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Abstract

In this note, we characterize finite 3-dimensional affine spaces as the only linear
spaces endowed with set Ω of proper subspaces having the properties (1) every
line contains a constant number of points, say n, with n > 2; (2) every triple of
noncollinear points is contained in a unique member of Ω; (3) being disjoint is an
equivalence relation in Ω with the additional property that every equivalence class
covers all points. We also take a look at the case n = 2 (in which case we have a
complete graph endowed with a set Ω of proper complete subgraphs) and classify
these objects: besides the affine 3-space of order 2, two small additional examples
turn up. Furthermore, we generalize our result in the case n > 2 to obtain a
characterization of all finite affine spaces of dimension at least 3 with lines of size
at least 3.

1 Introduction

Linear spaces are the fundamental objects of incidence geometry. Projective and affine
spaces are the prominent examples of linear spaces (although there are other very im-
portant cases like unitals, nets, etc.). They have been extensively studies and a lot of
characterizations are known. For an overview, see [4]. In this note, we add a characteriza-
tion of affine spaces of dimension 3 in terms of planar spaces, which are also well studied
objects, see for instance [1], [7], [5], [8], or more recent work of Biondi and Durante (and
co-authors), e.g., [2], [6], etc.

The most prominent examples of planar spaces are the projective and affine spaces. Many
characterizations of projective and affine spaces in terms of planar spaces have been
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studied. For instance, if all planes are projective planes, then we have a projective space
(Veblen-Young [9]), or if all planes are affine and lines have size at least four, then we
have an affine space (Buekenhout [3]). Other conditions considered before were of local
nature (looking at the geometry of lines and planes through a point) or numerical. In the
present paper we consider a global condition, namely, the parallel axiom for planes. Of
course, there are many examples of planar spaces satisfying the parallel axiom for planes:
just remove an appropriate set of points from a 3-dimensional affine space. But these
spaces rarely have constant line size, and hence we will also assume constant line size.

This way we characterize finite affine 3-spaces with line size at least 3. If the line size is
2, then some additional examples turn up, which also come out of our classification.

Note that we do not assume that our planes are minimal subspaces (a condition that is
sometimes required for planar spaces).

A similar characterization for affine spaces of higher dimension using planar spaces and
parallelism seems hard to find, since parallel planes in this case are no longer recognized
as the disjoint ones. But if we slightly generalize the notion of a planar space, then we
are able to characterize all finite affine spaces of dimension at least 3 having lines of size
at least 3 as the only linear spaces with constant line size n ≥ 3 endowed with a family
of hyperplanes satisfying the parallel axiom and such that every three noncollinear points
are contained in a constant number of hyperplanes. We will also show that relaxing the
condition n ≥ 3 to n ≥ 2 creates a number of rather wild examples that might be hard
to classify.

We now get down to precise definitions and statements of our main results.

2 Main Results

Let S = (P ,L, I) be a linear space, i.e., P and L are two disjoint sets whose members are
called points and lines, respectively, and I is a symmetric (incidence) relation between
P and L with the properties that every pair of distinct points is incident with a unique
common line and every line is incident with al least two points. It is an immediate
property that every line is determined by the set of points incident with it, and therefore,
one usually views the members of L as subsets of P .

We will be interested in linear spaces with constant line size. There is also a definition
of order of a linear space, but this does not agree with the usual definitions of order of a
projective and/or affine plane, and so we will not use it. We will, though, introduce and
use the usual definitions of order of a projective or affine plane (see below).
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A subspace of a linear space S = (P ,L, I) is a linear space S ′ = (P ′,L′, I′), with P ′ ⊆ P,
L′ ⊆ L and I′ the restriction of I to P ′ and L′, such that all points of S incident with a
member of L′ are also points of S ′. The subspace S ′ is called proper if P ′ 6= P .

A linear space S = (P ,L, I) with line size n for which S∗ = (L,P , I) is also a linear space
is a projective plane of order n − 1. A projective plane of order n from which we delete
a line together with all its points is an affine plane of order n. Affine spaces of order
n and of dimension > 2 are linear spaces arising from vector spaces of dimension > 2
over the field of order n by taking as lines all translates of the one-dimensional subspaces.
Projective spaces of order n and of dimension d > 2 arise from vector spaces of dimension
d+1 over the field with n−1 elements by taking as points the one-dimensional subspaces
and as lines the two-dimensional subspaces of the vector space.

The linear space S = (P ,L, I) endowed with a family Ω of proper subspaces is called
a planar linear space (or an `-hyperplanar linear space, for some positive integer `, re-
spectively) if every triple of noncollinear points (i.e., points that are not contained in a
common line) is contained in exactly one (or exactly `, respectively) member(s) of Ω. We
briefly say that S = (P ,L, I; Ω) is a(n `-hyper)planar space and the members of Ω are
called (hyper)planes. The parallel axiom for (hyper)planes in the (`-hyper)planar space
S = (P ,L, I; Ω) says that

[ParAx] “have disjoint point sets or coincide” is an equivalence relation in Ω and the union
of every equivalence class is P .

This may obviously be rephrased as

[ParAx′] for every point x and every member S ′ of Ω not containing x as a point, there exists
a unique member of Ω containing x as a point and having a point set disjoint from
the point set of S ′.

Examples of planar spaces satisfying Axiom [ParAx] arise from ordinary affine spaces of
dimension ≥ 3 by deleting a number of points in such a way that one does not delete an
entire line. If we identify the affine space with a vector space, then the (hyper)planes are
the translates of the next-to-maximal-dimensional subspaces. This provides a wealth of
examples. It also shows that a classification of such spaces will be very difficult. However,
if we require order n, n > 2, then we can classify, and only the affine spaces themselves
emerge.

We first consider the case of planar spaces.
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Theorem 1. Every planar space with constant line size n, n > 2, in which the parallel
axiom for planes holds is a 3-dimensional affine space of order n.

When n = 2, then our technique fails, and the difficulty is certainly that planes may have
different sizes. Moreover, there is an example of such a situation. Let us give all known
examples.

(Ex1) Let P be a set of six elements, L is the set of all pairs of P , incidence is the natural
one. The family Ω is induced by all 3-subsets of P .

(Ex2) Let P be the set of points of a Fano plane (a projective plane of order 2), L is again
the set of pairs of P , with natural incidence. The family Ω is induced by the set of
lines of that plane, together with the set of complements of lines (or, equivalently,
hyperovals) of that plane. Here, the planes have different sizes.

(Ex3) The affine 3-space of order 2.

We will prove the following result.

Theorem 2. The only planar spaces with constant line size 2 in which the parallel axiom
for planes holds are the examples (Ex1), (Ex2) and (Ex3).

In general, we can state:

Theorem 3. Every `-hyperplanar space with constant line size n, n > 2, in which the
parallel axiom for hyperplanes holds is a d-dimensional affine space of order n, with d ≥ 3.

When n = 2, then the examples (Ex1), (Ex2) and (Ex3) may be generalized, but there
are also additional examples showing that a classification will be very unlikely.

(Ex4) Let P be a set of 2k elements, L is the set of all pairs of P , incidence is the
natural one. The family Ω is induced by all k-subsets of P . Then (P ,L, I; Ω) is an
`-hyperplanar space with

(
`=2n−3

n−3

)
.

(Ex5) Let P be the set of points of a projective space of order 2 and dimension d ≥ 2,
L is again the set of pairs of P , with natural incidence. The family Ω is induced
by the set of hyperplanes of that space, together with the set of complements of
hyperplanes. Then (P ,L, I; Ω) is an `-hyperplanar space with ` = 2d−1 − 1. Here,
the hyperplanes have different sizes.

(Ex6) The affine d-space of order 2, d ≥ 3, where the members of Ω are the (d − 1)-
dimensional subspaces. Here ` = 2d−2 − 1.
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(Ex7) Consider an affine space S = (P ,L, I; Ω) of order 2 and dimension 3, viewed as
planar space. Consider two disjoint lines L1, L2 that are not contained in a common
plane. Let σ be the involution on P interchanging the two points of L1 and inter-
changing the two points of L2, keeping the other four points of P fixed. Then one
easily checks that S ′ = (P ,L, I; Ω∪Ωσ) is a 2-hyperplanar space with constant line
size 2.

(Ex8) Consider the 3-hyperplanar space S = (P ,L, I; Ω) with constant line size 2 arising
from a projective space of order 2 and dimension 3 as in Example (Ex5). Consider
two skew lines L1 and L2 of the projective space (hence both lines have three points).
Let σ be an arbitrary permutation of P fixing all points off L1 ∪ L2, and inducing
3-cycles on both L1 and L2. Then one checks that S ′ = (P ,L, I; Ω ∪ Ωσ) is a 6-
hyperplanar space with constant line size 2, and S ′′ = (P ,L, I; Ω ∪ Ωσ ∪ Ωσ2

) is a
9-hyperplanar space with constant line size 2.

(Ex9) Consider the Steiner system S(5, 6, 12) related to the sporadic simple group M12.
Every block has a unique complementary block and three points are contained in
exactly 12 blocks. Hence this defines a 12-hyperplanar space with constant line size
2.

It is clear that (Ex7) and (Ex8) can be generalized to higher dimensions to obtain addi-
tional examples, which may be hard to classify since rather wild permutations σ may be
considered.

However, the lack of additional examples, and our inability to find them, leads us to the
following conjecture.

Conjecture. In every `-hyperplanar space with constant line size 2 in which the parallel
axiom for hyperplanes holds, all parallel classes have exactly two elements. Moreover, the
size of any hyperplane differs by at most one half from half the size of the point set.

In fact, Theorem 1 is obviously a special case of Theorem 3. yet, we choose to prove
Theorem 1 separately since it might appeal more to readers interested rather in planar
spaces than in affine spaces.

3 Proof of Theorem 1

We first remark that in a planar space which satisfies the parallel axiom for planes, no
plane coincides with a line. Indeed, let L be a line which is also a plane and choose a
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point x outside L (it exists since every plane is a proper subspace). Let π be the unique
plane through L and x, and let π′ be parallel to π and distinct from it (again, π′ exists
for the same reason). Then both L and π are parallel to π′, but not disjoint and not the
same, a contradiction.

Suppose henceforth that the space S = (P ,L, I) is a planar space with constant line size
n, n > 2, satisfying the parallel axiom for planes.

Lemma 3.1 The number of points in each plane is one more than a multiple of n− 1.

Proof. Fix a point x in a plane π. Then the lines in π through x partition the point set
of π without x. All these lines contain n− 1 points distinct from x. �

Lemma 3.2 Each line intersecting a plane π1 in a point intersects every parallel plane
π2 in a point.

Proof. Let π1 and π2 be two parallel but distinct planes, and let L1 be a line meeting π1

in a point. We assume, by way of contradiction, that L1 does not meet π2. Let π′
1 be a

plane containing L1 and let π′
2 be a plane parallel to π′

1 but distinct from it. Let there
be exactly k planes through L1. All of these k planes meet π2, and exactly k− 1 of them
meet π′

2. Suppose ` of these planes meet π2 in a line, then π2 contains `n + k − ` points,
which is equal to k modulo n− 1. By Lemma 3.1, k is equal to 1 modulo n− 1. Suppose
also that `′ of the former considered set of k − 1 planes (through L1 that meet π′

2) meet
π′

2 in a line, then the number of points of π′
2 equals `′n + (k − 1 − `′), and this equals

k− 1 modulo n− 1. Lemma 3.1 implies that k− 1 is equal to 1 modulo n− 1, which is a
contradiction to the above. �

This implies easily:

Corollary 3.3 Given a plane π and a line L not meeting π, then there exists a unique
plane π′ parallel to π and containing L.

Proof. If the plane π′ parallel to π and incident with some fixed but arbitrary point x on
L did not contain L, then L would intersect π by the previous lemma. �

Lemma 3.4 Each plane is an affine plane of order n or a projective plane of order n−1.

6



Proof. It suffices to show that in each plane π, there is at most one line through a given
point x parallel to a given line L. Assume, by way of contradiction, that there were at
least two such lines L1, L2. Let π′ be a plane containing L, with π′ 6= π. Clearly, both
of L1, L2 do not meet π′, and hence Corollary 3.3 implies that Li is contained in a plane
πi parallel to π′, i = 1, 2. But then x is contained in at least two planes parallel to π′, a
contradiction.

The lemma is proved. �

Lemma 3.5 Two distinct planes are either parallel or meet in a line.

Proof. Suppose two planes π and π′ meet in a point x. Then we can find two intersecting
lines in π not incident with x. Both lines must be contained in some respective plane
parallel to π′, according to Corollary 3.3. This is again a contradiction as otherwise the
intersection point is contained in more than one plane parallel to π′. �

Lemma 3.6 All planes are affine planes.

Proof. Suppose that π is a projective plane. Consider two planes α, α′ not parallel to π,
but parallel to one another. They have to meet π in two non-intersecting lines, according
to Lemma 3.5. But in π, every two lines meet in a point. This is a contradiction. �

We can now finish the proof of our theorem. In fact, it follows readily from a more general
result by Beukenhout (see [3]) for n ≥ 4, or we can appeal to the main result of Doyen
and Hubaut [5] or of Teirlinck [8], but we can give an easy and self-contained proof in the
above spirit.

We define a parallelism between lines as follows. Two lines L and L′ are parallel if they
are parallel in some plane of S.

Lemma 3.7 Parallelism is an equivalence relation in the set of lines L in S.

Proof. Suppose L is parallel to L′ and L′ is parallel to L′′, with L, L′, L′′ ∈ L, and with
L 6= L′′. We may assume that the planes π and π′ through L, L′ and through L′, L′′,
respectively, are distinct (which also implies that L and L′′ do not meet). Choose some
point x on L and let α be the plane through x and L′′. Clearly L′ does not meet α
(because otherwise π = α = π′). By Corollary 3.3, there is some plane α′ parallel to α
and containing L′. If L intersected α′ nontrivially, then α′ = π = α = π′, a contradiction.
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Hence L must be contained in α by Lemma 3.2. If L were not parallel to L′′ in α, then
π and π′ would both coincide with the plane through L′ and the intersection point of L
and L′′, a contradiction. Hence L and L′′ are parallel. �

Here we could actually refer to Theorem 2.7 of [4] to conclude the proof. But the proof
is also easily concluded with independently as follows.

Lemma 3.8 There are n3 points in S.

Proof. Let α and α′ be two planes meeting in a line L. Every line in α parallel to L is
contained in a plane parallel to α′, and there are exactly n of these. Clearly, there are no
more planes parallel to α′. Since every plane contains n2 points, the lemma follows. �

It now follows that there are n2+n+1 lines through a point, and hence there are precisely
n2 + n + 1 parallel classes of lines. Let P ′ be the set of all points of S and all parallel
classes of lines of S. Let L′ be the set of all lines of S together with all sets of n + 1
parallel classes of lines that contain lines of some plane. Then S ′ = (P ′,L′), with natural
incidence, is a linear space, which satisfies the axiom of Veblen-Young (all planes are
projective), and in which the intersection of any two distinct planes is a line. Hence S ′

is a 3-dimensional projective space of order n, and so S is a 3-dimensional affine space of
order n.

The theorem is proved.

4 Proof of Theorem 2.

We start with a special case of Theorem 2.

Lemma 4.1 The only planar spaces with constant line size 2 in which the parallel axiom
for planes holds and which have constant plane size are the examples (Ex1) and (Ex3).

Proof. Let S = (P ,L, I; Ω) be a planar space with constant line size 2 satisfying the
parallel axiom for planes. Let v be the number of points of S and suppose that all
members of Ω have same number k of points. We may assume k ≥ 3 to avoid trivial
cases. Since every three distinct points are necessarily noncollinear, the number b of
planes is equal to
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|Ω| = b =
v(v − 1)(v − 2)

k(k − 1)(k − 2)
.

We claim that k2 > v. Indeed, if, on the contrary, k2 did not exceed v, then a plane
α would meet every plane of a parallel class of planes in at most one point (since there
are v/k ≥ k planes in a parallel class), and so every two nonparallel planes would meet
in a single point, contradicting the fact that there exist planes meeting in exactly two
points (considering the unique planes through two fixed and one varying point). The
claim follows.

Now fix a parallel class C ⊆ Ω of planes. It contains v/k elements. Let π be any plane
not contained in C. Since π contains k points and meets every member of C in one or
two points, it meets exactly k2−v

k
> 0 members of C in two points, and 2v−k2

k
members in

one point. Hence every plane outside C meets at least one member of C in two points.
The number of planes not in C meeting a member α of C in two fixed points is v−k

k−2
.

Consequently there are k(k−1)
2

v−k
k−2

planes not belonging to C meeting α in two points. If

we vary α over C, then we count every plane exactly k2−v
k

times. Hence there are exactly

k(k−1)
2

v−k
k−2

· v
k

k2−v
k

=
vk(k − 1)(v − k)

2(k − 2)(k2 − v)

planes not belonging to C. So we obtain the equality

vk(k − 1)(v − k)

2(k − 2)(k2 − v)
+

v

k
=

v(v − 1)(v − 2)

k(k − 1)(k − 2)
,

which, after an elementary calculation, simplifies to

2v2 − 2(k2 − k + 3)v + (k4 − 4k3 + 7k2) = 0.

Since v is a positive integer, the discriminant D of the latter equation, where v is viewed
as the unknown, must be a nonnegative, and a perfect square. We compute easily D =
−k4 + 6k3 − 7k2 − 6k + 9, which is nonnegative only for k = 3, 4 (remember also k is
nonnegative and k ≥ 3). If k = 3, then D = 9 and v ∈ {3, 6}; if k = 4, then D = 1 and
v ∈ {7, 8}. Hence for k = 3, we must have v = 6 (otherwise there is only one plane) and
Example (Ex1) arises. If k = 4, then v 6= 7 as k must divide v. Hence v = 8 and it is
easily shown that the unique example in this case is Example (Ex3).
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The lemma is proved. �

Now we prove the following lemma, which is again a special case of Theorem 2..

Lemma 4.2 The only planar spaces with constant line size 2 in which the parallel axiom
for planes holds, and which are the union of two parallel planes, are the examples (Ex1),
(Ex2) and (Ex3).

Proof. Let α1α2 be two parallel planes, with α1 ∪ α2 = P , the point set of the planar
space S with constant line size 2. Suppose |α1| ≥ 5.

We claim that |α2| > 3. In deed, if not, then |α2| = 3. There is a plane π 6= α2 containing
two points of α2. It meets α1 in at most two points. Every plane parallel to π meets both
α1 and α2. But there is only one point in α2 not in π, and hence there is only one plane
π′ distinct from π and parallel to it. Clearly, π′ meets α1 in at most two points, and since
π ∪ π′ = P , we see that α1 contains at most 4 points, a contradiction.

Hence |α2| ≥ 4. Again let π be a plane meeting α2 in exactly 2 points x, x′. Let y, y′ be
two distinct points of α2 different from x, x′. Since α1 has at least 5 points, and every
plane through y, y′ meets α1 in at most 2 points, there are at least three planes through
y, y′. They cannot all meet π nontrivially since there are only at most two candidates
left (the intersection of α1 with π). Hence there is some plane π′ parallel to π containing
y, y′. Varying y′ keeping y fixed, we immediately see that α2 = {x, x′, y, y′} (using the
uniqueness of the parallel through the point y). But now we see that π and π′ are the
unique planes in their parallel class and so their union must be P . But they cannot cover
all points of α1, a contradiction.

So we conclude |α1| ≤ 4 and likewise |α2| ≤ 4. Hence |P| ∈ {6, 7, 8}. If |P| = 8, then it is
easily seen that every parallel class contains exactly two planes of size 4, and so all planes
have the same size. The result follows easily (or from Lemma 4.1). Likewise, if |P| = 6,
then it is easily seen that every parallel class contains exactly two planes of size 3, and
so all planes have the same size. The result follows easily (or again from Lemma 4.1).
Finally, if |P| = 7, then each parallel class of planes contains a plane of size 4 and one
of size 3. Hence all planes of size 3 meet each other. Suppose two such planes meet in
two points. Then the respective parallel planes of size 4 must meet in 7− 1− 1− 2 = 3
points, a contradiction. Hence the planes of size 3 define a projective plane, which must
be the unique projective plane of order 2.

The lemma is proved. �

The next lemma reduces the general case to almost constant plane size.
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Lemma 4.3 If every parallel class of planes in a planar space with constant line size 2
in which the parallel axiom for planes holds, has at least three members, then there is a
number k such that each plane has size k or k + 1.

Proof. Suppose π, π′ are two planes of the planar space S = (P ,L, I; Ω) with constant
line size 2 of different size. We may assume that |π| > |π′| =: k. We remark that k > 3 for
otherwise any plane meeting π′ in two points has a unique disjoint parallel plane. Hence
we can choose two points x, x′ in π′ which are not contained in π. Note that there exists
a point y not in π ∪ π′ (indeed, if π is parallel to π′, then this follows by assumption; if π
is not parallel to π′ then obviously any parallel plane to π contains a point not contained
in π′). We claim that we may assume that the plane α through x, x′, y is not parallel to
π. Indeed, suppose it were. Then π′ is not parallel to π and hence must contain at least
one point x′′ not contained in π ∪ α (x′′ is a point in a third plane parallel to both π and
α). Then we can substitute α with the plane through x, x′′, y and the claim follows.

Hence α meets π in at least one point y′ and we can consider the set S of planes through
y, y′. The plane π′ meets every member of S in at least one point, except possibly one of
them (a parallel one), and it meets at least one member in two points (namely, α). So
|S| ≤ k. The plane π meets every member in at most one point different from x, and
hence |π| − 1 ≤ |S|. Combining these inequalities, the assertion follows. �

We can now finish the proof of Theorem 2. There is an approach similar to the one used
in the proof of Lemma 4.1, but there is also another possibility, which we shall present
now, and which, so we believe, is slightly more efficient.

In the situation of the proof of Lemma 4.3, and with the same notation, we deduces that
|S| = k. Hence, if there are precisely a planes of size k in S, then there are k − a planes
of size k +1 in S and |P| = v = a(k− 2)+ (k− a)(k− 1)+2 = k2− k− a+2. We deduce
easily that every parallel class of planes contains at least k− 2 (because k− 3 planes can
cover at most (k − 3)(k + 1) = k2 − 2k − 3 ≤ k2 − k − a − 3 < v points of S) and at
most k − 1 (because k disjoint planes cover at least k2 = k2 − k + k > k2 − k + 2 − a
points) members. Also, if some parallel class contains k − 2 members, then it contains
a − 4 planes of size k and k − a + 2 planes of size k + 1. Hence, in this case, a ≥ 4. If
some parallel class contains k− 1 members, then it contains k +a− 3 planes of size k and
2− a planes of size k + 1. Hence, in that case, a ≤ 2. We conclude that either all parallel
classes of planes contain exactly k − 2 members, or all such classes contain exactly k − 1
members. Consequently, we can break up the proof in two cases.

Case A: All parallel classes of planes contain exactly k − 2 members.
Notice that this implies a ≥ 4, as remarked above. We first show that there must be two
points contained in exactly k − 1 planes.
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Let S ′ be the set of planes through two points z, z′. Suppose there are a + b planes
of size k in S ′, with b an integer. Then the number of planes of size k + 1 in S ′ is
equal to (v−2)−(a+b)(k−2)

k−1
= k − a − b(k−2)

k−1
, which implies that k − 1 divides b, and that

b/(k− 1) ≤ (k−a)/(k− 1) ≤ (k− 4)/(k− 1) < 1. Hence b ∈ {1−k, 0}. If b = 1−k, then
there are a − k + 1 planes of size k containing z, z′, and there are 2k − a − 2 planes of
size k +1 through z, z′. Hence, in total, there are k− 1 planes through z, z′. We conclude
that, if there are never exactly k − 1 planes through two points, then there are always
exactly k planes through two points, a of which have size k, and the remaining ones have
size k + 1.

So we may assume that there are always k planes through two points. Let X be the
number of planes of size k and let Y be the number of planes of size k + 1. Counting in
two different ways the ordered triples (π, p, p′) of distinct points p, p′ and planes π of size
k and k + 1, respectively, with p, p′ ∈ π, we obtain

X =
v(v − 1)a

k(k − 1)
; Y =

v(v − 1)(k − a)

(k + 1)k
.

Since every parallel class of planes contains exactly a − 4 planes of size k and exactly
k − a + 2 planes of size k + 1, we deduce that the number of parallel classes is equal
toX/(a − 4) = Y/(k − a + 2). Using the above expressions for X and Y in terms of v, a
and k, we obtain, after rewriting slightly,

1 <
a

a− 4
=

k − a

k − a + 2
· k(k − 1)

(k + 1)k
< 1,

a contradiction. We conclude that there must exist two points z, z′ contained in exactly
a− k + 1 planes of size k and 2k − a− 2 planes of size k + 1. Since 0 ≤ a ≤ k, we obtain
the condition a ∈ {k − 1, k}.

• Suppose first that a = k − 1. Then there are no planes of size k through z, z′, and
so there must exist a pair of points x, x′ contained in a = k− 1 planes of size k and
k − a = 1 plane of size k + 1. Let z′′ be a point distinct from z, z′. Then the plane
through z, z′, z′′ has size k + 1. Let π be a plane through z, z′′ not containing z′.
Since π meets every plane through z, z′ in at most one point distinct from z, we see
that |π| ≤ 1 + (k − 1) = k. Hence through z, there are exactly k − 1 planes of size
k. Since from the previous counting it follows that every plane of size k through z
meets every plane of size k +1 through z, z′ in a unique point distinct from z, z′, we
see that there are exactly (k − 1)2 planes of size k containing z.
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Note that v − 2 = (k − 1)2, implying v = k2 − 2k + 3.

Now let y be any point. Then the previous arguments imply that there is at most
one point y′ with the property that there are no planes of size k through y, y′.
Suppose, by way of contradiction, that there is no such point y′. Then any point
y′′ 6= y is contained, together with y, in a unique plane of size k + 1. The number
of such planes is equal to (v − 1)/k, which implies that k = 2, a contradiction.

Hence every point “behaves” like z and so there are exactly k − 1 planes of size
k + 1 and (k − 1)2 planes of size k through every point. Let X be the number of
planes of size k and let Y be the number of planes of size k + 1. Counting in two
different ways the ordered pairs (π, p) of points p and planes π of size k and k + 1,
respectively, with p ∈ π, we obtain

X =
v(k − 1)2

k
; Y =

v(k − 1)

k + 1
,

which implies that v is divisible by k, so k = 3. But then a parallel class contains
only one member, a contradiction.

• Suppose now a = k. Then there are exactly k− 2 planes of size k + 1 through z, z′,
and exactly one plane of size k. It follows that v = (k − 2)k + 2. Let z′′ again be
a point distinct from z, z′, but not contained in the unique plane of size k through
z, z′. As above, every plane through z, z′′ must have size k (as otherwise it must
meet some plane through z, z′ in at least three points, including z, a contradiction),
except for the one through z′. But then the number of planes through z, z′′ equals
((v − 2)− (k − 1))/(k − 2) + 1 = k − 1/(k − 2), implying k = 2, a contradiction.

So we have shown that Case A cannot occur.

Case B: All parallel classes of planes contain exactly k − 1 members.
Here, there are a + k − 3 planes of size k, and 2− a planes of size k + 1 in every parallel
class of planes. If a = 2, then there would only be planes of size k and we can appeal to
Lemma 4.1 to conclude that k = 3, contradicting our assumption that every parallel class
contains at least 3 members. Hence a ∈ {0, 1}.
Let z, z′ be any two different point. Similarly as in the beginning of Case A, one shows
that there are two possibilities: either z, z′ are contained in exactly a planes of size k, and
in k − a planes of size k + 1, or z, z′ are contained in exactly a + k − 1 planes of size k,
and in 2− a planes of size k + 1. Suppose first the latter possibility never occurs. With
the same notation as before, we have again
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X =
v(v − 1)a

k(k − 1)
; Y =

v(v − 1)(k − a)

(k + 1)k
.

Hence then number of parallel classes equals

X

a + k − 3
=

Y

2− a
⇒ k3 − 4k2 + (3 + a)k + 2a2 − 5a = o.

For a = 0, this implies k ∈ {1, 3}, and for a = 1, this implies k = 3. This always implies
that there are only two members in a parallel class, a contradiction.

Hence there are points z, z′ contained in exactly a + k − 1 planes of size k, and in 2− a
planes of size k + 1. Since a + k − 1 6= 0 and k ≥ 4, we can consider two points y, y′ in
a plane α of size k through z, z′, with {z, z′} ∩ {y, y′} = ∅. If there were a second plane
α′ of size k through y, y′, then, since it meets every of the k planes through z, z′ different
from α in at most one point, there would be at least two planes through z, z′ disjoint from
(and hence parallel to) α′, a contradiction. Hence a = 1 (since clearly k + a − 1 > 1).
Replacing α with a plane of size k + 1 through z, z′, we similarly deduce a = 0. This is a
contradiction.

We conclude that Case B cannot occur and the proof of Theorem 2 is complete.

5 Proof of Theorem 3.

Suppose henceforth that the space S = (P ,L, I) is an `-hyperplanar space with constant
line size n, n > 2, satisfying the parallel axiom for hyperplanes. The following lemma has
a similar proof as Lemma 3.1, and shall therefore be omitted.

Lemma 5.1 The number of points in each hyperplane is one more than a multiple of
n−1. Also, the number of points in the intersection of two nonparallel hyperplanes is one
more than a multiple of n− 1.

Lemma 5.2 Each line intersecting a hyperplane ξ1 in a point x1 intersects every parallel
hyperplane ξ2 in a point.

Proof. Let ξ1 and ξ2 be two parallel but distinct hyperplanes, and let L1 be a line meeting
ξ1 in a point x. We assume, by way of contradiction, that L1 does not meet ξ2. Let ξ′1
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be a hyperplane containing L1 and let ξ′2 be a hyperplane parallel to ξ′1 but distinct from
it. Let there be exactly k hyperplanes through L1. All of these k hyperplanes meet π2,
and exactly k − 1 of them meet π′

2. We count in two ways the pairs (ξ, y), where ξ is a
hyperplane through L1 and y is a point in ξ and in ξ2. Lemma 5.1 implies that `|ξ2| is the
sum of k natural numbers every one of which is one modulo n− 1. Reading this modulo
n− 1, we see that ` is equal to k modulo n− 1. Similarly, `|ξ′2| is the sum of k− 1 natural
numbers every one of which is one modulo n− 1. So ` is equal to k − 1 modulo n− 1, a
contradiction. �

We now introduce planes as follows. Let x1, x2, x3 be three noncollinear points. Then the
intersection of all hyperplanes containing x1, x2 and x3 is called a plane. The set of planes
is denoted by ∆.

Lemma 5.3 The structure S ′ = (P ,L, I; ∆) is a planar space.

Proof. Let π be a plane. It suffices to prove that for every three noncollinear points
x1, x2, x3 of π, the intersection of all hyperplanes through x1, x2, x3 is precisely π. By
definition of π, this holds for some three points y1, y2, y3 of π. Since there are precisely
` hyperplanes through y1, y2, y3, and since all these hyperplanes contain x1, x2, x3, we see
that these ` hyperplanes are form exactly the set of hyperplanes through x1, x2, x3 and so
π is also the intersection of all hyperplanes through x1, x2, x3. This shows the lemma. �

We can now show the counterpart of Lemma 3.6.

Lemma 5.4 All planes are affine planes.

Proof. Let π be any plane and let L be a line contained in π (since π contains at least
three noncollinear points, it contains at least three lines). We first claim that not all
hyperplanes that contain L contain π. Clearly π does not coincide with P , and so there is
some point x ∈ P outside π. There is a unique plane π′ containing L and x, and it differs
from π. Note that it cannot contain π (otherwise there are at least two planes through
three noncollinear points of π). Since π′ is the intersection of all hyperplanes containing
L and x, there must be a hyperplane, say ξ, through L and x not containing π and the
claim follows.

Next we claim that ξ meets π in L. Indeed, we already have that L is contained in ξ ∩ π.
Suppose that some point y ∈ ξ ∩ π is not incident with L. Then the plane through L
and y coincides with π, but must also be contained in ξ, by the definition of planes. This
contradicts the choice of ξ. The claim follows. Note that the same argument shows that
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hyperplanes and planes meet in either the empty set, or a point, or a line. Consider now
a point z on L. Since n > 2, it is easy to see that there are at least two lines L1, L2

through z in π distinct from L. Every hyperplane ξ′ parallel to ξ meets these two lines
in two (different points), and hence in a line L′. We conclude that there are exactly
n hyperplanes in the parallel class of ξ, each of them intersecting π in n points. So π
contains n2 points. But a linear space of size n2 where each line has size n is an affine
plane. �

We now define a parallelism between lines, just like in the case ` = 1, as follows. Two
lines L and L′ are parallel if they are parallel in some plane of S, and we can prove:

Lemma 5.5 Parallelism is an equivalence relation in the set of lines L in S.

Proof. Suppose L is parallel to L′ and L′ is parallel to L′′, with L, L′, L′′ ∈ L, and with
L 6= L′′. We may assume that the planes π and π′ through L, L′ and through L′, L′′,
respectively, are distinct (which also implies that L and L′′ do not meet). Choose some
point x on L and let ξ be any hyperplane through x and L′′ not containing π (this exists
because otherwise the plane through L′′ and x would contain π, a contradiction). We
first claim that ξ meets π in a line. Indeed, as in the proof of Lemma 5.4, we see that
every parallel class of hyperplanes contains exactly n members. But every member of that
parallel class meets π in at most n points, and the union of these intersections must be
π, which contains n2 points. Hence all intersections must contain n points. In particular,
ξ meets π in a line. If this line does not coincide with L, then it meets L′ and so ξ would
contain π′ and hence also π, a contradiction. The claim follows. It now also follows that
every hyperplane containing L′′ and x contains L. So the plane through L′′ and x contains
L and obviously L and L′′ are parallel in that plane. Hence L and L′′ are parallel and the
lemma is proved. �

Similarly as in the case ` = 1, one can now complete the proof of Theorem 3. We can
also refer to Theorem 2.7 of [4].

This finished the proof of Theorem 3.
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Pýnar Anapa
Education Faculty
Primary Education Department
Eskisehir Osmangazi University
26480, Eskisehir,
TURKEY
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