f). Then f(x) ∈ {w,ws} for x ∈ P with
s 6= w 6= 1. Hence g(x) ∈ {w, sw,ws, sws} for x ∈ P . Since 1W 6∈ {w, sw,ws, sws}, no
chamber of P is in gop, and so P 6∈ Pop

s (g). This proves that f ∼s g.

Finally, let P ∈ Pop
s (f). Then for any c ∈ P , P ∈ Pop

s,c(f), therefore g(c) = f(c) unless
c ∈ {projP f, β(p) ∩ P}. Hence the only chamber of P with g-value s is β(p) ∩ P .

2

Proposition 6.7.: Let B be a 3-spherical building of type (W, S) satisfying (lco) and
(lsco). Let J ⊆ S be spherical, and f be a codistance on B. Let R be a J-residue of B
in f op and R̃ be the J-residue containing f in B∗. Then α : R̃ → R : g → projR g is a
bijection such that:
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(i) ∀g1, g2 ∈ R̃, s ∈ J , we have g1 ∼s g2 if and only if α(g1) ∼rJsrJ
α(g2),

(ii) ∀g ∈ R̃, c ∈ R, we have c ∈ gop if and only if δ(α(g), c) = rJ .

Proof:

By Lemma 6.4, α is injective. Let d = projR f . We will show by induction on the distance
l(δ(x, d)) that α is surjective. Notice first that α(f) = d so it is true if l(δ(x, d)) = 0.
Suppose we have proved that there exists g ∈ R̃ with α(g) = x for all x satisfying
l(δ(x, d)) < l and suppose l(δ(y, d)) = l. Let y = y0, y1, . . . , yl = d be a minimal gallery.
By hypothesis, there exists g1 ∈ R̃ with α(g1) = y1. Let T be the t-panel containing y0

and y1 for some t ∈ S. Let s = opJ(t) = rJtrJ ∈ J . By Lemma 6.3 and an easy induction,
R is in gop for any g ∈ R̃ and so in particular for g1. Therefore there exists c ∈ R ∩ gop

1

and the s-panel P containing c is in Pop
s (g1). By construction P and T are opposite

hence parallel. Let p := projP y. Using Theorem 6.6, we can construct a codistance g
s-adjacent to g1 with projP g = p. By Lemma 6.2, projR g and projR g1 are t-adjacent,
and so projR g ∈ T . Since projP g = projP projR g (by an argument used above), we must
have projR g = y. Therefore α(g) = y and α is surjective.

By Lemma 6.2, if g1 and g2 are s-adjacent in R̃, then projR g1 and projR g2 are rJsrJ -
adjacent in R.

Now assume g1 and g2 are codistances in R̃ with projR g1 ∼rJsrJ
projR g2 for some s ∈ J .

Let P be the rJsrJ -panel containing them and e := projP d. As α is surjective, there
exists g ∈ R̃ with α(g) = e. We have shown above that there exist codistances g′1 and g′2,
both s-adjacent to g, with projR g′1 = projR g1 and projR g′2 = projR g2. By the injectivity
of α, g′1 = g1 and g′2 = g2, and so g1 and g2 are both s-adjacent to g. Since B∗ is a chamber
system, this means g1 ∼s g2. This proves (i).

We now prove (ii). Let g ∈ R̃. By Lemma 3.3, for all c ∈ R, g(c) = g(α(g))δ(α(g), c).
Since R ∈ gop as noticed above, g takes on R its values in WJ , and so g(α(g)) = rJ . Hence
c ∈ gop ⇐⇒ g(c) = 1W ⇐⇒ δ(α(g), c) = rJ . 2

Corollary 6.8.: The chamber system B∗ has the same diagram as B.

Proof. Let M be the diagram of B, which mean that each rank 2 J-residue is a generalized
MJ -gon. Let R̃ be a J-residue of rank 2 of B∗.Let g be a codistance in R̃ and let R be a
J-residue in gop. Then, by Proposition 6.7, R̃ is a building of the same type as R, hence
a generalized MJ -gon. Therefore B∗ has diagram M .

7 Construction of the twinning

In order to construct a twinning we apply the main result of [Mu98] which we recall below
and whose statement requires some preparation.

Let (W, S) be a Coxeter system and let B+ = (C+, δ+),B− = (C−, δ−) be two buildings
of type (W, S). An opposition relation between B+ and B− is a non-empty subset O
of C+ × C− such that there exists a twinning δ∗ of B+ and B− with the property that
O = {(x, y) ∈ C+ × C− | δ∗(x, y) = 1W}.
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A local opposition relation between B+ and B− is a non-empty subset O of C+ × C−
such that for each (x, y) ∈ O and each subset J ⊆ S of cardinality at most 2 the set
O ∩ (RJ(x) × RJ(y)) is an opposition relation between the J-residues of x and y. Note
that the definition of a local opposition relation makes perfect sense for two chamber
systems of type (W, S) as well.

Here is the main result of [Mu98].

Theorem 7.1.: Let (W, S) be a Coxeter system and let B+ = (C+, δ+),B− = (C−, δ−) be
two thick buildings of type (W, S) and let O be a non-empty subset of C+ × C−. Then O
is an opposition relation between B+ and B− if and only if it is a local opposition relation
between the two buildings.

The following corollary of the previous theorem has been proved in [Mu99, p.28], we
paraphrase that proof here.

Corollary 7.2.: Let (W, S) be a Coxeter system and let (C+, (∼s)s∈S), (C−, (∼s)s∈S) be two
connected, thick chamber systems of type (W, S) whose universal 2-covers are buildings.
Suppose that there exists a local opposition relation O ⊆ (C+×C−) between them. Then the
chamber systems are buildings. In particular, there exist unique distances δ+ : C+×C+ →
W , δ− : C−×C− → W and δ∗ : (C+×C−)∪(C−×C+) → W such that ((C+, δ+), (C−, δ−), δ∗)
is a twin building of type (W, S) and such that O = {(x, y) ∈ C+ × C− | δ∗(x, y) = 1W}.

Proof: Let Bε = (Cε, (∼s)s∈S) be the universal 2-cover of (Cε, (∼s)s∈S), which is a
building by hypothesis, with covering morphism φε : Cε → Cε, for ε = +,−. Let O =
{(x, y) ∈ C+×C−|(φ+(x), φ−(y) ∈ O}. Obviously O is a local opposition relation between
B+ and B−. By the previous theorem, this means that O is the opposition relation of a
twin building (B+,B−, δ∗).

Let x 6= y ∈ C−. By Lemma 2.6, xop 6= yop. Hence there exists z ∈ C+ such that
(z, x) ∈ O but (z, y) 6∈ O. If φ−(x) = v = φ−(y), then we have both (φ+(z), v) ∈ O and
(φ+(z), v) 6∈ O, a contradiction. This shows that φ− is injective and hence is the identity.
The same argument shows that φ+ is the identity. Therefore Cε = Cε for ε = +,− and
the result follows. 2

In order to apply the corollary above we need the following lemma.

Lemma 7.3.: Let B+ = (C+, δ+),B− = (C−, δ−) be two buildings of spherical type (W, S),
let r ∈ W be the longest element in W and let O be a non-empty subset of C+×C−. Then
the following are equivalent.

a) O is an opposition relation between B+ and B−.

b) There exists a bijection α : C+ → C− such that the following two conditions are
satisfied:

(i) For all x, y ∈ C+ and all s ∈ S we have x ∼s y if and only if α(x) ∼rsr α(y);

(ii) O = {(x, y) ∈ C+ × C− | δ−(α(x), y) = r}.
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Proof: Suppose O is an opposition relation between B+ and B−. Then there exists
a twinning between them. Define α : C+ → C− by α(x) = projC− x, that is the unique
chamber y of C− with δ∗(x, y) = r. It is easily checked that α is a bijection and satisfies
(i) and (ii).

Now suppose there exists a bijection α satisfying (i) and (ii). We define a mapping δ∗

from (C+ × C−) ∪ (C− × C+) into W by δ(x, y) := rδ−(α(x), y) and δ(y, x) := δ(x, y)−1,
for x ∈ C+ and y ∈ C−. Using the axioms of buildings, it can easily be checked that δ∗

is a twinning. Moreover O = {(x, y) ∈ C+ × C− | δ∗(x, y) = 1W}, so O is an opposition
relation between B+ and B−.

2

Proof of the main result

Let B− = (C−, δ−) be a thick building of type (W, S) satisfying all necessary properties
and let f : C− → W be a codistance.

Consider the chamber system of all codistances of B− which is a chamber system over
S. Let C+ be the connected component containing f and consider the chamber system
(C+, (∼s)s∈S) which is a connected chamber system of type (W, S) by Corollary 6.8. It
readily follows from Proposition 6.7 that all J-residues of rank at most 3 are spherical
buildings and in particular that (C+, (∼s)s∈S) is thick . By a result of Tits [Ti81] it follows
that the universal 2-cover of this chamber system is a building.

We define O ⊆ C+ × C− by setting O := {(g, c) ∈ C+ × C− | g(c) = 1W}. Using
the lemma above and Proposition 6.7 we see that O is a local opposition between the
chamber systems (C+, (∼s)s∈S) and (C−, (∼s)s∈S), which are both thick chamber systems
of type (W, S) whose universal covers are buildings. Therefore, Corollary 7.2 yields the
twin building.

Now it is easy to see that f ′ := δ∗(f, .) is a codistance on B− with

f ′ op = {c ∈ C−|δ∗(f, c) = 1W} = {c ∈ C−|(f, c) ∈ O} = {c ∈ C−|f(c) = 1W} = f op.

By Lemma 3.10, we have f ′ = f and so δ∗(f, x) = f(x) for all x ∈ C−.
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[Mu99a] B. Mühlherr: Locally split and locally finite twin buildings of 2-spherical type.
J. Reine Angew. Math. 511 (1999), 119–143.
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