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Abstract

We classify the finite generalized quadrangles containing a line L such that some
group of collineations acts sharply transitively on the ordered pentagons which start
with two points of L. This can be seen as a generalization of a result of Thas
and the second author [22] classifying all finite generalized quadrangles admitting
a collineation group that acts transitively on all ordered pentagons, although the
restriction to sharp transitivity is essential in our arguments. However, the conclu-
sion is exactly the same family of classical generalized quadrangles (the orthogonal
quadrangles and their duals). Our main result thus provides a local group theoretic
characterization of these classical quadrangles.

1 Introduction

It is still an open problem to determine the finite generalized quadrangles admitting a
collineation group acting transitively on the ordered ordinary quadrangles without using
the classification of finite simple groups. When the group acts transitively on the ordered
pentagons, then Thas & Van Maldeghem [22] showed that only the classical quadrangles
with orders q, (q, q2) and (q2, q) arise. While we are yet unable to generalize this by
weakening the hypothesis to ordinary quadrangles, we can generalize it by making the
hypothesis more local, but requiring sharp transitivity instead, and that is what we do in
the present paper.

This problem fits into a sequence of results that classify generalized polygons admitting
a group of automorphisms acting sharply transitively on a class of substructures. Let us
review some of these results, and then it will become clear that the present paper is a
logical sequel.

∗The second author’s research is partially supported by the Fund for Scientific Research – Flanders
(Belgium)
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In [4], the first author classifies all projective planes admitting a group of collineations
acting sharply transitively on the set of all ordinary quadrangles. Then, the second au-
thor generalized this result to all generalized (2n− 1)-gons (with a group acting sharply
transitively on ordinary 2n-gons), and to self dual generalized quadrangles and hexagons.
Subsequently, the authors considered the family of ordered ordinary (2n−1)-gons instead
of 2n-gons and classified in [5] the projective planes admitting a collineation group acting
sharply transitively on ordered ordinary triangles, and mutatis mutandis for the general-
ized (2n − 1)-gons. A logical next step was to consider triangles in affine planes. This
yields a local version of the result of the first author [4]: in [6], the authors classify all
affine planes admitting a collineation group acting sharply transitively on ordered trian-
gles. In other words, they classify projective planes admitting a collineation group acting
sharply transitively on the set of all ordered quadrangles which contain a fixed (first) line.
They then go on proving that there are no generalized (2n − 1)-gons admitting a group
acting sharply transitively on the ordered 2n-gons containing a fixed (first) line.

All these results, except for the ones mentioned above about the self dual quadrangles and
hexagons, are about generalized polygons with odd diameter (generalized odd-gons). This
is not so surprising, since the main techniques use properties of involutions, and these are
better manageable when the diameter is odd (in terms of fixed points). In generalized
even-gons, involutions can have no or many fixed points, as any other collineation, and
this makes the study of sharply transitive actions in these structures very hard. However,
if we restrict to the class of finite generalized quadrangles, then we can generalize the
local results of [6]. This is exactly what we do in the present paper. As will become
apparent, the techniques are completely different from those used before, and involve
typically “finiteness” arguments, both on the geometric and group-theoretic level. In
particular, the classification of finite split BN-pairs is used in the proof of Proposition 3.6.
Moreover, also the proofs of the technical results 4.3 and 4.4 require some group theory.

2 Notation and Main Result

If P and L are two disjoint sets and I is a symmetric relation whose graph is connected,
then we say that the triple Γ = (P ,L, I) is a point-line geometry and we call P the set
of points and L the set of lines. We use common terminology such as collinear points to
denote points that are incident with one line; concurrent lines for lines that are incident
with a common point. A geometry is called a generalized quadrangle with order (s, t),
where s, t are cardinal numbers, if

(i) every line of Γ is incident with exactly s + 1 points and every point with exactly
t + 1 lines,

(ii) no two different points are incident with two different lines, and
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(iii) every given point x is collinear with a unique point projLx incident with a given
line L, with x not incident with L.

For an introduction to (finite) generalized quadrangles, we refer to [15]. Let us mention
that deletion of Axiom (i) would have as only consequence the inclusion of some trivial
geometries where most points and/or lines are incident with at most two elements. Hence
we will mainly be interested in the case where both s and t are strictly bigger than 1.
Also, we sometimes view a generalized quadrangle Γ as a graph (the incidence graph) with
vertex set P ∪ L and adjacency relation I. For this graph, we use some graph theoretic
notions such as cycles and distance. In particular, we denote, for x ∈ P ∪ L, by Γi(x)
the set of elements of Γ at distance i from x (with distances measured in the incidence
graph, and the distance between x and y is denoted by d(x, y)). For two distinct elements
x, y at distance at most 3 from each other, there is a unique element incident with x
and at distance d(x, y) − 1 from y. We denote that element by projxy, and call it the
projection of y onto x. Elements at distance 4 from one another will be called opposite.
If we interchange the roles of P and L then we obtain again a generalized quadrangle, of
order (t, s), called the dual of Γ.

A collineation θ of a generalized quadrangle Γ is a pair of permutations, both denoted by
the symbol θ, of the point set and the line set, respectively, such that xIL if and only if
xθILθ (we use exponential notation for permutations).

The main examples of generalized quadrangles arise from pseudo-quadratic forms of Witt
index 2 in arbitrary vector spaces. In the present paper we are interested in the finite
examples, and especially in the case where the quadrangle arises from a quadratic form of
Witt index 2. In this case, there is a simple geometric description. Indeed, any nonsingular
quadric Q(4, q) and Q(5, q) with projective index 1 (i.e., containing lines but not planes)
in the projective spaces PG(4, q) and PG(5, q), respectively, is a generalized quadrangle
when considered as point-line geometry in the natural way. The order is (q, q), (q, q2),
respectively.

In this paper we prove the following main result.

Main Result Let Γ be a finite generalized quadrangle with a line L∞ and a collineation
group G satisfying the following condition.
(LST) The group G fixes L∞ and acts sharply transitively on the ordered ordinary pen-
tagons (a, b, c, d, e) in Γ such that a, b are incident with L∞.
Then Γ is isomorphic to Q(4, q) or its dual, or to Q(5, q) or its dual, for some prime
power q. In each case, the group G contains all root elations of Γ that fix the line L∞.

Each of the generalized quadrangles mentioned in the theorem above actually admits a
group satisfying (LST) for any line L∞; this follows from Theorems 4.6.2 and 4.6.3 of [26]
(which imply that, in the cases of the dual of Q(4, q) in PG(3, q) and the dual of Q(5, q) in
PG(3, q2), the group of collineations induced by the linear group of the ambient projective
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space acts regularly on the set of pentagons). However, we point out that the group G is
in general not uniquely determined by Γ. Indeed, let Γ = Q(4, q), with q an odd square,
and let L∞ be an arbitrary line of Γ. Then the group N generated by all root elations
of Γ that fix the line L∞ has order q4(q − 1). Moreover, if x and y are distinct points
on L∞ and L and M are lines, distinct from L∞, incident with x and y, respectively,
then the subgroup of N fixing L and M pointwise has order q − 1 and consequently acts
sharply transitively on the set of lines through x different from L∞ and from L (this
follows from the fact, proven in [12] and [23], that the elementwise stabilizer in N of the
set of lines meeting both L and M is isomorphic to SL2(q)). Moreover, N is normalized
by all collineations that fix L∞. For zIL, z 6= x, let Z be the line through z meeting
M . Then there is a cyclic group H of order q − 1 fixing L, M, Z and L∞, fixing all lines
through x, and acting sharply transitively on Γ1(L)\{x, z}. The group G := HN satisfies
the conditions of the theorem. But we can replace the cyclic group H of order q − 1 by
a nonabelian group H∗ of that order (by involving the involution of the Galois group, as
in the construction of the Dickson nearfields); the resulting group G∗ := H∗N is different
from G and also satisfies the conditions of the theorem.

3 Proof of the Main Result if L∞ is not regular

We assume that Γ = (P ,L, I) is a finite generalized quadrangle with order (s, t) with a
distinguished line L∞ and a collineation group G satisfying Condition (LST).

Lemma 3.1 For each triple (i, j, k) ∈ {(1, 2, 3), (1, 4, 5), (3, 2, 3), (3, 2, 5), (3, 4, 3), (3, 4, 5),
(5, 2, 5), (5, 4, 3)}, the group G acts sharply transitively on the set of triples (A, x, L), where
A is an apartment containing L∞, x is a point not belonging to A but incident with a line
of A, L is a line not belonging to A but incident with a point of A, and d′(L∞, x) = i,
d′(L∞, L) = j, d′(x, L) = k, where d′ denotes the distance in the configuration A∪{x, L}.

Proof This follows directly from condition (LST). �

A panel is a set {x, y, z} with xIyIz and x 6= z. A panel {x, y, z} is called Moufang if
the pointwise stabilizer in G of Γ1(x) ∪ Γ1(y) ∪ Γ1(z) is a group of order s (if x ∈ P) or t
(if x ∈ L). This group will be referred to as the root group belonging to the panel. If this
root group is elementary abelian, then we say that the corresponding panel is elementary
abelian Moufang. If, for some point x, the stabilizer in G of all points collinear with x
has order t, then we say that x is a center of symmetry.

We will frequently use the following almost trivial observation.
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Lemma 3.2 Let G be a finite group acting on a finite set X. Suppose H ≤ G is such
that all nontrivial elements of H are conjugate in G and suppose also that |X| < |H|.
Then H acts trivially on X.

Proof Put |H| = h. By possibly adding abstract new elements to X on which each
element of G acts trivially, we may assume that |X| = h−1. Since all nontrivial elements
of H are conjugate under G, all these elements of H have the same number, say n, of
fixed points in X. Suppose H has m orbits in X; then Burnside’s orbit counting theorem
states mh = (h− 1) + n(h− 1) = (n + 1)(h− 1). This implies that h− 1 divides m, and
so m = h− 1 = n. Consequently H fixes X pointwise. �

Lemma 3.3 (i) If s ≤ t, then every panel {L∞, x, L} with LIxIL∞ and L 6= L∞ is
elementary abelian Moufang.

(ii) If t ≤ s, then every panel {x, L∞, y} with xIL∞Iy and x 6= y is elementary abelian
Moufang. Also, every panel {y, L, z} with L∞IyILIz, L 6= L∞ and y 6= z is ele-
mentary abelian Moufang.

In any case, both s and t are prime powers.

Proof All these assertions are proved similarly, so we prove one of them, e.g. (i). So
let x and L as in (i) above, and choose two additional arbitrary points x′, x′′ on L∞,
x 6= x′ 6= x′′ 6= x. Also, let y be some point on L, y 6= x. By Lemma 3.1, the stabilizer H
in G of the set {x, x′, x′′, y} acts sharply 2-transitively on the set of apartments containing
{x, x′, y}. Since there are exactly t of them, t is a prime power. Let F be the Frobenius
kernel of H. Then F is an elementary abelian group of order t and all nontrivial elements
of F are conjugate in H. Let X be the set of lines through x different from L and from
L∞, or the set of points on either L∞ or L, different from x, x′ and from y. Then H acts
on X and |X| < |F |. Lemma 3.2 implies that F fixes all elements of X. This proves (i).

As mentioned above, the proof of (ii) is completely similar. We end the proof of 3.3 by
showing that s is a prime power (note that in the above argument that showed that t is a
prime power we did not use the inequality s ≤ t). Let x, x′ be two distinct points on L∞,
and let M , M ′ be two lines incident with x, x′, respectively, with M 6= L∞ 6= M ′. Let K
be a third line through x, L∞ 6= K 6= M . Then the stabilizer in G of the set {M, M ′, K}
acts sharply 2-transitively on the set of apartments containing {L∞, M, M ′}. Since there
are exactly s of these, it follows that s is a prime power. �

For a subset B of points of Γ, we denote by B⊥ the set of points of Γ collinear with all of
B. The set {x, y}⊥, for two noncollinear points x, y, is called a trace (in both x⊥ and y⊥).
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A point x of Γ is called regular if traces in x⊥ that do not coincide meet in at most one
point. A point x is called antiregular if s = t, if {x, y}⊥ 6= {x, z}⊥ for y 6= z (and y, z are
two points not collinear with x) and if two traces in x⊥ meet in at most 2 points.

Dual definitions hold for regular and antiregular lines.

Lemma 3.4 (i) If s = t, then L∞ is either a regular line, or an antiregular line. Also,
every point on L∞ is either regular or antiregular.

(ii) If s < t, then L∞ is regular.

(iii) If t < s, then every point on L∞ is regular.

Proof Suppose s ≤ t and that L∞ is not regular. We show that necessarily s = t and
L∞ is antiregular.

Our assumption implies the existence of two distinct lines M1 and M2 not concurrent
with L∞ such that 2 ≤ |{L∞, M1, M2}⊥| ≤ s. Hence there are distinct lines L, L′ ∈
{L∞, M1, M2}⊥, and there is a point xIL∞ such that N1 := projxM1 6= projxM2 =: N2.

Let z be the intersection of L and M1. The stabilizer T in G of L, L∞, L′, M1, M2 acts
sharply transitively on Γ1(z) \ {L, M1}, cf. Lemma 3.1. The stabilizer in T of x is trivial
for otherwise there are at least two lines through z meeting N2. Hence the orbit of x
under T contains exactly t − 1 elements. This implies firstly t − 1 ≤ s − 1, hence s = t.
Secondly, we now see that {L∞, M1, M2} = {L, L′}. The transitivity of G on the set of
lines not collinear with L∞, and the double transitivity of the stabilizer in G of some line
L opposite L∞ on the set of points incident with L∞, imply that L∞ is antiregular.

We have shown (ii) and the first assertion of (i). In order to show the other assertions,
we can appeal to the dual arguments, except that the stabilizer in G of any point on L∞
fixes L∞. So, dualizing the above arguments, we can show that, given some point xIL∞
and two points y, y′ opposite x with projL∞y = projL∞y′ and 2 ≤ |{x, y, y′}⊥| ≤ t, this
forces s = t and |{x, y, y′}| = 2. We refer to this as the dual of the first part of the proof.

We must show that (1) the existence of y and y′ as just stated is implied by the assumption
that x is not regular, and (2) the property of y, y′ just stated implies that x is antiregular.

We start with (2). If x is not antiregular, then, by the dual of the first part of the
proof, there exist z, z′ opposite x with |{x, z, z′}⊥| ≥ 3 and either projL∞z 6= projL∞z′

or |{x, z, z′}⊥| = t + 1. Suppose first |{x, z, z′}⊥| = t + 1. Put projL∞z = u and let u′

be another arbitrary element of {x, z, z′}⊥. Then the first part of the proof implies that
|{x, z, z′, z′′}⊥| = t + 1 for all z′′ ∈ {u, u′}⊥ \ {x}. Transitivity of Gx on the set of points
opposite x implies that x is regular. This contradicts our assumption on x. So we may
assume that 3 ≤ |{x, z, z′}⊥| ≤ t and u := projL∞z 6= projL∞z′ =: u′. Let {v, v′, v′′} ⊆
{x, z, z′}⊥, with |{v, v′, v′′}| = 3. The pointwise stabilizer in G of {x, u, u′, z, v} has order
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t−1 and acts transitively on Γ1(v)\{vx, vz}. Hence there are t−1 traces in x⊥, containing
u′ and v, and sharing at least two elements with {x, z}⊥\{u, v}. It now follows that either
two of these traces coincide (contradicting the first part of this paragraph), or two of these
traces share at least three elements, amongst which is u′. This contradicts the dual of the
first part of the proof.

Now we prove (1). If y and y′, both opposite x, and with the properties projL∞y =
projL∞y′ and 2 ≤ |{x, y, y′}⊥| ≤ t do not exist, then we certainly can find y, y′ ∈ Γ4(x)
with |{x, y, y′}⊥| = t + 1 (indeed, just consider arbitrary uIL∞, u 6= x, and arbitrary
v ∈ Γ2(x) \ Γ1(L∞), and take y, y′ ∈ {u, v}⊥ \ {x}). But the argument in the previous
paragraph now leads to a contradiction. �

Lemma 3.5 If L∞ is not regular, then each point on L∞ is a center of symmetry.

Proof Note that by Lemma 3.4(ii) the assumption of L∞ being not regular implies
t ≤ s.

Let xIL∞. We must show (1) that x is regular and (2) that, for any line LIx, L 6= L∞,
the panel {L∞, x, L} is Moufang.

If s = t, then (2) follows from Lemma 3.3. If s > t, then (1) follows from Lemma 3.4.

Choose M2Ix2IL∞Ix1IM1Iy, with M1 opposite M2 and y 6= x1. Let U1 and U3 be the
root groups belonging to the panels {y, M1, x1} and {x1, L∞, x2}, respectively.

Since L∞ is not regular, it is not an axis of symmetry (which is the dual of a center of
symmetry). Hence there is some u3 ∈ U3 and some point zIL∞ such that u3 does not fix
every element of Γ1(z). Let u1 ∈ U1 be such that it maps x2 on z. Then [u3, u1] does not
act trivially on Γ1(x2), by construction. It is now easy to see that [u3, u1] fixes all elements
incident with M , with x1 and with L∞. Conjugating [u3, u1] with the stabilizer in G of
y and M2, we see that {M1, x1, L∞} is an elementary abelian Moufang panel. Similarly
{L∞, x2, M2} is elementary abelian Moufang. Moreover, we have shown that, if U2 is the
root group belonging to {M1, x1, L∞}, then [U1, U3] = U2.

We have thus proved the lemma for s 6= t. If s = t, then we only need to show that x1

and x2 are regular. If not, then similarly as above we have [U2, U4] = U3, where U4 is the
root group belonging to {L∞, x2, M2}.
It is easy to see that the group U+ generated by U1, U2, U3, U4 has order s4, and hence is a
p-group for some prime p. Consequently U+ is nilpotent. But clearly [U+, U2U3] contains
U2U3, contradicting nilpotency. �

Proposition 3.6 If L∞ is not regular, then Γ is isomorphic to either the dual of Q(4, s)
with s odd, or to the dual of Q(5, t), and G contains all root elations of Γ that fix the line
L∞.
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Proof By the previous lemma, each point on L∞ is a center of symmetry, hence L∞ is
a translation line with translation group U2U3U4 (with notation as in the previous proof).
Note that it is indeed easy to show that 〈U2, U3, U4〉 = U2U3U4 and that |U2| = |U4| = t,
|U3| = s and hence |U2U3U4| = st2.

Let M be an arbitrary line opposite L∞, and let M1, M2 ∈ {L∞, M}⊥ be distinct. Let x1

be the intersection of L∞ and Mi, i = 1, 2, and yi the intersection of M and Mi, i = 1, 2.
Noticing that that the root group Ui belonging to {xi, Mi, yi}, i = 1, 2, is normal in the
stabilizer in G of yi, we see that J := 〈U1, U2〉 generates a split BN-pair of rank one on
{L∞, M}⊥. Lemma 3.1 readily implies that this BN-pair has a 3-transitive automorphism
group on {L∞, M}⊥, hence it easily follows, by the classification of split BN-pairs of rank
one (see [13] and [18]), that the action of J on {L∞, M}⊥ is the natural action of PSL2(s)
on the projective line PG(1, s). We deduce that the action of GM on Γ1(L∞) can be
identified with the natural action of a subgroup of PΓL2(s) on PG(1, s). Let K be the
kernel of that action on Γ1(L∞). Then, if s = ph, with p prime,

s(s2 − 1)h|K| ≥ |GM | = s(s2 − 1)(t− 1),

implying |K| ≥ t−1
h
≥
√

t + 1.

Now the kernel of the translation generalized quadrangle is a subfield of GF(t). Hence,
since K is a multiplicative subgroup of that kernel, this implies that the kernel has order
t and, by Theorem 3.5.7 of [21], that Γ is isomorphic to a generalized quadrangle Ti(O)
of Tits, with either s = t, i = 2 and O an oval of the projective plane PG(2, s), or s = t2,
i = 3 and O an ovoid of the projective space PG(3, t). If i = 2, then, since L∞ is not
regular, s must be odd, and hence O is a conic (by a famous result of Segre [17]), implying
that Γ is isomorphic to Q(4, s). If i = 3, then the 3-transitivity of G on the set of points
of L∞ and the above observation concerning the split BN-pair imply that O is an orbit in
PG(3, t) under a subgroup of PGL4(t) isomorphic to PSL2(t

2), acting sharply 3-transitively
on O. It follows that each plane section is an oval admitting a sharply 3-transitive group
of automorphisms, and hence each plane section is a conic (see e.g. Proposition 15 of [19]).
But then O is an elliptic quadric by Barlotti’s result [1] and so Γ is isomorphic to the
dual of Q(5, t). �

4 The case where L∞ is regular

As before, Γ = (P ,L, I) is a finite generalized quadrangle with order (s, t) with a distin-
guished line L∞ and a collineation group G satisfying Condition (LST). We now study
the situation where L∞ is regular. By result 1.3.6(i) of [15] we have s ≤ t.

Proposition 4.1 If L∞ is regular and s = t, then Γ ∼= Q(4, s), and G contains all root
elations of Γ that fix the line L∞.
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Proof Let M be opposite L∞, and take two lines M1, M2 in {M, L∞}⊥. Let again xi

be the intersection of L∞ and Mi, i = 1, 2, and let yi be the intersection of M and Mi,
i = 1, 2. Consider the root group Ui belonging to {xi, Mi, yi}, i = 1, 2. All its nontrivial
elements are conjugate, as before (since Ui arises as Frobenius kernel of a sharply 2-
transitive group), and they all fix the lines of {M1, M2}⊥. Hence, by Lemma 3.2 we
deduce that Ui fixes all lines concurrent with Mi, and so Mi is an axis of symmetry,
i = 1, 2. Thus Γ is span-symmetric and hence isomorphic to Q(4, s) by a result of Kantor
[12] and independently K. Thas [23].

The assertion on G follows directly from Lemma 3.3. �

It remains to consider the case where s < t (note that t ≤ s2). As L∞ is regular, Γ is a
skew translation generalized quadrangle (the fact that L∞ is an axis of symmetry follows
as before from considering the commutator [U2, U4] and keeping in mind that no point on
L∞ is a center of symmetry, hence some member of U2 does not fix all points collinear to
x1). This implies in particular that st is a power of some prime p.

Proposition 4.2 Let L∞ be regular and s < t. Consider a panel {x, L, y} with x ∈ L∞
and L 6= L∞, and a point y′ ∈ L \ {x, y}. If the stabilizer T := GL,y,y′ does not act
faithfully on Γ(y), then Γ ∼= Q(5, s), and G contains all root elations of Γ that fix the line
L∞.

Proof The group T has order st(t− 1) and contains the root group V belonging to the
panel {L∞, x, L}. Clearly V � T and, since V is elementary abelian by 3.3, it is a vector
space over the field with p elements. Note that we can identify V with Γ(y) \ {L}.

By assumption, there exists an element g ∈ T \ {id} acting trivially on Γ(y). Thus g
centralizes V . It is easy to see that g acts freely on the set of points of any line M 6= L
through y, where we remove y.

Now let M and M ′ be two such lines, M 6= M ′, and consider the group GL,M,M ′ , which has
order s(s−1) and acts sharply 2-transitively on Γ(M)\{y}. The corresponding Frobenius
kernel is a group U acting sharply transitively on Γ(M) \ {y}, and using lemma 3.2 we
conclude that U fixes Γ(L) pointwise. In particular it fixes y′ and so U is a subgroup of
T . Since g ∈ GL,M,M ′ , and since g acts freely on the set of points of M different from y,
it belongs to the Frobenius kernel of GL,M,M ′ , and so g ∈ U . Since all nontrivial elements
of U are conjugate in GL,M,M ′ , we conclude that U fixes all lines through y.

Now let K be any line meeting L, but not incident with x. Choose a point x′ 6= x on L∞.
Let K ′ be the unique line through x′ meeting K and redefine M := projyK

′. Then an
arbitrary element u of U maps K ′ onto some line K ′′ meeting both L∞ and M . By the
regularity of L∞, it also meets K. Since u fixes the intersection of K and L, it now also
fixes K. So we have shown that U fixes pointwise the set Γ2(L) \ Γ(x).
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Now let J be any line incident with x, L∞ 6= J 6= L. Let J ′ 6= L be any line meeting
both J and M (with M , as above, a line distinct from L through y). Since u fixes all
lines meeting both L and J ′, we see that the s points of J ′ different from z := projJ ′x
are paired up with the s points of J ′u different from zu = projJ ′ux by the relation “being
collinear”. Hence also z is collinear with zu (as the only remaining possibility) and we see
that J ′ 6= J ′u leads to a triangle.

Thus U fixes Γ2(L) pointwise, and U consists of symmetries about L; hence L is a regular
line. We have shown that every line concurrent with L∞ is an axis of symmetry and
that every point on L∞ is a translation point. Now Theorem 10.6.4 of Thas, Thas &
Van Maldeghem [21] implies that every pentagon of Γ containing L∞ is contained in
a unique subquadrangle of order s. Since G obviously is transitive on the set of such
subquadrangles, a theorem of K. Thas [24] implies that Γ is isomorphic to Q(5, s).

The conjugates of V , the conjugates of U and the group of symmetries about L∞ are the
root groups of Γ that fix L∞, and by the above arguments they all belong to G. �

In order to show that T as in 4.2 cannot act faithfully on Γ(y), see 4.5, we use the following
two results. For a finite group H, we denote by O(H) the largest normal subgroup of H
of odd order.

Lemma 4.3 Let p = 2 and choose a line M not concurrent with L∞, a line M ′ ∈
{L∞, M}⊥⊥ and a point x ∈ L∞. Then the quotient GM,M ′,x/O(GM,M ′,x) is solvable and
has an elementary abelian subgroup of order s.

Proof The stabilizer GM has order (s + 1)s(s − 1)(t − 1) and acts triply transitively
on the set {L∞, M}⊥ of size s + 1. By a theorem of Holt [8], the triply transitive group
induced on {L∞, M}⊥ contains PSL2(s) = PGL2(s) and is contained in PΓL2(s) in its
natural permutation representation on the projective line (note that PΓL2(s) = Syms+1

for s = 2, 4; for s ≥ 8, alternating and symmetric groups are excluded by their large
orders, as t ≤ s2). Therefore GM,x induces on {L∞, M}⊥ a subgroup of AΓL1(s) that
contains AGL1(s). This subgroup is solvable and has an elementary abelian subgroup of
order s (the group of translations). The order of the kernel of the action on {L∞, M}⊥
divides t− 1, which is odd. Since GM,M ′,x ≤ GM,x, the assertion follows. �

The following technical result on linear groups is true also without the solvability condition
for p = 2, but then the proof requires deeper group theory.

Lemma 4.4 Let p be a prime, m, n ∈ N, and let S0 < T0 ≤ GLn(p) be linear groups
such that S0 is sharply transitive on the non-zero vectors and |T0 : S0| = pm ≥ pn/2. For
p = 2 assume also that T0/O(T0) is solvable. Then either n = 2, p ∈ {2, 3, 5, 7, 11} and
T0 = SL2(p), or n = 4, p = 2 and T0

∼= ΓL1(16) ≤ GL4(2) (and m = n/2 in each case).
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Proof Let P be a Sylow p-subgroup of T0. Then T0 = PS0 = S0P .

First we deal with the case n = 2. Here P is a Sylow p-subgroup of SL2(p), hence P fixes
a unique one-dimensional subspace of F2

p. The transitivity of S0 implies that T0 contains
all Sylow p-subgroups of SL2(p). Thus SL2(p) ≤ T0, and from |T0| = |S0|p = (p2 − 1)p we
infer that T0 = SL2(p). The restrictions on the prime p follow from Dickson’s list of all
subgroups of PSL2(p); see Huppert [10], II 8.27 and 8.28, or Suzuki [20], Chapter 3 §6.

For the rest of the proof, we may assume that n ≥ 3. The group S0 is the multiplicative
group of a nearfield of order pn. We use the classification of all finite nearfields, which
is due to Zassenhaus; compare Passman [16], 20.3, Huppert & Blackburn [11], XII.9.2
and XII.9.4, or Hering [7], Theorem 2. Since n ≥ 3, this classification implies that
S0 ≤ ΓL1(p

n). Hence S0 is metacyclic, and therefore supersolvable.

We claim that T0 = PS0 is solvable. If p is odd, then this follows from a result of Berkovic
[2] (see also Finkel & Ward [3]) which says that each product of a nilpotent group of odd
order with a supersolvable group is solvable (in this result, supersolvability cannot be
replaced by solvability, since the alternating group A5 is the product of a cyclic group of
order 5 with A4). For p = 2, we have O(T0) ≤ S0, hence O(T0) is metacyclic, and our
assumption for p = 2 implies that T0 is solvable.

The solvable subgroups T0 ≤ GLn(p) that are transitive on the non-zero vectors have been
classified by Huppert [9]; see also Passman [16], 19.10, Lüneburg [14], 37.3 or Huppert
& Blackburn [11], XII.7.3. As n ≥ 3, we obtain from this classification that either
T0 ≤ ΓL1(p

n), or n = 4, p = 3 and T0 = (34 − 1)2e with e ∈ {1, 2, 3}, which is a
contradiction to our assumption that |T0 : S0| = pm. Hence it remains to consider the
case T0 ≤ ΓL1(p

n). We infer that pm divides n. Since n ≤ 2m, this occurs only if p = 2
and n = m/2 ∈ {2, 4}. Thus T0 ≤ GL2(2) = SL2(2) or T0 ≤ ΓL1(2

4), and equality holds
for order reasons. �

Proposition 4.5 Let L∞ be regular and s < t. Consider a panel {x, L, y} with x ∈ L∞
and L 6= L∞, and a point y′ ∈ L \ {x, y}. Then the stabilizer T := GL,y,y′ does not act
faithfully on Γ(y).

Proof We assume that T := GL,y,y′ acts faithfully on Γ(y) and aim for a contradiction.
As in 4.2, we identify Γ(y) \ {L} with the elementary abelian root group V that belongs
to the panel {L∞, x, L}. Then T ≤ AGL(V ). First we determine the possibilities for Γ.

Choose a point x′ 6= x on L∞. The stabilizer S := Tx′ has order t(t− 1) and acts sharply
2-transitively on Γ(y) \ {L}. Choose a line M opposite L∞ incident with y, and put
T0 = TM and S0 = SM . By Lemma 4.3, the quotient T0/O(T0) is solvable if p = 2.
Since t ≤ s2, we can apply Lemma 4.4, which yields t = s2. Since T0/O(T0) contains an
elementary abelian subgroup of order s by 4.3, the case with n = 4 in 4.4 cannot occur.
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The cases s = 2, 3 lead to the quadrangles Q(5, 2) and Q(5, 3) of order (2, 4) and (3, 9),
respectively, since these quadrangles are uniquely determined by their orders; see Payne
& Thas [15], 5.3.2. By 4.4, in the remaining cases we have

t = s2 and T0
∼= SL2(s), with s ∈ {5, 7, 11}.

By condition (LST), the group T0 is transitive on Γ(L∞) \ {x}. The normal structure
of SL2(s) implies that the permutation group T 0 induced by T0 on Γ(L∞) \ {x} is the
group PSL2(s) in an unnatural transitive action of degree s (these actions are uniquely
determined, up to automorphisms of SL2(11) for s = 11). In fact, T 0 = Alt5 ∼= PSL2(5)
for s = 5, and T 0 = GL3(2) ∼= PSL2(7) acting on non-zero vectors for s = 7.

The group T0 acts trivially on Γ(L), because T0 fixes x, y, y′ and SL2(s) has no proper
subgroup of index s−2 or smaller (compare [10] Satz 8.28, p. 214). Hence T0 is the kernel
of the action of GL,M on Γ(L).

Let M ′ ∈ Γ(x) \ {L, L∞} and x′ ∈ Γ(L∞) \ {x}. The stabilizer GL,M,M ′ acts faithfully
and sharply 2-transitively on the set Γ(L∞) \ {x} of size s. Since s is a prime, the group
GL,M,M ′,x′ is cyclic. Pick a generator g of GL,M,M ′,x′ . Then the permutation g induced
by g on Γ(L∞) acts on Γ(L∞) as a cycle of length s − 1, fixing two points (x and x′).
Thus g is a cycle of length s − 1, hence an odd permutation, and T 0 is normalized by
g, in view of T0 � GL,M . But for s = 7 and s = 11, such a cycle does not exist: the
groups T 0 = GL3(2) ≤ Sym7 and T 0 = PSL2(11) ≤ Sym11 consist of even permutations
and coincide with their normalizers in Sym7 and Sym11, respectively.

Now we consider the case s = 5. The set Y := {L∞, M}⊥⊥ has size s+1 = 6, since L∞ is
regular. Denote by G[Y ] the elementwise stabilizer of Y in G. Then G[Y ],L = GM,[Γ(L)] =
T0. Varying L in {L∞, M}⊥, we see that G[Y ] is transitive on Γ(L∞) and induces Alt6 on
Γ(L∞). Moreover, |G[Y ]| = 6 · |T0| = 2 · |Alt6|, hence the kernel G[Y ],[Γ(L∞)] has order 2 and
coincides with the center of T0. Thus G[Y ] is a perfect central extension of Alt6 ∼= PSL2(9).
We infer that G[Y ]

∼= SL2(9), because the Schur multiplier of PSL2(9) is a cyclic group of
order 6, compare [10] Satz 25.7, p. 646. The element g acts by conjugation on T0 and
on G[Y ], inducing automorphisms of order 4 (since g2 6= 1). The automorphism group of
SL2(q) is the group PΓL2(q). One easily shows by calculation that g centralizes a cyclic
subgroup J of order 4 in T0

∼= SL2(5). Likewise, g centralizes a cyclic subgroup J∗ of order
8 in G[Y ]

∼= SL2(9). Clearly, the elements of J∗ \J interchange L and L′. If we denote the
projection of projML′ onto M ′ by z, then this implies that g fixes zJ∗ . Since g cannot fix
a quadrangle in Γ, the fixed point structure of g is a dual (6× 6)-grid. Varying L, x, M
and M ′, this implies that every point of L∞ is 3-regular in the sense of [15], Section 1.3.
But then 5.3.3(i) of [15] says that Γ is isomorphic to Q(5, 5).

Since s = 2, 3, 5 is a prime, the group T of order st(t − 1) coincides with the group
of all automorphisms of Γ ∼= Q(5, s) that fix L∞ and x, y, y′. This group does not act
faithfully on Γ(y), as the root group belonging to {x, L, y} shows, and we have reached a
contradiction. �
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The Main Result is a consequence of Propositions 3.6, 4.1, 4.2 and 4.5.
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[14] H. Lüneburg, Translation Planes, Springer, 1980.

13



[15] S. E. Payne & J. A. Thas, Finite Generalized Quadrangles, Pitman Res. Notes Math.
Ser. 110, London, Boston, Melbourne, 1984.

[16] D. S. Passman, Permutation Groups, Benjamin, 1968.

[17] B. Segre, Sulle ovali nei piani lineari finiti, Atti Accad. Naz. Lincei Rendic. 17 (1954),
141–142.

[18] E. Shult, On a class of doubly transitive groups, Illinois J. Math. 16 (1972), 434–455.

[19] L. Storme & H. Van Maldeghem, Primitive arcs in PG(2, q), J. Combin. Theory Ser.
A 69 (1995), 200–216.

[20] M. Suzuki, Group Theory I, Springer, 1982.

[21] J. A. Thas, K. Thas & H. Van Maldeghem, Translation Generalized Quadrangles,
World Scientific, 2006.

[22] J. A. Thas & H. Van Maldeghem, The classification of finite generalized quadran-
gles admitting an automorphism group acting transitively on ordered pentagons, J.
London Math. Soc. 51 (1995), 209–218.

[23] K. Thas, Classification of span-symmetric generalized quadrangles of order s, Adv.
Geom. 2 (2002), 189–196.

[24] K. Thas, A stabilizer lemma for translation generalized quadrangles, Europ. J. Com-
bin. 28 (2007), 1–16.

[25] H. Van Maldeghem, Regular actions on generalized polygons, Internat. Math. J. 2
(2002), 101 – 118.

[26] H. Van Maldeghem, Generalized Polygons, Birkhäuser Verlag, Basel, Boston, Berlin,
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