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Abstract

We consider point-line geometries having three points on every line, having three
lines through every point (bislim geometries), and containing triangles. We classify
such geometries under the hypothesis of the existence of a collineation group acting
transitively on the point set.

1 Introduction

In Part I of this paper we classified some geometrically point homogeneous bislim geome-
tries of gonality 3. In the present paper we explicitly assume a point transitive group
action and classify the corresponding geometries. It will turn out that we can rely on
Part I for large classes.

To make this Part II self-contained, we recall some notation. However, for a general
introduction and motivation we refer to Part I. Here, we just mention that our result is
equivalent with the classification of all cubic bipartite graphs containing a cycle of length
6 and admitting a group acting transitively on one of the bipartition classes (and we do
not assume that the graph is finite). However, it seems easier and more convenient to
describe this classification in the language of geometries, which is exactly what we will
do.

We note that our “classification” is only explicit in “most” cases. In three cases (depending
on the local structure), we only describe the geometries in either group-theoretic or graph-
theoretic terms. However, this should provide enough information if one wants to use this
classification.

The paper is organized as follows. In the next section, we recall notation. In section 3
we describe all geometries that are involved in our Main Result 2, and then we state this
result, the proof of which will be given in Section 5.
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2 Preliminaries

A point-line geometry Γ = (P ,L, I) consists of two disjoint sets P (the point set) and
L (the line set), together with a symmetric incidence relation I between P and L. The
graph with vertex set P ∪ L, where two vertices are adjacent if they represent an inci-
dent point-line pair, is called the incidence graph of Γ, and is also denoted by Γ (since
this graph unambiguously determines the geometry and vice versa), and we use graph-
theoretic notation. For instance, if n is any natural number, then Γn(x) denotes the set
of vertices at distance n from the vertex x. The incidence graph is a bipartite graph.
Every automorphism of that graph fixing the two bipartition classes is a collineation of
the geometry. Also, if the graph is connected, then we say that the geometry is connected.
A geometry where every line carries exactly three points is called slim. If also every point
is incident with three lines, then the geometry is called bislim. The dual of a geometry is
obtained by interchanging the point and line set; the incidence graph remains unchanged.
A duality is an automorphism of the incidence graph interchanging the two bipartition
classes.

The gonality of a geometry is half of the girth of its incidence graph. In this paper, we
are only concerned with geometries having gonality distinct from 2 (the so-called partial
linear spaces, because two points determine at most one line); in fact we will assume
gonality 3 all the time (this means that the geometry has triangles). If a geometry admits
a collineation group acting transitively on both the point set and the line set, then we
say for short that the geometry is transitive. A flag is an incident point-line pair, or,
equivalently, an edge of the incidence graph.

We will also use some obvious notation from incidence geometry like ab is the line incident
with the points a and b, if it exists and is unique. We extend this notation to abc to say
that the points a, b, c are incident with a common line and to denote that unique line
(we sometimes express this by saying that the line abc exists).

Let Γ = (P ,L, I) be a connected point-transitive bislim geometry of gonality 3. Let G
be a point-transitive collineation group. If G acts flag transitively, then all possibilities
are given in [5], see Theorem 4.1 below. Hence, in this paper, we may assume that G is
not flag transitive. Let x be any point of Γ and L any line incident with x. Let x1, x2

be the two other points incident with L, and let L1, L2 be the two other lines incident
with x. The points on Li, i = 1, 2, different from x will be denoted by yi and zi. The
local structure at the point x is the subgeometry Γx of Γ with point set x ∪ Γ2(x) and
line set the elements of Γ1(x) ∪ Γ3(x) incident with 2 or 3 of these points. Remark that
this subgeometry is not necessarily bislim (in fact, it is only bislim if it coincides with Γ
itself!). Denote the set of lines of Γx not through x by Γl

x. If Γx is isomorphic to some
geometry Γ′, for all points x, then we say that Γ is geometrically point homogeneous and
point-locally Γ′. Similarly for geometrically line homogeneity and line-local geometries.
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If a geometry is point-locally Γ′ and line-locally also Γ′, then we say that Γ is locally Γ′,
or Γ has local structure Γ′, and Γ is geometrically homogeneous.

A 1-cover of a connected bislim geometry Γ = (P ,L, I) is a connected bislim geometry

Γ̃ = (P̃ , L̃, Ĩ) together with a (necessarily surjective) incidence preserving mapping θ :

P̃ → P ; L̃ → L such that the three points on any line L̃ of Γ̃ are mapped onto the
three points of L̃θ, and dually for the three lines through any point x̃ of Γ̃. Clearly, the
local structure of Γ̃ at a point x̃ can abstractly be viewed as a subgeometry of the local
structure of Γ at the point x̃θ. Now, if for all points and lines Ã of Γ̃, the local structure
at Ã is mapped under θ bijectively onto the local structure of Γ at Ãθ, then we say that Γ̃
is a 11

2
-cover with covering epimorphism θ. We now have the usual definition of universal

11
2
-cover Γ of Γ with universal covering epimorphism θ: for every 11

2
-cover θ : Γ̃ → Γ,

there exists a cover θ̃ : Γ → Γ̃ such that θ = θ̃θ, and then θ̃ is a 11
2
-cover. Finally we say

that Γ is 11
2
-connected if for every 11

2
-cover the covering epimorphism is an isomorphism.

Clearly for every 11
2
-connected bislim geometry, the identity defines a universal 11

2
-cover,

and every universal 11
2
-cover is 11

2
-connected.

3 Examples of point-transitive bislim geometries with

triangles

For a list of local structures, we refer to the appendix of [6]. The local structure with
number n of that list will be referred to as LS(n). In Part I of the present work, we proved
that this list is complete, and that the local structure at a point x of a geometrically point
homogeneous bislim geometry of gonality 3, is one of the 11 possibilities in Figure 1.

3.1 A family associated with symmetric trivalent graphs

Let there be given a 3-regular (or trivalent, or cubic) graph G(V,E) admitting an au-
tomorphism group acting transitively on the set of ordered edges (v, w) ∈ V × V with
{v, w} ∈ E (i.e. a symmetric graph). We define a geometry Γ := ΓG in the following way.
To every ordered edge (v, w) of G we attach a point P(v,w) and a line L(v,w). If v ∈ V is
adjacent to w, w1 and w2, then the point P(v,w) and the line L(v,w) are incident with the
lines L(v,w1), L(v,w2), L(w,v), and with the points P(v,w1), P(v,w2), P(w,v), respectively. It is
easily seen that the geometry Γ is bislim, without digons but containing triangles. Indeed,
with above notation, {P(v,w), P(v,w1), P(v,w2)} is a triangle of Γ with sides L(v,w), L(v,w1) and
L(v,w2). Moreover, it is easy to check that Γ is a transitive bislim geometry. Also, if
G(V,E) does not contain triangles (see Figure 2), then the local structure in any point or
line x of ΓG is isomorphic to LS(1), which is not symmetric in the three elements incident
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1 4 5 13 24 34

35 51 58 73 77

Figure 1: Local structure in a geometrically point homogeneous bislim geometry of go-
nality 3

with x; hence ΓG does not admit a flag transitive collineation group. On the other hand,
if G(V,E) contains triangles (see Figure 3), then the transitivity on edges implies readily
that G(V,E) is the complete graph on 4 vertices (this is straightforward to check and left
to the reader). In the latter case, ΓG is isomorphic to the Coxeter geometry, introduced
by Coxeter [1] and named after him in [5]. This geometry is flag transitive and has local
structure LS(13). But both the alternating group Alt(4) and the symmetric group Sym(4)
define a transitive but not flag transitive collineation group of the Coxeter geometry.

3.2 A family attached to certain symmetric (3, 3)-valent digraphs

Let there be given a symmetric (3, 3)-regular digraph G, i.e., every vertex of G lies on
three incoming edges and three outgoing ones, and the automorphism group G of G acts
transitively on the set of (directed) edges. Moreover we suppose that the valency of the
underlying undirected graph is 6 and that the action of the stabilizer Gv of a vertex v
on its neighbors is isomorphic to Sym(3) with natural actions on the three incoming and
three outgoing vertices, respectively, in v. We call such a graph a Sym(3)-symmetric
(3, 3)-valent digraph. We denote the permutation group induced by Gv on the six edges
in v by Gv.

Each element of order 2 in Gv fixes one edge in each orbit. Those two edges will be called
opposite (the opposition relation is clearly symmetric). Clearly, this opposition relation is
well defined, i.e., opposite edges are mapped onto opposite edges under an automorphism
in G.
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Figure 2: G(V,E) does not contain triangles
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Figure 3: G(V,E) does contain triangles
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Now we define the following geometry ΓG. To every directed edge (v, w) of G we attach
a point P(v,w) and a line L(v,w). We now define incidence. The point P(v,w) is always
incident with the line L(v,w). Furthermore, the point P(v,w) is incident with the line L(u,v)

if and only if (v, w) is not opposite (u, v). It is easily seen that the geometry ΓG is bislim,
without digons but containing triangles. Indeed, {P(v,w), P(v,w′), P(v,w′′)} is a triangle of Γ,
if (v, w), (v, w′) and (v, w′′) are the three directed edges leaving from v.

One now checks that ΓG has local structure LS(13) or LS(1) depending on whether or not
G contains (directed) triangles whose edges are not mutually opposite.

We remark that directed triangles with opposite edges are allowed and lead to LS(1), resp.
LS(13) if G does not contain, resp. does contain (directed) triangles whose edges are not
mutually opposite.

3.3 Some families attached to classes of groups

(1) Consider the group Ga,b := 〈a, b : a3 = id〉, and let N be a normal subgroup of
Ga,b not containing b2, b3, baba2, ab−1ab, [a, b], ba2b2a2, (ba2)2, (ba2)3, ba2ba. Then we
define the following geometry ΓGa,b,N . The points are the elements of the quotient
group Ga,b/N and the lines are the right translates of {N,Na,Nb}. One can check
(we will do this explicitly later on) that the conditions are chosen such that ΓGa,b,N

is a transitive bislim geometry with local structure LS(1). For every such N , the
geometry ΓGa,b,{id} is the universal 11

2
-cover of ΓGa,b,N .

(2) Consider the group Gs,t := 〈s, t : s2 = t3 = id〉, and let N be a normal sub-
group of Gs,t not containing (st)3, [s, t]st, [s, t]2, [s, t](st)2, (st2)2(st)2, [s, t]2st, [s, t]3.
We define the geometry ΓGs,t,N with points the right cosets in the quotient group
Gs,t/N of the subgroup {N,Ns}, and lines the right translates of the 3-set {{N,Ns},
{Nt,Nst}, {Nts,Nsts}}. One can check that the conditions are chosen such that
ΓGs,t,N is a transitive bislim geometry with local structure LS(5). For every such N ,
the geometry ΓGs,t,{id} is the universal 11

2
-cover of ΓGs,t,N .

(3) Consider the subgroup Gsts,t of Gs,t = 〈s, t : s2 = t3 = id〉 generated by sts and
t, and let N be a normal subgroup of Gsts,t not containing [s, t](st)2, [sts, t], [(s, t]2

and [s, t]3. Then we define the following geometry ΓGsts,t,N . The points are the
elements of the quotient group Gsts,t/N and the lines are the right translates of
{N,Nsts,Nt}. One can check (and this is completely similar to Example (2)) that
the conditions are chosen such that ΓGsts,t,N is a transitive bislim geometry with local
structure LS(5). For every such N , the geometry ΓGsts,t,{id} is the universal 11

2
-cover

of ΓGsts,t,N and is isomorphic to the geometry ΓGs,t,{id} of the previous paragraph.
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3.4 Geometries with two non isomorphic local structures for
lines

Let D be the dual of the geometry defined by the vertices and edges of a complete graph
K4 on 4 vertices. Let G(F ∪B, E) be a connected bipartite (6, 3)-valent graph. We define
a geometry Γ := ΓG in the following way. To every vertex f ∈ F we attach a geometry
fD isomorphic to D. Then every edge of G containing f corresponds to a unique point
of the geometry fD. The points of the geometry ΓG are the edges of the graph G. Let
b be a vertex of B adjacent to the vertices f , f1 and f2. Then {{f, b}, {f1, b}, {f2, b}} is
a line of the geometry Γ. The line set of Γ is the union of the line sets of all geometries
corresponding to the vertices of F , together with the above mentioned triples. It is clear
that the local structure in each point is isomorphic to LS(4). However, the local structure
of a line in some member of F is isomorphic to LS(10), while the local structure of all
other lines is isomorphic to LS(0).

Now suppose that the graph G admits an automorphism group acting transitively on
the edges and preserving the incidences in all geometries corresponding to the vertices in
F . Then it is clear that the geometry ΓG is point transitive. Remark that, since local
structure LS(4) is not symmetric in the three elements incident with a point, the geometry
does not admit a flag-transitive collineation group.

3.5 Quotients of the honeycomb geometry

In Part I of the present work, we have introduced many geometrically point-homogeneous
quotients of the honeycomb geometry. We will briefly repeat some of these constructions,
adding some comments on collineation groups.

Let E be the real Euclidean plane, and consider the tiling T of E in regular hexagons (a
honeycomb). The skeleton of this honeycomb is in fact a bipartite graph which divides
the vertices into two classes that we will designate as black and white. We define the
honeycomb geometry S∞ as the geometry with points the black vertices and lines the
white vertices, and where incidence is adjacency.

Let W (Ã2) be the full collineation group of S∞, or equivalently, the group of isometries
of E preserving the honeycomb tiling T and stabilizing the set of black vertices (which is

the Weyl group of type Ã2, whence the notation).

Let G be a subgroup of W (Ã2) such that for every vertex v of T , the graph theoretic
distance between two distinct vertices of the orbit vG is at least 8. Then the quotient
geometry S∞/G defined in the obvious way by identifying the elements in the same orbit,
is a geometry with local structure LS(13).
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Very explicitly, we can define the following geometries, where the description is a result
of a coordinatization of E, which is reflected in the conditions on the various parameters
and the identifications (we always coordinatize with respect to basis vectors forming an
angle of sixty degrees; if one would choose e.g. 120 degrees, then the formulas would look
different, but similar).

(HC1) Let r, s be two integers with 0 ≤ s ≤ r and r2 + rs + s2 ≥ 12. We define a
geometry S(r,s) as follows. The points are the equivalence classes of ordered pairs
(i, j), with i, j integers and with respect to the equivalence relation ∼ defined as
(i, j) ∼ (i′, j′) if (i− i′, j− j′) = (kr, ks), for some integer k. We denote by (i, j)/ ∼
the equivalence class containing (i, j). The lines of the geometry are the 3-sets
{(i, j)/ ∼, (i+ 1, j)/ ∼, (i, j + 1)/ ∼}, for all integers i, j.

It is clear that the group consisting of the collineations (x, y) 7→ (x+a, y+b), for all
(a, b) ∈ Z×Z, acts as a transitive collineation group. Also, it is easy to see that the
reflection (x, y) ↔ (y, x) induces a collineation of S(r,s) if and only if r = s. In this
case, S(r,s) admits a point-transitive collineation group with point stabilizer of order
2. If s = 0, then the reflection (x, y) ↔ (−x− y, y) is a collineation, and hence also
in this case we have a point transitive collineation group with point stabilizer of size
2. In each of these two cases, there is also an extra sharply transitive collineation
group containing a so-called glide reflection; we refer to this group as a glide group.

(HC2) Let a, c and d be integers with a, d > 0, 0 ≤ c < a and such that for every nontrivial
integer linear combination of (a, 0) and (c, d), say (r, s), r2+rs+s2 ≥ 12. The points
of the geometry M(a,0),(c,d) are the equivalence classes of ordered pairs (i, j), with
i, j integers, with respect to the equivalence relation ≈, defined as (i, j) ≈ (i′, j′) if
(i− i′, j − j′) = (ka+ `c, `d), for some integers k and `. With similar notation as in
the previous example, the lines of the geometry are the 3-sets {(i, j)/ ≈, (i+1, j)/ ≈,
(i, j + 1)/ ≈}, for all integers i, j.

Here, again every translation (x, y) 7→ (x + t, y + u) induces a collineation of
M(a,0),(c,d), for all (t, u) ∈ Z × Z. The group generated by all these translations

will be called the full translation group. The rational numbers c/d, a/d and d2−c2

ad

are integers if and only if M(a,0),(c,d) admits the reflection (x, y) ↔ (y, x), and hence
it admits a second sharply point transitive collineation group, which we will de-
scribe below. Moreover, in this case, the two sharply transitive collineation groups
generate a transitive collineation group with point stabilizer of size 2.

Similarly, M(a,0),(c,d) admits the reflection (x, y) ↔ (x,−x − y) if and only if the

rational numbers c/d, a/d and c2+2cd
ad

are integers, in which case again a second
sharply point transitive collineation group exists, and also again a point transitive
one with point stabilizer of size 2.
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Likewise for the reflection (x, y) ↔ (−x− y, y) and the condition that the rational
number d+2c

a
is integer.

Remark that, if at least two of the above reflections act on M(a,0),(c,d), then it is
isomorphic to either M(a,0),(0,a) or M(3a,0),(a,a). In this case, the three reflection
groups above live in the geometry and there are two more sharply point transitive
collineation groups, both containing rotations: one acting line sharply transitively,
unlike the other.

In a similar fashion, one can check that a rotation of 120 degrees around the origin
preserves the geometry if and only if d divides both a and c, and ad divides c2 +cd+
d2. In this case the full automorphism group of M(a,0),(c,d) acts flag transitively. The
flag transitive bislim geometries with triangles have been classified in [5], and this
particular class has been defined there in a slightly different way (this is because
the proof in [5] does not use the geometric result of [6]). A direct proof of the
equivalence is cumbersome and left to the interested reader. Here, we just recall the
construction of the equivalent class of geometries G(r,s). These geometries depend
on two integer parameters r and s with r ≥ s and r + s ≥ 4.

The points of G(r,s) are the ordered pairs (i, j), with i, j integers and with identifi-
cation of all pairs (i, j) + k(r, s) + l(−s, r + s) = (i+ kr − ls, j + ks+ lr + ls) with
k, l integers. The lines of the geometry are the 3-sets {(i, j), (i+ 1, j), (i+ 1, j − 1)}
consisting of the three points incident with the line, and where for each point the
above identification rule holds.

One easily checks that all these geometries are bislim with gonality 3 and they are all
locally LS(13). The geometries in (HC1) are infinite, while the others are finite.

But the above examples also exist for smaller parameters. More exactly, LS(n) occurs,
for n ∈ {24, 35, 51, 58, 73, 77}.

Below, we do not care about the restrictions on the parameters a, c, d, which were only
required to avoid isomorphic geometries.

All of M(3,0),(−d,2d+1), M(3,0),(1−d,2d+1), M(3,0),(−d,2d) and M(3,0),(1−d,2d), with d ≥ 2, are
locally LS(24) and admit a point transitive collineation group (translations). Also S(3,0)

is locally LS(24) and admits all translations. Moreover, the geometries M(3,0),(1−d,2d+1),
M(3,0),(−d,2d) and S(3,0) admit the reflection (x, y) ↔ (−x − y, y), and hence these ge-
ometries also admit a second sharply point transitive collineation group (called a glide
group below), and the group generated by the translations and the above reflection acts
transitively and has point stabilizer of size 2.

If, in the previous paragraph, 2d + 1 = 3, then M(3,0),(0,3) is the Pappus geometry and
admits two different point transitive groups acting non flag transitively: a translation
group of order 9 and the group generated by the translations and the reflection (x, y) ↔
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(y, x). Also, M(3,0),(−1,3)
∼= M(3,0),(1,3) is a geometry which is locally LS(58), admitting a

transitive translation group. This geometry is isomorphic to M(9,0),(2,1).

The geometries S(2,1) and M(n,0),(2,1), with n ≥ 10, are all locally LS(51). For all these,
S(2,1) is a 11

2
-cover. The collineation group is in each case a cyclic group acting sharply

transitively on the point set.

The Möbius-Kantor geometry, M(8,0),(2,1), is locally LS(73) and is only 11
2
-covered by

itself. The cyclic group of order 8 acts sharply point transitively.

Finally, M(7,0),(2,1), the Fano geometry, is locally LS(77) and admits a sharply point
transitive cyclic collineation group of order 7.

The geometries with local structure LS(51), LS(58), LS(73) and LS(77) can very easily be
described using their cyclic collineation group as follows. Consider the cyclic group Zn

with n ∈ N ∪ {∞}, n ≥ 7. Define the point set of the geometry as the elements of Zn,
and the line set are the 3-subsets {x, x+ 1, x+ 3} with x ∈ Zn.

4 Statement of Main Result 2

In the present paper we will prove the following theorem.

Main Result 2. If Γ is a connected bislim geometry of gonality 3 with a point transitive
collineation group G which is not flag transitive, then (Γ, G) is one of the examples in the
previous section. In particular, either

(i) Γ has local structure LS(1) and either

(ia) Γ arises from a symmetric trivalent graph without triangles, while G is a graph
automorphism group acting transitively on ordered edges, or

(ib) Γ arises from a Sym(3)-symmetric (3, 3)-valent digraph containing no directed
triangles with non opposite directed edges and G is an automorphism group
of the graph acting transitively on the directed edges, and with Gv acting as
Sym(3) on the three incoming (respectively outgoing) edges of each vertex v, or

(ic) Γ ∼= ΓGa,b,N , with Ga,b = 〈a, b : a3 = id〉 and N is a normal subgroup of
Ga,b not containing b2, b3, baba2, [a, b], ab−1ab, ba2b2a2, (ba2)2, (ba2)3, ba2ba, and
G = Ga,b/N ;

or

(ii) Γ has local structure LS(4) and Γ arises from a symmetric (6, 3)-valent graph where
each 6-valent vertex is associated to a geometry isomorphic to the dual of K4, while
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G is a graph automorphism group acting transitively on the edges and preserving the
incidences in the geometries corresponding to the 6-valent vertices; or

(iii) Γ has local structure LS(5) and either

(iiia) Γ ∼= ΓGs,t,N with Gs,t = 〈s, t : s2 = t3 = id〉 and N is a normal subgroup
of Gs,t not in the subgroup Gsts,t generated by sts and t, and not containing
(st)3, [s, t]2, [s, t]3, [s, t](st)2, (st2)2(st)2, [s, t]2st, [s, t]st, and G = Gs,t/N with
point stabilizer of order two, or

(iiib) Γ ∼= ΓGsts,t,N with N a normal subgroup of Gsts,t and not containing sts, t, stst2,
(stst2)2, (st)3st2, (ts)3t2s, [sts, t], (stst2)3, and G = Gsts,t/N with point stabi-
lizer of order 1. If N s = N , then N E Gs,t and Γ ∼= ΓGs,t,N , but the group
Gsts,t/N is a sharply point-transitive subgroup of Gs,t/N ; the latter induces a
point stabilizer of order 2;

or

(iv) Γ has local structure LS(13) and Γ is isomorphic either to S(r,s), with 0 ≤ s ≤ r
and r2 + rs + s2 ≥ 12, or to M(a,0),(c,d), with a, c and d integers with a, d > 0,
0 ≤ c < a and for every integer linear combination of (a, 0) and (c, d), say (r, s),
r2 + rs+ s2 ≥ 12. Or Γ is isomorphic to the honeycomb geometry itself. In the first
case, if G acts sharply point transitively, then either it is generated by translations
or it is a glide group (only if r = s or s = 0). If the point stabilizer has size 2,
then G is generated by all translations and a reflection, and r = s or s = 0. In the
second case, G is the full translation group, except in the following cases:

(a) a
d
, c

d
, d2−c2

ad
∈ Z,

(b) a
d
, c

d
, c2+2cd

ad
∈ Z,

(c) 2c+d
a
∈ Z,

(d) a
d
, c

d
, c2+cd+d2

ad
∈ Z.

If exactly one of (a), (b), (c) holds, then ((d) does not hold and) we have a second
sharply point transitive group containing glide reflections, and the group generated by
the two sharply point transitive groups has point stabilizer of size 2. If two of (a), (b)
and (c) hold, then they all hold and (d) holds and then we have the so called square
geometryM(a,0),(0,a) or the so called triple square geometryM(3a,0),(a,a), which admits
exactly fifteen possible point transitive non flag transitive collineation groups (all
such groups inherited from the honeycomb geometry). If none of (a), (b), (c) holds,
but (d) holds, then we have two more sharply point transitive collineation groups
(one acting transitively on the lines, the other does not) containing rotations, every
other point transitive collineation group is flag transitive, and we have the geometry
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G(r,s) with 0 < s < r and r + s ≥ 4. In the third case (honeycomb geometry) there
are in total fifteen possible point transitive non flag transitive collineation groups
(seven up to conjugacy), classified in Lemma 5.3 below; or

(v) Γ has local structure LS(24) and either Γ ∼= M(3,0),(−d,2d+1), or Γ ∼= M(3,0),(1−d,2d+1),
or Γ ∼= M(3,0),(−d,2d), or Γ ∼= M(3,0),(1−d,2d), d ≥ 2, or Γ ∼= S(3,0). In all cases, G acts
sharply point transitively and is generated by translations, except in the second, third
and last case, where a glide group can act sharply point transitively, or the group
generated by all translations and a reflection (x, y) ↔ (−x − y, y) acts transitively
and has point stabilizer of size 2; or

(vi) Γ has local structure LS(34) and is the Desargues configuration. The group G is the
Frobenius group of order 20; or

(vii) Γ has local structure LS(35) and Γ ∼= M(3,0),(0,3) is the Pappus configuration. The
group G has order 9 (two possibilities), or order 18 (four possibilities) or order 36
(one possibility); or

(viii) Γ has local structure LS(51) and Γ ∼= M(n,0),(2,1), n ≥ 10, or Γ ∼= S(2,1), and G is
cyclic of order n (first case) or has infinite order (second case); or

(ix) Γ has local structure LS(58) and Γ ∼= M(3,0),(1,3)
∼= M(9,0),(2,1), and G is cyclic of

order 9; or

(x) Γ has local structure LS(73) and Γ ∼= M(8,0),(2,1) is the Möbius-Kantor configuration,
and G has order 8 (two possibilities) or order 16 (one possibility); or

(xi) Γ has local structure LS(77) and Γ ∼= M(7,0),(2,1) is the Fano plane, and G is cyclic
of order 7.

Note that the classes of geometries in (ia), (ib) and (ic) are not at all disjoint, but together
with the given group action, there is only some overlap between (ia) and (ic), which can
be avoided by requiring that the normal subgroup N in (ic) does not contain (ab)2.

It is interesting to note that all point-transitive bislim geometries are point-locally the
same as line-locally, except in the case of LS(4).

For the sake of completeness, we also recall the main result of [?], where all flag transitive
bislim geometries containing triangles are classified, using completely different methods.
We do not want to go into detail about the groups, but just mention their orders.

Theorem 4.1 (Van Maldeghem & Ver Gucht [5]) Let Γ be a (not necessarily fi-
nite) connected bislim flag transitive point-line geometry of gonality 3 with a flag stabilizer
H. Then one of the following possibilities occurs.

12



(i) Γ is isomorphic to the honeycomb geometry, and |H| ∈ {1, 2};

(ii) Γ is isomorphic to the Möbius-Kantor geometry, and again |H| ∈ {1, 2};

(iii) Γ is isomorphic to the Desargues geometry, and H is elementary abelian and of
order 2 or 4;

(iv) Γ is isomorphic to G(r,s), with r ≥ s ≥ 0 and r + s ≥ 3. In this case |H| ∈ {1, 2}
for s = 0 and for r = s, except if (r, s) = (3, 0). In the latter case Γ is the Pappus
geometry and H is elementary abelian of order 1, 2 or 4. If (r, s) = (2, 1), then Γ
is the Fano geometry and either |H| = 1 or |H| = 8 and H is dihedral. In all the
other cases |H| = 1.

We note that the geometry G(r,0) is isomorphic to M(r,0),(o,r) and that the geometry G(r,r)

is isomorphic to M(3r,0),(r,r). This can be shown directly relatively easily.

The proof of Main Result 2 will to a large extend depend on Main Result 1 (contained
in Part I of the present work), which we therefor recall in some detail (leaving out unim-
portant details).

We need a few additional definitions of geometries that are also quotients of the honeycomb
geometry.

(HC3a) Let r be an integer with r ≥ 2. The points of the geometry S∗(r) are the equivalence

classes of ordered integer pairs (i, j) with respect to the equivalence relation
∗∼

defined as (i, j)
∗∼ (i′, j′) if either (i− i′, j− j′) = (−2kr, 4kr), for some integer k, or

(i+ i′ + r+ j, j′− j− 2r) = (−2kr, 4kr), for some integer k. One checks that this is
indeed an equivalence relation (in particular, it is symmetric!). The lines are again,

with similar notation as before, the 3-sets {(i, j)/ ∗∼, (i+ 1, j)/
∗∼, (i, j + 1)/

∗∼}, for
all integers i, j.

(HC3b) Let r be an integer with r ≥ 1. The points of the geometry S∗∗(r) are the equivalence

classes of ordered integer pairs (i, j) with respect to the equivalence relation
∗∗∼

defined as (i, j)
∗∗∼ (i′, j′) if either (i − i′, j − j′) = (−k(2r + 1), 2k(2r + 1)), for

some integer k, or (i + i′ + r + j, j′ − j − 2r − 1) = (−k(2r + 1), 2k(2r + 1)), for
some integer k. One checks that this is indeed an equivalence relation (in particular,
it is symmetric!). The lines are again, with similar notation as before, the 3-sets

{(i, j)/ ∗∗∼, (i+ 1, j)/
∗∗∼, (i, j + 1)/

∗∗∼}, for all integers i, j.

(HC4a) Let r, s be two integers with r ≥ 2 and s ≥ 3. The points of the geometry M∗
(r),(s,0)

are the equivalence classes of ordered integer pairs (i, j) with respect to the equiva-

lence relation
∗
≈ defined as (i, j)

∗
≈ (i′, j′) if either (i−i′, j−j′) = (−2kr+`s, 4kr), for
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some integers k, `, or (i+i′+r+j, j′−j−2r) = (−2kr+`s, 4kr), for some integers k, `.
One again checks that this is indeed an equivalence relation. The lines are, again,

with similar notation as before, the 3-sets {(i, j)/
∗
≈, (i+ 1, j)/

∗
≈, (i, j + 1)/

∗
≈}, for

all integers i, j.

(HC4b) Let r, s be two integers with r ≥ 1 and s ≥ 3. The points of the geometry
M∗∗

(r),(s,0) are the equivalence classes of ordered integer pairs (i, j) with respect

to the equivalence relation
∗∗
≈ defined as (i, j)

∗∗
≈ (i′, j′) if either (i − i′, j − j′) =

(−k(2r+1)+`s, 2k(2r+1)), for some integers k, `, or (i+ i′+r+j, j′−j−2r−1) =
(−k(2r + 1) + `s, 2k(2r + 1)), for some integers k, `. One checks that this is indeed
an equivalence relation. The lines are again, with similar notation as before, the

3-sets {(i, j)/
∗∗
≈, (i+ 1, j)/

∗∗
≈, (i, j + 1)/

∗∗
≈}, for all integers i, j.

We can now repeat Main Result 1 to some lesser extend than in [6].

Main Result 1. If Γ = (P ,L, I) is a geometrically point homogeneous connected
bislim geometry of gonality 3 which is point locally LS(n), 1 ≤ n ≤ 77, then n ∈
{1, 4, 5, 13, 24, 34, 35, 51, 58, 73, 77}. In particular, we have the following characterizations.

(i) If n = 1, then there are always lines with local structure LS(1), and there are always
points incident with three such lines. Also, if Γ is not geometrically homogeneous,
then there are lines with local structure LS(0), and there are points incident with a
unique such line.

(ii) If n = 4, then Γ arises from a symmetric (6, 3)-valent graph where each 6-valent
vertex is associated to a geometry isomorphic to the dual of K4.

(iii) If n = 13, then Γ is isomorphic to a quotient of the honeycomb geometry, which is
the universal 11

2
-cover of Γ (and which is also the only 11

2
-connected bislim geometry

with this local structure). In particular, Γ is isomorphic either to

(iiia) S(r,s), with 0 ≤ s ≤ r and r2 + rs+ s2 ≥ 12, or to

(iiib) M(a,0),(c,d), with a, d > 0, 0 ≤ c < a, such that for every integer linear combi-
nation of (a, 0) and (c, d), say (r, s), one has r2 + rs+ s2 ≥ 12, or to

(iiic) S∗(r) or S∗∗(r), with r ≥ 2, or to

(iiid) M∗
(r),(s,0) or M∗∗

(r),(s,0), with r ≥ 2 and s ≥ 4.

(iv) If n = 24, then Γ is isomorphic to a quotient of the honeycomb geometry. In
particular, Γ is isomorphic either to

– S(3,0), or to
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– M(3,0),(−d,2d+1) or M(3,0),(1−d,2d+1) or M(3,0),(−d,2d) or M(3,0),(1−d,2d), with d ≥ 2,
or to

– M∗
(r),(3,0) or M∗∗

(r),(3,0), with r ≥ 2.

The geometry S(3,0) is the unique 11
2
-connected member of this family and is hence

the universal 11
2
-cover of Γ.

(v) If n = 34, then Γ is isomorphic to the Desargues configuration.

(vi) If n = 35, then Γ ∼= M(3,0),(0,3) is the Pappus configuration.

(vii) If n = 51, then either Γ ∼= S(2,1), or Γ ∼= M(n,0),(2,1), with n ≥ 10. In any case, S(2,1)

is the universal 11
2
-cover of Γ, and it is also the only 11

2
-connected member of this

family.

(viii) If n = 58, then Γ ∼= M(3,0),(1,3)
∼= M(9,0),(2,1).

(ix) If n = 73, then Γ ∼= M(4,0),(1,2)
∼= M(8,0),(2,1) is the Möbius-Kantor configuration.

(x) If n = 77, then Γ ∼= M(7,0),(2,1)
∼= LS(77) is the Fano plane.

5 Proof of Main Result 2

From now on, we will assume that all geometries are connected and we will not add this
condition in our statements.

We state the following part of Main Result 1 as a separate lemma.

Lemma 5.1 If Γ is a bislim geometry of gonality 3 which is geometrically point homoge-
neous, then, for any point x of Γ, the local structure Γx is isomorphic to one of the 11 con-
figurations listed in Figure 1, and referred to as LS(n), with n ∈ {1, 4, 5, 13, 24, 34, 35, 51,
58, 73, 77}.

Since a point transitive bislim geometry of gonality 3 is automatically geometrically point
homogeneous, we only have to consider the local structures listed in the previous lemma,
and that is exactly what we now do.
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5.1 Local structures LS(34), LS(35), LS(58), LS(73) and LS(77)

We first take a look at those local structures that give rise to a unique geometry.

Lemma 5.2 If Γ is a bislim geometry of gonality 3 admitting a point transitive group G,
and for some point x of Γ, the local structure Γx is isomorphic to one of LS(34), LS(35),
LS(58), LS(73) or LS(77), then Γ is uniquely determined. If moreover G does not act flag
transitively, then G is unique, up to conjugation in the full collineation group of Γ except
if Γx

∼= LS(35), in which case there are precisely seven possibilities for G: two of order 9,
four of order 18 and one of order 36 and if Γx

∼= LS(73), in which case there are precisely
three possibilities for G: two of order 8 and one of order 16.

Proof. If Γx
∼= LS(34), then it is shown in Part I that Γ is the Desargues geom-

etry. Since the points of the Desargues geometry can be identified with the pairs of
the set {1, 2, 3, 4, 5}, and the lines with the triples of that set (incidence is natural),
we see that a point transitive group is a subgroup of Sym(5) acting transitively on the
pairs of {1, 2, 3, 4, 5}. Clearly, only Sym(5) and Alt(5) qualify—but these act flag transi-
tively—together with the Frobenius group of order 20, which acts point transitively but
not flag transitively.

Consider now LS(35). Then Γ is the Pappus geometry, according to Part I. This
geometry can be seen as the points of an affine plane of order 3, where the lines are
all affine lines except for the lines of exactly one parallel class C. If G contains all 9
translations then it contains no other element of order 3, otherwise it acts flag transitively.
If G contains an element of order 2 which then normalizes the group of all translations,
we obtain three groups of order 18 and one group of order 36. If G does not contain all
translations, then it is easily seen that G contains the translations fixing C elementwise.
Now we see that G contains a unique Sylow 3-subgroup P (of order 9) and P is completely
determined by its action on the points at infinity and the elements of C. But all these
actions are conjugate in the full collineation group of Γ. Hence G is contained in the
normalizer of P . One now checks that since G cannot contain a Sylow 3-subgroup of
order 27, it must have order 18, and the lemma follows in this case.

If Γx
∼= LS(58), then Γ ∼= M(3,0),(1,3)

∼= M(9,0),(2,1) by Part I again. Moreover, one easily
sees that there is no nontrivial collineation of LS(58); hence the point stabilizer in the full
automorphism group of Γ is trivial. This implies that the full collineation group of Γ is
cyclic of order 9, and hence it is the unique transitive collineation group.

For Γx
∼= LS(73), we get the Möbius-Kantor geometry. But the full collineation group

of this geometry has order 48 and acts flag transitively. Hence only groups of order 8 or
order 16 can act point transitively but not flag transitively. One checks that there are
two groups of order 8 and one group of order 16.
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The geometry LS(77) is itself the Fano plane, and it is well known that every subgroup
of order 7 of the full collineation group acts transitively on Γ, and all such groups are,
being Sylow 7-subgroups, conjugate. No other groups act point transitively but not flag
transitively.

The lemma is proved. �

This leaves us with point-transitive bislim geometries with local structure isomorphic to
one of LS(1), LS(4), LS(5), LS(13), LS(24) and LS(51).

5.2 Local structure LS(1)

It is easy to show that a point-transitive geometry Γ with local structure LS(1) in a point
x, is locally LS(1). Let Γ be locally LS(1). We associate a directed graph G∆ to Γ as
follows. It is easy to see that every point of Γ belongs to a unique triangle, and likewise
for the lines. The vertices of the graph G∆ are the triangles of Γ. A vertex v = {p1, p2, p3}
is adjacent to a vertex w = {q1, q2, q3}, with the directed edge (v, w) if v 6= w and if
one of the points p1, p2, p3 is incident with one of the lines q1q2, q2q3, q1q3. Note that at
most one point of a triangle can be incident with a line of another triangle. Hence we
obtain a graph with indegree 3, equal to the outdegree. Hence the bidegree is (3, 3). Point
transitivity of the geometry Γ implies that, if in G∆ there are two vertices v, w for which
both (v, w) and (w, v) are directed edges, then for every directed edge (v′, w′), (w′, v′) is
also a directed edge. In this case we can just forget about the directions and consider G∆

as a cubic undirected graph.

Note that the number of points of Γ is a multiple of 3, and looking at LS(1), we see that
there are at least 4 triangles, hence there are at least 12 points in Γ.

First we consider the case that G∆ is undirected and cubic. It is clear that in this case
this graph is symmetric, as the stabilizer of a triangle in Γ (vertex of G∆) acts transitively
on the points of that triangle (edges of G∆ through the vertex). Standard arguments now
show that the construction of G∆ out of Γ and the construction of a geometry out of a
cubic symmetric graph G(V,E) as given in Subsection 3.1 are inverse to each other. This
is (ia) of Main Result 2.

Now consider the case that G∆ is directed and has valency (3, 3). The point transitivity
of G on the geometry Γ implies that G acts edge transitively on G∆. Clearly the stabilizer
Gv of any vertex v induces exactly 2 orbits on the edges containing v.

Now there are two possibilities. First we consider the case where the action of Gv on the
incoming (or, equivalently, on the outgoing) edges is equivalent to the natural action of
Sym(3).

Then we clearly have a Sym(3)-symmetric graph, and one can check that the construction
of the graph out of the geometry and the construction of the geometry out of a graph as
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given in Subsection 3.2 are mutually inverse. From our discussion in Subsection 3.2 we
conclude that G∆ had no directed triangles consisting of non-opposite edges.

Hence we have Case (ib) of Main Result 2.

Secondly, we consider the case where the action of Gv on the incoming edges is equivalent
to the natural action of Zmod(3).

In this case G acts sharply transitively on the set of directed edges, or, equivalently, G
acts sharply transitively on the set of points and on the set of lines of Γ.

Hence we can identify the set of points of Γ with G, and the action of G on this set is
given by right multiplication. Let e, a and b be different elements of G on one line Le

(where e is the identity in G). Then a−1, e and ba−1 are also on one line La. The third
line Lb through e is then given by the points b−1, ab−1 and e. The 12 conditions arising
from requiring that those lines contain seven different points (namely, no point on Le\{e}
coincides with a point on (La∪Lb)\{e} and similar for the points on La\{e} and Lb\{e})
reduce to the six conditions a2 6= e, a2 6= b, ab 6= e, b2 6= e, b2 6= a, ba−1b 6= a.

Without loss of generality we may assume that e and a belong to the same triangle. Then
{a, a2} and {a2, a3} form the other sides of the same triangle (by right multiplication with
a). Hence a3 = e.

Now we have to require that Γe
∼= LS(1). This is done by requiring that no point collinear

with b, but not on the line Le, is collinear with e, and similarly for b−1, ba−1, ab−1. For the
point a, we require that only the points ba, b−1a, ab−1a are not among Γ2(e). Similarly
for the point a−1. We leave the details to the reader, and only note the final conditions:
a2 6= e, b2 6= e, b3 6= e, b2 6= a, a 6= ba2b, b2 6= a2, a 6= bab, ab 6= ba, ba2 6= ab, a 6= b3,
a 6= ba2b2, a2 6= ba2b and a2ba2 6= b−1ab−1. Note that a2 6= b follows from b3 6= e, that
a2 6= e, b2 6= a, b2 6= a2 and a 6= b3 follow from ab 6= ba, and that a2 6= ba2b follows from
a 6= bab. Because of point transitivity of the group it follows that we have the right local
structure in each point.

Since every point collinear with e is the image of e under an element of 〈a, b〉, we deduce
that G = 〈a, b〉.

It is now easy to see that G is as described in Subsection 3.3(1). We have found Case (ic)
of Main Result 2, and this finished Case (i) completely.

Note that, still in Case (ic), and with the above description, the triangle through Nb has
vertices Nb,Nab,Na2b, and hence the resulting geometry is already in (ia) if and only
if {Na2, Nab,Na2b} forms a line. In view of the local structure, this line must coincide
with {Na2, Nab−1a2, Nb−1a2}. Since Nab 6= Nab−1a2 (indeed, otherwise Na = Nb−2 and
hence [a, b]N = N , a contradiction), this happens if and only if Nab = Nb−1a2, which
reduces to abab ∈ N . This proves our remark after the statement of Main result 2.
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5.3 Local structure LS(4)

Let x be a point of a point-transitive bislim geometry Γ which is point-locally LS(4).
According to previous notation, we let x1y1 and x2z1 be the lines of Γx in Γ3(x), and
y2, z2 are the other points in Γ2(x), with xy2z2 a line of Γ. Considering Γx1 , we see that
x2 is collinear with the “third point” u1 on the line x1y1. But if x2u1 is distinct from x2z1,
then we cannot have local structure LS(4) in x2, hence x2z1u1 is a line. The subgeometry
defined by x, x1, x2, y1, z1, u1 and the lines xx1x2, xy1z1, u1x1y1 and u1x2z1 is isomorphic
to the dual of K4. Moreover, the points y2 and z2 are not contained in a common triangle
of Γ as this would imply, looking in Γz2 , that x and z2 are collinear with a point distinct
from y2. Hence we see that ΓL2 is isomorphic to LS(0), and that every point is contained
in a unique such line. Also, ΓL is easily seen to be isomorphic to LS(10). Removing
all lines with local structure LS(0) from Γ, we obtain a disjoint union of a family F of
geometries isomorphic to the dual of K4.

We now associate a graph G to Γ as follows. The vertex set of the graph G is the set
F ∪ B where F is as mentioned above, and where B consists of vertices representing the
lines with local structure LS(0). A vertex f ∈ F is adjacent to a vertex b ∈ B if the
line corresponding to b contains a point of the geometry represented by vertex f . It is
easy to see that G is a bipartite (6, 3)-valent graph where every vertex of F has degree
6 and every vertex of B degree 3. Every point of Γ clearly corresponds to a unique edge
{f, b} of G. A point-transitive collineation group of Γ induces a graph automorphism
group acting transitively on the edges and preserving the incidences in the geometries
corresponding to the vertices of F . One can check that the construction of the graph
out of the geometry and the construction of the geometry out of a graph as given in
Subsection 3.4 are mutually inverse. Now (ii) of Main Result 2 is clear.

5.4 Local structure LS(5)

Let x be a point of Γ and suppose that LS(5) is the local structure in x. We use the same
notation as before. We first claim that Gx has at most order 2. Whenever a collineation
in G fixes a point u and two lines incident with u, or one point collinear with u, then it
fixes all points collinear with u and hence is the identity. Suppose φ, ψ ∈ Gx and φ 6= Id,
ψ 6= Id. Clearly φ and ψ fix L and φψ also fixes L1 and L2. Hence φψ is the identity and
our claim follows.

So we distinguish two cases. The first case is |Gx| = 1, the second |Gx| = 2.

The line L is, with respect to x, unique with the property that it is concurrent with two
elements of Γl

x. We call L principal with respect to x. Every element of Γl
x meets the line

principal with respect to x.
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The local structure of the line L is LS(13) if L is principal with respect to x1 or LS(5) if
x1y1 is principal with respect to x1. Two concurrent lines can not both have local structure
LS(13). Now suppose that L has local structure LS(13). Since Γ is point transitive every
principal line has local structure LS(13). Either xy1z1 or either x1y1 is principal with
respect to y1 and has local structure LS(13). Because of concurrency with L this leads to
a contradiction. Hence L has local structure LS(5) and x1y1 is principal with respect to
x1. Analogously is x2y2 principal with respect to x2. If a line is principal with respect to
some point it is principal with respect to a unique point. It is easily seen that L1, resp.
L2 is principal with respect to y1, resp. y2. We conclude that every line of the geometry
is principal with respect to a unique point. It follows that point transitivity induces line
transitivity.

Suppose first |Gx| = 1. Clearly |GM | = 1, for every line M of Γ. Denote by θ the unique
collineation of G taking x to x1. The line L is then mapped onto the line x1y1a (defining
the point a). Indeed, from the previous paragraph we infer that L is not principal with
respect to x1 and that the line x1y1 is principal with respect to x1, so Lθ = x1y1. This
implies that x1 is taken onto either y1 or a. We claim that xθ

1 = y1. Indeed, suppose on
the contrary that xθ

1 = a. The inverse image of x is a point contained together with x as
vertices in a triangle, but clearly cannot be incident with L. Hence yθ

2 = x. Now consider
the collineation θ′ mapping x to x2 (and which maps, similarly as before, L onto x2y2). If
it mapped x2 onto y2, then y2 would be mapped onto x, and so θ−1θ′ ∈ Gx contradicting
|Gx| = 1. Hence x2 is mapped under θ′ onto b, the “third point” on the line x2y2, and
x1 is mapped onto y2. Hence θ′θθ′ fixes x and hence is the identity. Similarly θθ′θ is the
identity. This implies that θ has order 3, contradicting y2 6= a.

Hence θ maps x onto x1 and x1 onto y1 and y1 onto x. Likewise, θ′ : x 7→ x2 7→ y2 7→ x.

We can now identify the point set of Γ with G, acting on the right onto itself. We re-
denote the element θ by a and θ′ by b. Then a3 = b3 = e, and the lines through e are
{e, a, b}, {e, a−1, ba−1} and {e, b−1, ab−1}. This again already implies G = 〈a, b〉.
In order to obtain the examples of Subsection 3.3(3), we have to derive the necessary and
sufficient conditions on a and b that guarantee Γ to have gonality 3 and local structure
LS(5). This is straightforward and can be done completely similar to the previous case.
We obtain a2 6= b, a 6= ba2b, a 6= bab, ab 6= ba, ba2 6= ab and ab2a 6= ba2b. After
slightly rewriting these conditions (putting b = t and s the (outer) automorphism of
order 2 interchanging a and b), we see that we obtain the examples of Subsection 3.3(3)
(the point-transitivity of the group implies that we have the right local structure in each
point).

Now suppose |Gx| = 2. We put Gx := {e, a}, with a an involution. Then we can identify
the right cosets of {e, a} in G with the points of the geometry Γ, and the action of G on the
geometry is given by right multiplication. Let {e, a}, {b, ab} and {c, ac} be different right
cosets of Gx incident with a common line. This implies that e, a, b and c are mutually

20



different and c 6= ab. It follows that {b−1, ab−1}, {e, a} and {cb−1, acb−1} are also on one
line. The third line through {e, a} is then given by the points {c−1, ac−1}, {bc−1, abc−1}
and {e, a}. One can check that the conditions arising from requiring that those lines
contain seven different points are equivalent to: b2 6= e, b2 6= a, b2 6= c, b2 6= ac, bc 6= e,
bc 6= a, b 6= ac, bc 6= ab, cb 6= a, cb 6= ac, c2 6= e, c2 6= a, c2 6= b, c2 6= ab, b 6= ca, bab 6= c,
b 6= cac, cb−1 6= bc−1 and cb−1 6= abc−1.

Without loss of generality we assume that {e, a} and {b, ab} belong to a triangle and also
{e, a} and {c, ac} belong to a triangle. Since the involution a interchanges the two points
{b, ab} and {c, ac}, it follows that {ba, aba} = {c, ac}. Since ba can not be equal to c we
have that c = aba. The two collineations mapping the point {e, a} onto the point {b, ab}
are b and ab. The inverse images of {e, a} under these two collineations give the third
points of the two triangles with vertex {e, a}: {b−1, ab−1} and {b−1a, ab−1a}. We now
must distinguish two possibilities: either {e, a}, {b, ab} and {b−1, ab−1} are the vertices of
a triangle, or {e, a}, {b, ab} and {b−1a, ab−1a} are the vertices of a triangle.

1. {e, a}, {b, ab} and {b−1, ab−1} belong to a triangle.

The second triangle in {e, a} is then given by the points {e, a}, {aba, ba} and
{b−1a, ab−1a}. The collineation b takes {b−1, ab−1} onto {e, a} and {e, a} onto
{b, ab}. Since there is at most one triangle containing two given points, we see
that b must map {b, ab} onto {b−1, ab−1}, and from our previous considerations,
this implies that b has order 3. Hence b3 = e.

Now one has to require that no other points of Γ2({e, a}) are collinear than those
on a common line through {e, a}, and the two collinear pairs in the two triangles
through {e, a}.
This is done similarly as above, with the additional difficulty of dealing with cosets
instead of single elements. However, we leave the details to the reader. The eventual
conditions read: a has order 2, b has order 3, ab has order bigger than 3 and
aba 6= b, aba 6= bab, aba 6= bab2ab, aba 6= babab, aba 6= b2abab, aba 6= bab2abab and
aba 6= bab2abab2ab.

2. {e, a}, {b, ab} and {b−1a, ab−1a} belong to a triangle.

This case is completely similar to the previous one. One shows that ab has or-
der 3, and that the lines through the point {e, a} are {{e, a}, {b, ab}, {aba, ba}},
{{e, a}, {ababa, baba}, {ab2aba, b2aba}} and {{e, a}, {bab, abab}, {b2ab, ab2ab}}.
Eventually, one finds the following conditions on the group elements e, a and b
to obtain the right local structure in the point {e, a}: a has order 2, b has order
bigger than 3, ab has order 3 and a 6= b4, a 6= b5, a 6= b3ab3, a 6= b2ab4, a 6= b3ab4 and
a 6= b3ab3ab3. Now redefining b as ab, we obtain again the previous case.
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Let Gs,t := 〈s, t : s2 = t3 = id〉. Consider the geometry ΓGs,t,{id} with points the right
cosets in the group Gs,t of the subgroup {id, s} and with lines the right translates of
{{id, s}, {t, st}, {ts, sts}}. Clearly ΓGs,t,{id} is a bislim geometry which is point-locally
LS(5) with Gs,t as point-transitive collineation group with point stabilizer of order two.
Let N be a normal subgroup of the group Gs,t not containing the words (st)3, [s, t]st,
[s, t]2, [s, t](st)2, (st2)2(st)2, [s, t]2st, [s, t]3. We define the quotient geometry ΓGs,t,N of
ΓGs,t,{id}: the points are the right cosets of {N,Ns} in Gs,t/N , the lines are the right trans-
lates of {{N,Ns}, {Nt,Nst}, {Nts,Nsts}}. Then ΓGs,t,N is a bislim geometry which is
point-locally LS(5), with Gs,t/N as point-transitive collineation group with point stabilizer
of order two. We obtain the examples of Subsection 3.3(2).

Left to prove are the additional claims made in (iiib) of Main Result 2. We shall do this
now.

Let Ga,b := 〈a, b : a3 = b3 = id〉. Consider the geometry Γ̃ = ΓGa,b,{id} with points the
elements of the group Ga,b and lines the right translates of {id, a, b}. From above we know

that Γ̃ is a sharply point transitive bislim geometry which is point-locally LS(5).

Let σ interchange the letters a and b in every word of Ga,b, with Ga,b = 〈a, b : a3 = b3 = id〉.
It is easily seen that σ is well defined and is a group automorphism. Let N be a normal
subgroup of Ga,b not containing (ab2)2, baba2, [a, b], abab2, (ab2)3. We define the quotient

geometry Γ = ΓGa,b,N of Γ̃: the points are the elements of the quotient group Ga,b/N ,
the lines are the right translates of {N,Na,Nb}. From the previous we know that Γ is
a bislim geometry which is point-locally LS(5), with Ga,b/N as sharply point-transitive
collineation group. If σ stabilizes N then it is clear that σ induces a collineation of Γ and
in this case the geometry Γ admits a sharply point-transitive collineation group as well as
a point-transitive one with point stabilizer of order 2. Furthermore, suppose that θ is an
involution of Γ fixing the point N . It is easy to prove that (Ng)θ = Ngσ for all g ∈ Ga,b.
Thus, if σ does not stabilize N , then Γ only admits a sharply point-transitive group.

Let Γ = ΓGa,b,N be a geometry as in the previous paragraph, where σ stabilizes N . Con-
sider the semidirect product of Ga,b with {id, σ}. This group is generated by (a, id), (b, id)
and (id, σ). Since (id, σ)(b, id)(id, σ) = (a, id), this group is equal to Gσ,b = 〈(b, id), (id, σ) :
(id, σ)2 = (b, id)3 = (id, id)〉, or to Gs,t = 〈s, t : s2 = t3 = id〉 when using s, t and id
as shorter notations for (id, σ), (b, id) and (id, id) respectively. The group N ∼= {(n, id) :
n ∈ N} is a normal subgroup of the group Gσ,b. Now consider the geometry ΓGσ,b,N with
points the right cosets of the subgroup {N(id, id), N(id, σ)} in Gσ,b/N . The lines are the
right translates of

{{N(id, id), N(id, σ)}, {N(b, id), N(id, σ)(b, id)}, {N(b, id)(id, σ), N(id, σ)(b, id)(id, σ)}}.

It is easy to check that the geometries ΓGa,b,N and ΓGσ,b,N are isomorphic. The group
Gσ,b/N acts on the right on the points of the geometry Γ and is thus the full collineation
group of Γ, with point stabilizer of order 2. It is straightforward to check that the
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conditions of Subsection 3.3(2) are satisfied. We thus proved that every geometry of type
described in Subsection 3.3(3) satisfying Nσ = N , is isomorphic to a geometry of type
mentioned in Subsection 3.3(2).

Conclusion. Let Gs,t := 〈s, t : s2 = t3 = id〉. The geometry ΓGs,t,{id} with points the
right cosets in Gs,t of {id, s} and lines the right translates of {{id, s}, {t, st}, {ts, sts}}, is
a 11

2
-connected 11

2
-cover of every point-transitive geometry which is point-locally LS(5).

The group Gs,t is a point-transitive group with point stabilizer of order two, while the
group Gsts,t := 〈sts, t : (sts)3 = t3 = id〉 is a sharply point-transitive collineation group.

Let N be a normal subgroup of Gs,t not in Gsts,t, and not containing (st)3, [s, t]st,
[s, t]2, [s, t](st)2, (st2)2(st)2, [s, t]2st, [s, t]3. The geometry ΓGs,t,N with points the right
cosets of {N,Ns} in Gs,t/N and with lines the right translates of {{N,Ns}, {Nt,Nst},
{Nts,Nsts}} only admits a point-transitive collineation group Gs,t/N with point stabi-
lizer of order two. This is (iiia) of Main Result 2.

Let N be a normal subgroup of Gsts,t not containing (stst2)2, [sts, t], (st)3st2, (stst2)3.
The points of the geometry ΓGsts,t,N are the elements of Gsts,t/N , the lines are the right
translates of {N,Nsts,Nt}. If sNs = N s = N , then ΓGsts,t,N admits a sharply point-
transitive collineation group Gsts,t/N as well as a point-transitive one Gs,t/N with point
stabilizer of order two. If N s 6= N then ΓGsts,t,N has only a sharply point-transitive group
Gsts,t/N . This is (iiib) of Main Result 2 and concludes the case of LS(5) and (iii) of Main
Result 2.

5.5 Local structure LS(13)

It is shown in Part I that every bislim geometry with Γx
∼= LS(13), for all points x of

Γ, is covered by the honeycomb geometry S∞ and an explicit list is available. Hence Γ
is a quotient geometry of S∞. A standard topological argument shows that the point
transitive automorphism group of Γ lifts to a point transitive collineation group of S∞
(including all deck transformations).

Hence we first classify the point transitive collineation groups of S∞, which do not act
flag transitively. We introduce some notation.

We may identify the points and lines of S∞ with the vertices of the “honeycomb” tiling
of the real Euclidean plane E in regular hexagons. Let e be a vertex corresponding to a
line of S∞, and let a, d, f be the points incident with e (and hence the vertices adjacent to
e). Let b be the unique point of S∞ contained in a triangle together with a and f (hence
a, f, b are vertices of the same hexagon in the tiling) and let c be the vertex corresponding
with the line ab of S∞. Denote by h the center of the hexagon containing a, b, f . Let
W (Ã2) be the full collineation group of S∞, or equivalently, the group of isometries of E
preserving the honeycomb tiling and stabilizing each bipartition class (which is the Weyl
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group of type Ã2, whence the notation). To avoid confusion, we will call the lines of the
Euclidean plane E Euclidean lines and abbreviate this to E-lines.

There are two rotations r+
ab, r

−
ab ∈ W (Ã2) mapping a to b, and they have center c and h,

respectively. The rotation r+
ab fixes the line c of S∞, while r−ab acts freely on the lines of

S∞. We call every conjugate of r+
ab a hyperbolic rotation, and every conjugate of r−ab an

elliptic one. Let r+
df and r−df be the hyperbolic and elliptic rotation, respectively, mapping

d to f . Then we call the group 〈r+
ab, r

+
df〉 E W (Ã2) the transitive hyperbolic collineation

group of S∞, and likewise 〈r−ab, r
−
df〉 E W (Ã2) is the transitive elliptic collineation group

of S∞. For two points x, y denote by txy the unique translation mapping x to y. Then

〈tab, tad〉EW (Ã2) is called the transitive parabolic subgroup of W (Ã2).

Let, in the Euclidean plane E, p be the intersection of the E-lines through a, e and d, f ,
respectively. Also, let p′ be the mid point of the segment [e, d]. Let L be the E-line
through p′ parallel to −→ae. Then the composition taprL = rLtap of the translation tap with

the reflection rL about L belongs to W (Ã2) and maps a to d. It is a so-called glide
reflection (the axis of the reflection is parallel to the translation vector). We call the
group 〈taprL, tab〉 the transitive glide collineation group of S∞.

Finally, let ρ be the reflection in E about the E-line through the vertices a and e.

Lemma 5.3 If H ≤ W (Ã2) acts transitively on the point set of S∞, but not flag transi-
tively, then either H acts sharply transitively and coincides with the transitive hyperbolic,
elliptic, parabolic or one of the three conjugates of the glide collineation group, or Ha

has order 2, for any point a of S∞ and H is one of the three conjugates of the subgroup
generated by ρ and the transitive hyperbolic (respectively elliptic, parabolic) collineation
group.

Proof. If H acts sharply transitively, then there are unique collineations in H taking a
to b and a to d. These are either translations, rotations or glide reflections (a reflection is
impossible since it fixes points of S∞). A tedious but rather straightforward case-by-case
study implies the assertion.

If H does not act sharply transitively, then the point stabilizer Ha must have order exactly
2 (as otherwise we have a flag transitive action). Hence H contains indirect isometries
(these are isometries whose matrix has determinant equal to −1). The normal subgroup
N of H consisting of direct isometries (the matrix has determinant equal to +1) has index
2 in H and acts sharply transitively on the point set of S∞, by a standard argument. The
assertion now follows from the sharply transitive case. �

From now on we may assume that Γ is not isomorphic to the honeycomb geometry.

Now, in Part I of the present work, we classified all quotients of the honeycomb geometry.
Referring to that list, it is clear that the examples involving a glide reflection g (with
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minimal translation vector) do not admit a point transitive group. Indeed,by the above
lemma, every point transitive collineation group of S∞ different from the three glide
collineation groups contains a translation t in any of the three directions given by the
edges of the tiling of E in regular hexagons mapping a point onto another point at graph
theoretic distance 4. Choosing this direction not parallel to the axis of the glide reflection,
and choosing a vertex x as close as possible to the axis, we see that (xt)g and (xg)t are
at graph theoretic distance 6 from each other, and the line joining them is perpendicular
to the axis of the glide reflection. These vertices represent the same line in the local
structure of the point y at graph theoretic distance 3 from both (xt)g and (xg)t; yet
this line is distinct from the one defined by the vertex in any hexagon containing y.
So the local structure in y cannot be LS(13), a contradiction. Likewise, every glide
collineation group contains a translation t′ in the direction perpendicular to the direction
of its glide reflections mapping a point onto another point at graph theoretic distance 2.
This direction is then also perpendicular to the axis of the glide reflection g, and choosing
a point x as close as possible to the axis, we see that, similarly as above, (xt′)g and (xg)t′

can never be identified without violating the local structure, a contradiction.

Hence Γ is isomorphic either to S(r,s), with 0 ≤ s ≤ r and r2 + rs + s2 ≥ 12, or to
M(a,0),(c,d), with a, c and d integers with a, d > 0, 0 ≤ c < a and for every integer linear
combination of (a, 0) and (c, d), say (r, s), r2 + rs + s2 ≥ 12. We determine the point
transitive groups which do not act flag transitively.

Clearly, the transitive parabolic group always induces a sharply point transitive collineation
group of Γ. It is also clear that, in case of Γ ∼= S(r,s), every collineation θ of the honeycomb
geometry that induces a collineation in Γ has to fix ±(r, s) “as a set of two vectors”, i.e.,

(r, s)θ − (0, 0)θ = ±(r, s). We denote (r, s) as a vector by
−−→
(r, s). Hence G cannot be

induced by the elliptic or hyperbolic transitive collineation group, nor any extension of
these. If θ is a (glide) reflection which induces an element of G, then clearly the axis of

θ must be either parallel or perpendicular to
−−→
(r, s). Parallel axes occur only for r = s,

while perpendicular axes only occur if s = 0 (this follows from our choice of coordinates
in [5, 6]). In all these cases, the transitive glide collineation group (with appropriate axes
of the glide reflections) induces a sharply point transitive collineation group of Γ, and
the group generated by the transitive parabolic collineation group and an appropriate re-
flection induces a point transitive collineation group in Γ with size of the point stabilizer
equal to 2.

Now suppose Γ ∼= M(a,0),(c,d). If there is some rotation in W (Ã2) preserving the identi-
fication giving rise to Γ, then we have a geometry G(r,s), see [5] and then the assertions
follow from the observations that all collineations of the honeycomb geometry induce
collineations of the square and triple square geometry, and that no (glide) reflection sur-
vives in a geometry G(r,s) which is not a square or triple square geometry. Hence we
may suppose that only (glide) reflections of the honeycomb geometry give rise to extra
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collineations in Γ, and all the axes are parallel. This gives us three possibilities, depending
on the direction of the axes. Also, since we have the full translation group, we only have
to assume that some reflection acts on Γ. Without loss of generality, we may assume that
the axis contains the point (0, 0).

Now we observe that a reflection ρ with axis containing (0, 0) preserves the identification
induced by (a, 0) and (c, d) if and only if (a, 0)ρ and (c, d)ρ are identified with (0, 0). In
other words, they are linear combinations with integer coefficients of (a, 0) and (c, d).
It is now an easy exercise to express this for the different reflections (x, y) ↔ (y, x),
(x, y) ↔ (x,−x − y) and (x, y) ↔ (−x − y, y). We obtain the conditions stated in Main
Result 2(iv).

5.6 Local structure LS(24)

As in this case, the geometry is again a quotient of the honeycomb geometry with only
a limited number of possibilities, see Part I, the proof is completely analogous to the
previous case of LS(13).

It is easy to prove that all the geometries are mutually nonisomorphic. Indeed, of those
having the same number of points, there is exactly one admitting a point transitive
collineation group with point stabilizer of order 2 and the other one has as full collineation
group a sharply point transitive one.

5.7 Local structure LS(51)

There is a unique example for each countable cardinality of the point set and it is shown
in Part I that this example admits a sharply point transitive cyclic group. Furthermore,
since LS(51) has no nontrivial symmetries, this cyclic group must be the full collineation
group and we are done.

This completes the proof of Main Result 2.
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