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Abstract

The image of a 1-system of Q+(7, q) under a triality of the D4-geometry,
attached to Q+(7, q), will be investigated. Attention will mainly be paid to
the case of a locally hermitian, semiclassical 1-system of a Q(6, q), embed-
ded in Q+(7, q). It is found that its image under a triality is always locally
hermitian and semiclassical as well. Moreover, it is a proper 1-system of
Q+(7, q) whenever the original 1-system of Q(6, q) is not a spread of some
generalized hexagon H(q) on Q(6, q). Finally, some results concerning iso-
morphisms will be obtained.

1 Definitions

1.1 Trialities, T-correspondences and generalized hexagons

Consider the projectively unique hyperbolic quadric Q+(7, q) in PG(7, q). It is
well known, see for instance [4, 22.4], that the generators of Q+(7, q), which are
3-dimensional subspaces, can be subdivided in two subsets, often called fami-
lies, in the following way. Two distinct generators are said to belong to the same
family if and only if their intersection is empty or a line. Hence generators of
different families intersect in a point or a plane and furthermore, every plane of
Q+(7, q) is contained in exactly two generators, namely one from each family.
If we denote the two families of generators of Q+(7, q) by F1 and F2, the set
of lines on Q+(7, q) by L and the set of points of Q+(7, q) by P, then a D4-
geometry Ω can be attached to Q+(7, q), in the following way. The 0-points of
Ω are the points of Q+(7, q); the lines are just the lines of Q+(7, q); the 1-points
are the elements of one family of generators, say F1; and the 2-points are the el-
ements of the other family of generators. Incidence is symmetrized containment
for i-points and lines, i = 0, 1, 2, and also for 0-points and j-points, j = 1, 2.
A 1-point G1 ∈ F1 is said to be incident with a 2-point G2 ∈ F2 if and only if
the intersection G1 ∩ G2 is a plane of Q+(7, q). An important property of the
geometry Ω is the fact that every permutation of the set {P,F1,F2} defines a
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geometry which is isomorphic to Ω.

Definitions
A triality of the geometry Ω, attached to Q+(7, q) as above, is a map τ :

τ : L → L,P → F1,F1 → F2,F2 → P

preserving the incidence in Ω and such that τ3 is the identity.
A point p ∈ P is called an absolute point of τ if p is incident with pτ ∈ F1. A
1- or 2-point, that is, a generator Gi ∈ Fi, i = 1, 2, is said to be absolute for τ
if it is incident with its image Gτ

i . A line L ∈ L is called absolute for τ if L = Lτ .

Although the condition “τ3 is the identity” is an explicit part of the definition
of a triality, most of the results that will be obtained in this paper, hold under
weaker conditions too. Often it is not necessary to require that τ3 is the identity.
Therefore we introduce another less common definition, which is due to Tits [13].

Definition
A T-correspondence of the geometry Ω is a map θ:

θ : L → L,P → F1,F1 → F2,F2 → P

which preserves incidence in Ω.

The definitions of absolute points and lines for a T-correspondence θ remain
the same as for a triality τ .

Remark that the assignment of the names F1 and F2 to the families of
generators of Q+(7, q) is arbitrary, and hence the roles of F1 and F2 may be
interchanged in the above definitions. As such, τ−1 = τ2 is also a triality and
both θ−1 and θ2 are T-correspondences. For convenience, we agree on the con-
vention that a triality, respectively a T-correspondence, is always a map as in
the definitions above, unless otherwise mentioned, for some choice of F1 and F2

which we consider to be fixed throughout this paper.

Trialities are very interesting for the study of generalized hexagons, as some
trialities produce generalized hexagons. This was shown by Tits in his celebrated
paper “Sur la trialité et certains groupes qui s’en déduisent” [13]. Generalized
hexagons are defined as follows.

Definitions
A generalized hexagon is an incidence geometry Γ = (P,L, I) of points and lines
such that the following three axioms are satisfied:

GH1 Γ contains no ordinary k-gon for 2 ≤ k ≤ 5.
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GH2 Any two elements x, y ∈ P ∪ L are contained in some ordinary hexagon
in Γ.

GH3 There exists an ordinary sevengon in Γ.

If Γ = (P,L, I) only has to satisfy conditions (i) and (ii), then it is called a weak
generalized hexagon. A thick line of a weak generalized hexagon Γ is a line of Γ
which contains at least three points of Γ.

The following theorem states the relation between trialities and generalized
hexagons.

Theorem 1.1 (Tits [13]) Let τ be a triality of the geometry Ω. Suppose that
one of the following equivalent hypotheses is satisfied:

(i) there exists at least one absolute i-point, for some i ∈ {0, 1, 2}, and
every absolute i-point is incident with at least two absolute lines;

(ii) there exists a sequence of absolute lines (L1, L2, . . . , Ld), d > 2, such
that Li is concurrent with Li+1, indices modulo d.

Then for every i ∈ {0, 1, 2}, the geometry Γ(i) with point set P(i)
abs the set of

absolute i-points, with line set Labs the set of absolute lines and with the natural
incidence, is a weak generalized hexagon with thick lines.

Over the finite field GF(q), there exist essentially two examples of general-
ized hexagons arising from a triality. The first one is the so-called split Cayley
hexagon, denoted by H(q), which exists for every q. This hexagon has order
(q, q) and an interesting fact is that all points and lines of H(q) are contained in
a hyperplane PG(6, q) of PG(7, q). Also, two points of H(q) are opposite (that
is, at distance 6) in H(q) if and only if they are not joined by a line of Q+(7, q)
and moreover, the q + 1 lines through a point of H(q) form a flat pencil of lines
in a totally singular plane of Q+(7, q).
The other example is the twisted triality hexagon T(q′3, q′) and it exists only if
q = q′3 for some prime power q′, but this example will not be important for the
sequel.
For more information about trialities and their relation to generalized hexagons,
the reader is referred to the original paper of Tits [13], or to Chapter 2 of the
monograph “Generalized Polygons” [14] by Van Maldeghem.

To finish this subsection, we give two easy properties of T-correspondences.

Property 1.2 Let θ be a T-correspondence of Ω. If L and M are two distinct
concurrent lines, contained in a totally singular plane π on Q+(7, q), then the
same holds for Lθ and M θ.
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Proof.
If L ∩ M is the point x and G1 ∈ F1 and G2 ∈ F2 are the two generators of
Q+(7, q) through π, then Lθ and M θ are lines in the intersection of the two
generators xθ ∈ F1 and Gθ

1 ∈ F2, and they contain the point Gθ
2. 2

Property 1.3 Let θ be a T-correspondence of Ω and let π be a totally singular
plane on Q+(7, q). Then the set of lines in π is mapped by θ onto the set of lines
through a point in a generator of Q+(7, q).

Proof.
Let again G1 ∈ F1 and G2 ∈ F2 denote the two generators through the plane
π. Then all lines of π are mapped by θ onto all lines in the generator Gθ

1 ∈ F2

through the point Gθ
2. 2

1.2 1-Systems

Consider a quadric Q ∈ {Q−(5, q), Q(6, q), Q+(7, q)}. A 1-system of Q is a set
M of q3 + 1 lines L0, L1, . . . , Lq3 with the property that every generator of Q
which contains a line Li of M, is disjoint from all lines Lj ∈ M, j 6= i. Thus,
if Q = Q−(5, q), a 1-system of Q is nothing but a spread of Q−(5, q). The set
of all points on the lines of M will be denoted by M̃, so M̃ is the union of all
elements of M.

As an example, we give the definition of a hermitian spread of Q−(5, q). Let
Q+(5, q2) be the extension to GF(q2) of Q−(5, q). Then there exist two disjoint
and conjugate planes π and π on Q+(5, q2), which contain no point of Q−(5, q).
The set of lines of Q−(5, q), the extensions to GF(q2) of which have a point in
common with both π and π, forms a spread S of Q−(5, q); see for instance [11].
Since the common points of π and the extensions to GF(q2) of the lines of S
form a hermitian curve H(2, q2) in π, this spread is called a hermitian spread of
Q−(5, q).

Clearly, every 1-system of a Q−(5, q) or a Q(6, q) which is embedded in
Q+(7, q), is also a 1-system of Q+(7, q). If a 1-system of Q+(7, q) is not contained
in a hyperplane of the ambient space PG(7, q) of Q+(7, q), then it is said to be a
proper 1-system of Q+(7, q). Similarly, a 1-system of Q(6, q) ⊆ PG(6, q) is proper
if and only if it is not contained in a hyperplane of PG(6, q).

Let M be a 1-system of Q, with again Q ∈ {Q−(5, q), Q(6, q), Q+(7, q)}.
Then M is locally hermitian at a line L ∈ M if and only if for every line
M ∈ M \ {L}, the regulus of lines containing L of the hyperbolic quadric
〈L,M〉∩Q = Q+(3, q), is completely contained in M. Hence a locally hermitian
1-system of Q consists of q2 reguli through a special line L, and these reguli will
often be denoted by R1, R2, . . . , Rq2 . If Q is either a Q(6, q) or a Q+(7, q), then it
holds for every locally hermitian 1-system of Q that 〈Ri, Rj〉 is 5-dimensional if
i 6= j, and moreover, 〈Ri, Rj〉∩Q is an elliptic quadric Q−

ij(5, q), for the following
reason. If Qij := 〈Ri, Rj〉 ∩ Q is not elliptic, then it contains totally singular
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planes. If M 6= L is a line of Ri, then there exists in particular a totally singular
plane α of Qij through the line M . But α∩〈Rj〉 is at least a point, which implies
that α meets at least one line of Rj in a point. This contradicts the definition of
a 1-system of Q and we conclude that Qij is indeed an elliptic quadric Q−

ij(5, q).
Suppose next that M is a 1-system of Q, with Q ∈ {Q(6, q), Q+(7, q)}, which

is locally hermitian at the line L ∈ M, and let x be an arbitrary point on L.
Consider a 5-dimensional subspace γ of the tangent hyperplane Tx(Q) of Q at x,
with the property that x 6∈ γ, so that γ ∩Q := Q′ is a parabolic quadric Q(4, q),
respectively a hyperbolic quadric Q+(5, q). Every regulus Ri of M through L
has a unique transversal through the point x, which meets Q′ in a point ni.
Together with the point l := L ∩ γ, we thus obtain q2 + 1 points on Q′. If two
points l and ni, respectively ni and nj with i 6= j, were collinear on Q′, then
the totally singular plane 〈x, l, ni〉, respectively 〈x, ni, nj〉, would contain at least
2q + 1 points of M̃. This is a contradiction to the elementary properties of 1-
systems, see Shult and Thas [10, Theorem 8]. It follows that the q2 + 1 points
l, n1, n2, . . . , nq2 form an ovoid of Q′. This ovoid is called the projection along
reguli of M from x onto γ and denoted by Ox. If the ovoid Ox is the classical
ovoid Q−(3, q) of Q′ for all points x on L, then M is said to be semiclassical.

Finally, let M be a 1-system of Q(6, q) and suppose that M is locally hermi-
tian at the line L ∈M. Denote the q2 reguli of M through L by R1, R2, . . . , Rq2

and consider two distinct reguli Ri, Rj ofM through L. Then 〈Ri, Rj〉∩Q(6, q) is
an elliptic quadric Q−

ij(5, q), as has been explained above. This quadric Q−
ij(5, q)

defines a generalized quadrangle which is the point-line dual of the generalized
quadrangle H(3, q2) arising from a non-singular hermitian variety in PG(3, q2),
see Payne and Thas [9]. With Ri and Rj correspond point sets Wi and Wj

on H(3, q2), which are Baer sublines of lines in PG(3, q2) and have exactly one
point of H(3, q2) in common. So Wi and Wj are contained in exactly one com-
mon plane which intersects H(3, q2) in a hermitian curve H(2, q2) of H(3, q2).
This implies that the reguli Ri and Rj uniquely define a hermitian spread Sij of
Q−

ij(5, q). In PG(5, q) = 〈Q−
ij(5, q)〉, consider a 3-dimensional subspace PG(3, q)

skew to L. If Sij = {L,M1,M2, . . . ,Mq3} and τ := TL(Q−
ij(5, q)) is the tangent

space of Q−
ij(5, q) at L, then the lines 〈L,Mi〉∩PG(3, q), i = 1, 2, . . . , q3, together

with τ ∩ PG(3, q) := L′ form a regular spread S of PG(3, q); see Bloemen, Thas
and Van Maldeghem [1]. Let x be an arbitrary point on L and denote the q2

reguli of Sij through L by R′
1, R

′
2, . . . , R

′
q2 . Then each of these q2 reguli has

a unique transversal through x, which must be a generating line of the cone
Tx(Q−

ij(5, q)) ∩ Q−
ij(5, q) := xQ−

x (3, q). Together with the line L, this yields all
q2 + 1 lines containing x of the cone xQ−

x (3, q). For every point z ∈ Q−
x (3, q),

z 6∈ L, the plane 〈L, z〉 intersects PG(3, q) in a point. In this way, we obtain q2

points of PG(3, q) which form a plane πx together with the line L′. This plane πx

is in fact the projection from L onto PG(3, q) of 〈xQ−
x (3, q)〉 \ L. Each conic of

Q−
x (3, q) through l′ := L∩Q−

x (3, q) corresponds to a line of πx, different from L′;
this line belongs to the opposite regulus of a regulus of S through L′. Conversely,
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any such line of πx corresponds to a conic of Q−
x (3, q) on l′. Hence each regulus

of S containing L′ defines a conic of Q−
x (3, q) through l′, and conversely. The set

of q reguli of Sij defined by a regulus of S containing L′ will be called an R-conic
of Q(6, q). If x′ ∈ L \ {x}, then the plane πx′ defines the same R-conics as the
plane πx. In particular, for every point y on L, the q transversals through y of
the elements of an R-conic, together with the line L, form a cone with vertex y
and a non-singular conic Cy ⊆ Q−

y (3, q) through the point L ∩Q−
y (3, q) as base.

In [6] and [7], it is shown that the locally hermitian, semiclassical 1-systems
of Q(6, q) have a special property, which is formulated in the following lemma.

Lemma 1.4 ([6], [7]) Let M be a proper 1-system of Q(6, q), which is locally
hermitian at some line L ∈ M and in addition semiclassical. Denote the q2

reguli of M through L by R1, R2, . . . , Rq2. Then for every i 6= j, the elliptic
quadric Q−

ij(5, q) = 〈Ri, Rj〉 ∩ Q(6, q) contains exactly q reguli of M through L
and these reguli form an R-conic.

To conclude this section, a construction is given for locally hermitian spreads
of the elliptic quadric Q−(5, q).

Let S be a spread of Q−(5, q), which is locally hermitian at some line L ∈ S.
Consider the tangent space γ := TL(Q−(5, q)) of Q−(5, q) at the line L and
denote the q2 reguli of S through L by R1, R2, . . . , Rq2 . Then for every regulus
Ri, it holds that 〈Ri〉⊥, with ⊥ the polarity of Q−(5, q), is a line Li in γ, and
the q2 + 1 lines L,L1, L2, . . . , Lq2 form a line spread S in γ. Conversely, one can
reconstruct a locally hermitian spread of Q−(5, q) from every line spread S′ in γ
which contains the line L, just by reversing the above construction. If a locally
hermitian spread of Q−(5, q) is obtained in this way from a line spread S of γ
through L, it will be denoted by S(S). It can be shown, see [2], that S(S) is
hermitian if and only if the spread S is the regular line spread in γ, which is
determined by two conjugate lines T and T with respect to GF(q2), such that
〈L, T 〉 and 〈L, T 〉 are the generators containing L of the extension Q+(5, q2) of
Q−(5, q) to GF(q2).

2 T-correspondences and locally hermitian 1-systems
of Q(6, q)

Before atention is paid to the image under a T-correspondence (and hence also
a triality) of a locally hermitian 1-system of an induced Q(6, q) ⊆ Q+(7, q), it is
first shown that T-correspondences map 1-systems of Q+(7, q) onto 1-systems,
in the following easy, but basic, theorem.

Theorem 2.1 Let θ be a T-correspondence of Ω and consider an arbitrary 1-
system M of Q+(7, q). Then Mθ is also a 1-system of Q+(7, q).
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Proof.
Suppose that the claim is false and Mθ is not a 1-system of Q+(7, q). This
implies that there exist a line M ∈ Mθ and a generator G of Q+(7, q) on M
such that G meets some line N of Mθ \ {M} at least in a point x. In that case
〈M,x〉 is a totally singular plane on Q+(7, q) and as such contained in exactly
two generators G1 and G2 of Q+(7, q); assume without loss of generality that
G = G1 ∈ F1 and G2 ∈ F2. It then holds that N θ−1

and M θ−1
are lines of M,

the generator xθ−1 ∈ F2 contains N θ−1
, Gθ−1

1 is a point of M θ−1
and as x ∈ G1,

it follows that the point Gθ−1

1 is contained in xθ−1
. In other words, xθ−1

is a
generator of Q+(7, q) through the line N θ−1 ∈ M, which has the point Gθ−1

1 in
common with the line M θ−1 ∈ M \ {N θ−1}. This is a contradiction to the fact
that M is a 1-system of Q+(7, q), which proves the theorem. 2

Since locally hermitian 1-systems are characterized by the fact that they
consist of a number of reguli through some common line, it is important to
understand the action of a T-correspondence on a regulus.

Lemma 2.2 Let θ be a T-correspondence of Ω and consider a 3-dimensional
subspace γ of PG(7, q) such that γ ∩ Q+(7, q) = Q+(3, q). Then θ maps each
regulus of lines of Q+(3, q) onto a regulus of lines of some Q+(3, q)′ = γ′ ∩
Q+(7, q), with γ′ also a 3-dimensional subspace of PG(7, q).

Proof.
Denote the two reguli of the hyperbolic quadric Q+(3, q) by {K0,K1, . . . ,Kq}
and {T0, T1, . . . , Tq}. Since for i 6= j, any two lines Ki and Kj , respectively
Ti and Tj , are disjoint and not contained in a generator of Q+(7, q), the same
holds for their images Kθ

i and Kθ
j , respectively T θ

i and T θ
j . On the other hand,

every Ki meets every Tj in a point, which implies that Kθ
i and T θ

j are con-
tained in a generator of Q+(7, q), for i, j ∈ {0, 1, . . . , q}. If Kθ

i ∩ T θ
j were a

point y, then Ki and Tj would be contained in the generator yθ−1
of Q+(7, q),

clearly a contradiction. So Kθ
i is disjoint from T θ

j , for all i, j ∈ {0, 1, . . . , q}
and the situation is such that every T θ

j is contained in (Kθ
i )⊥, for all i =

0, 1, . . . , q. Consequently, the q + 1 lines T θ
j , j = 0, 1, . . . , q, must form a regulus

of Q+(3, q)′′ := 〈Kθ
0 ,Kθ

1〉⊥ ∩ Q+(7, q) and this in turn implies that the lines
Kθ

0 ,Kθ
1 , . . . ,Kθ

q form a regulus of 〈Q+(3, q)′′〉⊥ ∩ Q+(7, q) := Q+(3, q)′, where
Q+(3, q)′ = 〈Kθ

0 ,Kθ
1〉 ∩Q+(7, q). This proves the lemma. 2

This lemma ensures that every T-correspondence θ maps a 1-system M of
Q+(7, q) that is locally hermitian at some line L, onto a 1-system Mθ that is
locally hermitian at the line Lθ.
The next theorem we will prove, tells something about the dimension of 〈Mθ〉,
but first we need another lemma.
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Lemma 2.3 Suppose that θ is a T-correspondence of Ω and let A be the line set
of a generalized hexagon H(q) on Q+(7, q). Then the set Aθ is the set of lines
of a generalized hexagon H(q)′ on Q+(7, q).

Proof.
The hexagon H(q) consists of the absolute points and lines of some triality τ
of the D4-geometry Ω, attached to Q+(7, q), which satisfies the hypotheses of
Theorem 1.1. Let L be a line of H(q), that is, L is absolute for τ . Then the line
Lθ satisfies

(Lθ)θ−1τθ = Lτθ = Lθ,

so Lθ coincides with its image under the map θ−1τθ. It is obvious that θ−1τθ
is also a triality of Ω, but to prove the claim completely, we must ensure that
θ−1τθ satisfies one of the hypotheses of Theorem 1.1. We will check the second
of the two equivalent conditions from that theorem.
On H(q) there certainly exists an ordinary hexagon, consisting of the sequence
of lines (L1, L2, L3, L4, L5, L6), where Li is concurrent with Li+1, indices modulo
6. Then (Lθ

1, L
θ
2, L

θ
3, L

θ
4, L

θ
5, L

θ
6) is a sequence of absolute lines for θ−1τθ. Since

Li is concurrent with Li+1 on H(q) for i = 1, 2, . . . , 6 and indices taken mod-
ulo 6, 〈Li, Li+1〉 is a totally singular plane of Q+(7, q). Now by Property 1.2
this implies that Lθ

i and Lθ
i+1 have an absolute point for θ−1τθ in common, for

i = 1, 2, . . . , 6 and indices taken modulo 6. Hence the triality θ−1τθ satisfies (ii)
of Theorem 1.1 and so its absolute points and lines are the points and lines of a
generalized hexagon.
Finally, the generalized hexagon of the absolute points and lines of θ−1τθ must
be isomorphic to the one defined by τ , because we have that M θ−1τθ = M if
and only if (M θ−1

)τ = M θ−1
. So a line M of Q+(7, q) is absolute for θ−1τθ if

and only its inverse image M θ−1
is absolute for τ . Hence both hexagons have

the same order (q, q).
This proves the lemma completely. 2

Using this lemma, we can prove the following interesting theorem.

Theorem 2.4 Let A be a set of lines on a Q(6, q) ⊆ Q+(7, q) and consider a T-
correspondence θ of Ω. Then the lines of Aθ lie in an induced Q(6, q)′ ⊆ Q+(7, q)
if and only if the lines of A are lines of a generalized hexagon H(q) on Q(6, q).

Proof.
Denote by B the set of all lines of Q(6, q) and suppose thatAθ ⊆ Q(6, q)′ for some
parabolic quadric Q(6, q)′ ⊆ Q+(7, q). We investigate which lines of Bθ are lines
of this Q(6, q)′. If p is an arbitrary point of Q(6, q)′, then pθ−1

is a generator
of Q+(7, q). So pθ−1

intersects Q(6, q) in a totally singular plane, containing
q2 + q +1 lines of B. By Property 1.3, this implies that the q2 + q +1 lines of Bθ

through the point p are exactly the lines on p contained in some generator G of
Q+(7, q) through p. But G meets Q(6, q)′ in a totally singular plane α of Q(6, q)′,
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and hence the common lines of Bθ and Q(6, q)′ through the point p are exactly
the q + 1 lines on p in the totally singular plane α. In other words, the common
lines of Bθ and Q(6, q)′ through an arbitrary point of Q(6, q)′ form a pencil of
lines in some totally singular plane of Q(6, q)′ containing this point. Now, by
Theorem 3.7 of [12], this implies that the common lines of Bθ and Q(6, q)′ either
form the set of all lines in the q3 + 1 planes of a spread of Q(6, q)′, or they form
the line set of a generalized hexagon H(q)′ on Q(6, q)′. The first case cannot
occur in the current situation, because in that case, (Bθ)θ−1

= B would contain
q2 + q +1 lines through a point of Q+(7, q) in a generator of Q+(7, q). This is of
course a contradiction, as the rank of Q(6, q) is 3. So the lines of Bθ on Q(6, q)′

form the set of lines of a generalized hexagon H(q)′ on Q(6, q)′. Since Aθ ⊆ Bθ

and the lines of Aθ lie on Q(6, q)′ by assumption, all lines of Aθ must be lines
of H(q)′. If we now apply Lemma 2.3 to the T-correspondence θ−1, we find that
all lines of A are lines of a generalized hexagon H(q) on Q(6, q).

As the converse has already been shown in Lemma 2.3, the proof of the the-
orem is complete. 2

Suppose as a special case that M is a locally hermitian 1-system of Q(6, q) ⊆
Q+(7, q), not isomorphic to a spread of a generalized hexagon H(q) on Q(6, q).
Then by the above results, the image Mθ of M under a T-correspondence θ is
a locally hermitian 1-system of Q+(7, q) that is not contained in a non-tangent
hyperplane of PG(7, q). If it were contained in a tangent hyperplane of Q+(7, q),
this would imply the existence of a set of q3+1 lines on Q+(5, q) with the property
that every plane of Q+(5, q) which contains one of these lines, is disjoint from
the other q3 lines. From [10, Theorem 4], it follows that this is a contradiction.
We conclude that Mθ is a proper locally hermitian 1-system of Q+(7, q).
In the next section we will have a closer look at Mθ if the 1-system M of Q(6, q)
is not only locally hermitian, but also semiclassical.

3 T-correspondences and locally hermitian, semiclas-
sical 1-systems of Q(6, q)

Suppose again that θ is a T-correspondence of Ω. We now examine the special
case where M is a locally hermitian 1-system of a Q(6, q) ⊆ Q+(7, q), which is
in addition semiclassical. Let L ∈ M be a line at which M is locally hermitian
and denote the q2 reguli of M through L by R1, R2, . . . , Rq2 , as usually. We
already know that Mθ is locally hermitian at the line Lθ, but one would also
like to know whether Mθ is semiclassical or not.

Let x be a point on Lθ. Then the q2 transversals of the reguli of Mθ through
Lθ are the images under θ of q2 lines in the generator xθ−1 ∈ F2 through L. From
the proof of Lemma 2.2, it follows that if T is a transversal on x of a regulus Rθ

i ,
with Rθ

i the image under θ of some regulus Ri of M containing L, then T θ−1
is a

line of 〈Ri〉⊥, with ⊥ the polarity of Q+(7, q). As x is a point of T , the line T θ−1
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is thus the unique line in the intersection of xθ−1
and 〈Q+

i (3, q)〉 = 〈Ri〉⊥. So the
transversals through x of the reguli of Mθ containing Lθ, are the images under
θ of the q2 lines 〈Ri〉⊥∩xθ−1

, i = 1, 2, . . . , q2. These q2 lines in xθ−1
are pairwise

disjoint, since no two transversals through x of the reguli of Mθ containing Lθ,
are contained in a totally singular plane of Q+(7, q). For the same reason, all of
them are also disjoint from L, so that {L} ∪ {〈Ri〉⊥ ∩ xθ−1 | i = 1, 2, . . . , q2} is a
spread of the 3-dimensional projective space xθ−1

. If xθ−1
:= G, then we denote

this spread by SG. Apparently, the structure of SG determines the configuration
of the transversals on x of the reguli of Mθ through Lθ.

Lemma 3.1 The 1-system Mθ is semiclassical if and only if for every generator
G ∈ F2 containing L, the spread SG is regular.

Proof.
Let x on Lθ be fixed and consider in xθ−1

:= G the spread SG. Suppose that
{K0,K1, . . . ,Kq} is a regulus of lines of SG and denote its opposite regulus by
{T0, T1, . . . , Tq}. Then Kθ

0 ,Kθ
1 , . . . ,Kθ

q and T θ
0 , T θ

1 , . . . , T θ
q are lines through the

point x. As Ki and Kj are disjoint for i 6= j, the lines Kθ
i and Kθ

j are not
contained in a totally singular plane of Q+(7, q). On the other hand, Ki ∩ Tj

is a point for all i, j ∈ {0, 1, . . . , q}, so that 〈Kθ
i , T θ

j 〉 must be a totally singular
plane of Q+(7, q), by Property 1.2. Hence the only possible configuration is
that 〈Kθ

0 ,Kθ
1 , . . . ,Kθ

q 〉 ∩ Q+(7, q) is a quadratic cone xC with generating lines
Kθ

0 ,Kθ
1 , . . . ,Kθ

q and similarly 〈T θ
0 , T θ

1 , . . . , T θ
q 〉∩Q+(7, q) is a quadratic cone xC′,

but such that 〈xC〉⊥ ∩Q+(7, q) = xC′. One immediately sees that the converse
also holds: if Kθ

0 ,Kθ
1 , . . . ,Kθ

q , respectively T θ
0 , T θ

1 , . . . , T θ
q , are the generators of

a quadratic cone xC, respectively xC′, with 〈xC〉⊥ ∩Q+(7, q) = xC′ as an addi-
tional property, then {K0,K1, . . . ,Kq} is a regulus in G with opposite regulus
{T0, T1, . . . , Tq}.
It now easily follows that Mθ is semiclassical if and only if the spread SG is a
regular spread of G, for all generators G ∈ F2 through the line L. 2

Thanks to this lemma, we are able to show that Mθ is semiclassical when-
ever M itself is semiclassical, by relying on the properties of locally hermitian,
semiclassical 1-systems of Q(6, q). We start with the case of a proper 1-system
of Q(6, q).

Theorem 3.2 Let M be a proper 1-system of a Q(6, q) ⊆ Q+(7, q), which is
locally hermitian at the line L ∈ M, and consider a T-correspondence θ of Ω.
If M is semiclassical, then Mθ is semiclassical too.

Proof.
Suppose that M is locally hermitian at the line L and furthermore semiclassical,
and let the q2 reguli of M through L be denoted by R1, R2, . . . , Rq2 , as always.
Consider two arbitrary reguli Ri and Rj of M through L. Then we know from
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Lemma 1.4 that the elliptic quadric 〈Ri, Rj〉 ∩ Q+(7, q) = Q−
ij(5, q) contains

exactly q reguli of M through L. To make the notation easier, let i = 1 and
j = 2 and denote the q reguli of M through L in Q−

12(5, q) by R1, R2, . . . , Rq.
Let G ∈ F2 be an arbitrary generator of Q+(7, q) through the line L. We shall
show that the lines 〈Ri〉⊥ ∩ G, i = 1, 2, . . . , q, together with L, form a regulus
of lines of SG. Of course, the proof holds for all Ri, Rj , i, j ∈ {1, 2, . . . , q2} with
i 6= j, and not only for R1 and R2.

As the reguli R1, R2, . . . , Rq form an R-conic of Q−
12(5, q) by Lemma 1.4,

the transversals of R1, R2, . . . , Rq through x, together with the line L, form a
quadratic cone xC on Q−

12(5, q) for every point x on L. Hence 〈xC〉⊥∩Q+(7, q) is
a quadratic cone xC′ through x and contained in L⊥, but not containing L. The
3-space 〈xC′〉 meets every generator through L in a line, which is a generating
line of xC′. Denote the line xC′ ∩G by Ax.
We also know that 〈xC〉 meets each 〈Ri〉, i = 1, 2, . . . , q, in a plane through L.
As a consequence, 〈xC′〉 ∩ 〈Q+

i (3, q)〉 is a plane as well, for all i = 1, 2, . . . , q,
where Q+

i (3, q) := 〈Ri〉⊥ ∩Q+(7, q). Since every Q+
i (3, q) is disjoint from L and

every line of xC′ meets L in the point x, the quadratic cone xC′ and Q+
i (3, q)

have a non-singular conic Ci in common. But Ci shares exactly one point with
the line Ax, which shows that Ax has a unique point in common with Q+

i (3, q),
for i = 1, 2, . . . , q. In other words: Ax meets L and the q lines 〈Ri〉⊥ ∩ G,
i = 1, 2, . . . , q, in a point.
Suppose that two such lines Ax and Ay, for distinct points x and y on L, share
a point u, say u ∈ Q+

1 (3, q). Since x 6= y, 〈Ax, Ay〉 must then be a plane that
contains L and the q − 1 lines 〈Ri〉⊥ ∩G, i = 2, 3, . . . , q. But this means that L
and 〈Ri〉⊥ are not disjoint for i = 2, 3, . . . , q, a contradiction. So every two lines
Ax and Ay, for distinct x, y ∈ L, are disjoint.
By the above, it follows that {L} ∪ {〈Ri〉⊥ ∩ G | i = 1, 2, . . . , q} is a regulus of
lines of SG, with opposite regulus {Ax | x ∈ L}. This property does not only
hold for the q reguli R1, R2, . . . , Rq, but for any q reguli of M through L which
are contained in an elliptic quadric Q−

ij(5, q). As such, we have found that for
any two lines 〈Ri〉⊥ ∩G and 〈Rj〉⊥ ∩G, i 6= j, the regulus defined by these two
lines and L completely consists of lines of SG. Consequently, there are q(q + 1)
reguli through L in SG and by Theorem 3.1 of Gevaert, Johnson and Thas [3],
it follows that SG is regular.
Finally, since the generator G ∈ F2 through L was chosen arbitrarily, the desired
result follows from Lemma 3.1. 2

Remark that the previous theorem is not valid for locally hermitian spreads
of an elliptic quadric Q−(5, q), which is embedded in Q+(7, q). The following
result solves the corresponding question in this case: it is possible to show that
Mθ is semiclassical if and only if the spread M of Q−(5, q) arises from a regular
line spread of PG(3, q) by the construction, explained in Section 1.2.

Theorem 3.3 Let M be a spread of an elliptic quadric Q−(5, q), embedded in
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Q+(7, q), which is locally hermitian at some line L ∈ M, and consider a T-
correspondence θ of Ω. Then the image Mθ of M under θ is semiclassical if
and only if M = S(S) for a regular line spread S of TL(Q−(5, q)).

Proof.
Suppose that M is locally hermitian at the line L ∈M and denote the q2 reguli
of M through L by R1, R2, . . . , Rq2 . By Lemma 3.1, Mθ is semiclassical if and
only if for every generator G ∈ F2 of Q+(7, q) through L, the spread SG is a
regular line spread of G. As M is locally hermitian, we can write M = S(S) for
some line spread of the tangent space β := TL(Q−(5, q)) of Q−(5, q) at L. Let
T be the line 〈Q−(5, q)〉⊥, with ⊥ the polarity of Q+(7, q). Then 〈β, T 〉 is the
5-dimensional subspace L⊥, with ⊥ again the polarity of Q+(7, q). Also, both
β and 〈L, T 〉 = β⊥ only intersect Q+(7, q) in L. Now the spread S in β consists
of L and the q2 lines 〈Ri〉⊥ ∩ β, and every subspace 〈Ri〉⊥ contains the line T .
So the spread S is in fact the projection from T onto β of the spaces 〈L, T 〉 \ T
and 〈Ri〉⊥ \ T , i = 1, 2, . . . , q2.
If G ∈ F2 is a generator of Q+(7, q) through L, then β ∩G is the line L. It also
holds that the spread SG consists of L and the q2 lines 〈Ri〉⊥ ∩ G, so it is the
projection from T onto G of 〈L, T 〉 \ T and 〈Ri〉⊥ \ T , i = 1, 2, . . . , q2. Hence
it is clear that S is a regular line spread of β if and only if SG is a regular line
spread in G. This holds for all generators G ∈ F2 of Q+(7, q) containing the line
L, so that the theorem follows. 2

By now, we have quite extensive knowledge on what Mθ looks like if M ⊆
Q(6, q) is locally hermitian and semiclassical and θ is a T-correspondence of
Ω. If M is a spread of an induced elliptic quadric Q−(5, q) ⊆ Q(6, q), then
Theorem 3.3 provides a criterion to decide whether Mθ is semiclassical or not.
Also, Mθ spans the whole PG(7, q) whenever M is not hermitian.
If M is a proper locally hermitian, semiclassical 1-system of Q(6, q), then Mθ

is also locally hermitian and semiclassical. Moreover, it is not contained in a
hyperplane of PG(7, q), provided that M is not a spread of some H(q) on Q(6, q).
In particular, it then follows that M and Mθ are not isomorphic.

In the next section, we will have a look at Mθ in view of the results of [8],
since a characterization of the proper locally hermitian, semiclassical 1-systems
of Q+(7, q) was obtained there.

4 Mθ compared to the known locally hermitian 1-
systems of Q+(7, q)

It is the aim of this section to compare the 1-systems Mθ, with M and θ as
in the foregoing section, to the other previously known proper locally hermitian
1-systems of Q+(7, q), namely the ones that arise from an ovoid O of a hermitian
polar space H(3, q2). This means the following.
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Consider the quadratic extension Q+(7, q2) of Q+(7, q) and let γ and γ be
two disjoint generators of Q+(7, q2), which are conjugate with respect to the
extension GF(q2) of GF(q) and contain no point of PG(7, q). Denote by T the set
of lines of Q+(7, q), the extensions of which to GF(q2) have a point in common
with both γ and γ. It is known that the set T constitutes a partition of the
point set of Q+(7, q) and that the intersection points of the extensions to GF(q2)
of the lines of T with γ, form a hermitian variety H(3, q2) in γ, and similarly for
γ. Let O be an ovoid of H(3, q2) ⊆ γ and let O ⊆ γ be its conjugate. Then by
Shult and Thas [10], the set of lines M := {xx∩PG(7, q) | x ∈ O} is a 1-system
of Q+(7, q).

The next theorem states under which conditions Mθ, with M and θ as in
the previous section, was previously known.

Theorem 4.1 Suppose that M is a locally hermitian, semiclassical 1-system of
a Q(6, q) ⊆ Q+(7, q) and let θ be a T-correspondence of Ω. Then Mθ arises
from an ovoid of H(3, q2) if and only if M is a spread of an induced Q−(5, q) ⊆
Q(6, q).

Proof.
For this proof, let PG(7, q2) be the extension of PG(7, q) to GF(q2); the quadric
Q+(7, q) extends to a hyperbolic quadric Q+(7, q2).

First assume that M is a spread of an induced Q−(5, q) ⊆ Q(6, q). Then the
extension of Q−(5, q) to GF(q2) is a hyperbolic quadric Q+(5, q2) and it holds
that 〈Q+(5, q2)〉⊥ ∩Q+(7, q2) is a secant line meeting Q+(7, q2) in two points x
and x, which are conjugate with respect to the extension GF(q2) of GF(q). As
every line of M, considered as a line over GF(q2), lies in a totally singular plane
of Q+(7, q2) through x, and in another one through x, every line of Mθ, again
considered over GF(q2), has a point in common with the disjoint generators xθ

and xθ of Q+(7, q2). This implies that Mθ = {yy ∩ PG(7, q) | y ∈ O} for some
ovoid O of the hermitian variety H(3, q2) which is defined in xθ by the lines of
Q+(7, q), the extensions of which meet both xθ and xθ.

Conversely, assume that there exist two generators G and G of Q+(7, q2),
which are disjoint and conjugate with respect to the extension GF(q2) of GF(q).
Further, suppose that Mθ = {xx ∩ PG(7, q) | x ∈ O} for some ovoid O of the
hermitian variety H(3, q2), defined in G by the lines of Q+(7, q), the extensions
of which to GF(q2) meet both G and G in a point. There are two possibilities:
either G and G are elements of the first family of generators of Q+(7, q2), or
they both belong to the second family of generators.
If G and G are elements of F1, then Gθ−1

and Gθ−1
are points of Q+(7, q2) \

Q+(7, q). Moreover, every line of Mθ has a point in common with G and
G, and consequently every line of M, if considered over GF(q2), lies in a to-
tally singular plane of Q+(7, q2) through Gθ−1

and in another one contain-
ing Gθ−1

. But this means that the line 〈Gθ−1
, Gθ−1〉 ∩ PG(7, q) is an external

line of Q+(7, q), such that all lines of M are contained in the elliptic quadric
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〈Gθ−1
, Gθ−1〉⊥ ∩Q+(7, q) = Q−(5, q).

In the case where G, G ∈ F2, the spaces Gθ−1
and Gθ−1

are generators of
Q+(7, q2) of the first family. Consider an arbitrary line M ∈Mθ and denote the
common point of the extension of M to GF(q2) and G by x. Then M θ−1

is a line
in the generator xθ−1 ∈ F2. But x is a point of G, which means that xθ−1 ∩Gθ−1

is a plane, so that the extension to GF(q2) of M θ−1
has a point y in common

with Gθ−1
. Similarly, the extension to GF(q2) of M θ−1

also has the point y in
common with Gθ−1

. As M ∈ Mθ was chosen arbitrarily, this implies that M
too arises from an ovoid O′ of the hermitian polar space H(3, q2)′ in Gθ−1

, by
the usual construction. On the other hand, M is by assumption contained in a
hyperplane of PG(7, q), so 〈O′〉 cannot coincide with the 3-dimensional subspace
Gθ−1

. Thus 〈O′〉 must be a plane in Gθ−1
and it follows that M is contained in

the 5-dimensional subspace 〈O′,O′〉, considered over GF(q). We conclude that
M is a spread of the elliptic quadric 〈O′,O′〉 ∩Q+(7, q) = Q−(5, q). 2

By the information of this theorem, it is clear that Mθ is not isomorphic to
an example of a locally hermitian 1-system of Q+(7, q) which was known before,
provided that 〈M〉 = PG(6, q) and M is not a spread of a generalized hexagon
H(q) on Q(6, q). Thus we have obtained an alternative description to the one
in [8], of a subclass in the class of all proper locally hermitian, semiclassical 1-
systems of Q+(7, q), namely the subclass of all such 1-systems of the form Mθ,
with M and θ as above.

5 Isomorphism results for Mθ

Another question that appears naturally, is the following. In [6] and [7], it has
been shown that there exist several orbits under the action of PΓO(7, q) in the
set of the proper locally hermitian, semiclassical 1-systems of Q(6, q). It seems
obvious in this context to wonder whether two non-isomorphic 1-systems M1

and M2 of Q(6, q) yield non-isomorphic 1-systems Mθ
1 and Mθ

2 of Q+(7, q), with
θ a T-correspondence as is usual in this chapter. It will turn out that this is
indeed the case.

We start with two easy cases; the first one is a corollary of Theorem 4.1.

Corollary 5.1 Let θ be a T-correspondence of Ω. A spread M of an induced
Q−(5, q) ⊆ Q+(7, q) is a hermitian spread of Q−(5, q) if and only if Mθ is a
hermitian spread of some Q−(5, q)′ ⊆ Q+(7, q).

Proof.
M is a hermitian spread of a Q−(5, q) on Q+(7, q) if and only if there hold two
things: firstlyMmust be a spread of a Q−(5, q) and secondlyMmust arise from
an ovoid O of H(3, q2), which is in this case the classical ovoid O ∼= H(2, q2).
By applying Theorem 4.1 to θ, it follows from the first property that Mθ arises
from some ovoid O′ of a hermitian variety H(3, q2)′. On the other hand, M =
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(Mθ)θ−1
arises from an ovoid of H(3, q2), so that, again by Theorem 4.1 which

we now apply to the T-correspondence θ−1, Mθ is a 1-system of a Q−(5, q)′ ⊆
Q+(7, q). By combining both results, the statement of the corollary follows. 2

Corollary 5.2 Let M1 and M2 be locally hermitian, semiclassical spreads of
the hexagon H(q), embedded in a Q(6, q) ⊆ Q+(7, q). Then M1

∼= M2 under the
action of PΓO+(8, q) if and only if Mθ

1
∼= Mθ

2 under the action of PΓO+(8, q),
with θ a T-correspondence of Ω.

Proof.
This is an immediate consequence of Lemma 2.3, Corollary 5.1 and the fact that
both for q odd and for q even, there exist at most two non-isomorphic locally
hermitian, semiclassical spreads of H(q): the hermitian spread of a Q−(5, q) and
S[9] if q is odd and q ≡ 1 mod 3, see [1], respectively S[δ] if q is even and q = 22e,
see [5]. 2

The next theorem handles the general case.

Theorem 5.3 Let M1 and M2 be two proper locally hermitian, semiclassical
1-systems of a Q(6, q) ⊆ Q+(7, q) and let θ be a T-correspondence of Ω. Then
Mθ

1 and Mθ
2 are isomorphic under the action of PΓO+(8, q) if and only if M1

and M2 are isomorphic under the action of PΓO+(8, q).

Proof.
In the proof, we will need the element µp ∈ PGO+(8, q), see Hirschfeld and
Thas [4, Lemma 22.6.3], with p the point 〈Q(6, q)〉⊥ and ⊥ the polarity of
Q+(7, q), where µp stabilizes the points of Q(6, q) and maps an arbitrary point
r of Q+(7, q) \Q(6, q) onto the unique second common point of the line pr and
the quadric Q+(7, q). It can be shown that this map can be extended to an
element of PGO+(8, q), which is also denoted by µp. Let G1 ∈ F1 be a generator
of Q+(7, q). Then G1∩Q(6, q) is a totally singular plane, say π. As π is fixed by
µp, the image of G1 under µp must be a generator, different from G1, through π.
This generator is uniquely defined as the generator G2 through π which belongs
to F2. So G

µp

1 = G2 and similarly G
µp

2 = G1 and thus µp interchanges the
families of generators F1 and F2.

First assume that M1
∼= M2 under the action of PΓO+(8, q), so there exists

an element α ∈ PΓO+(8, q) such that Mα
1 = M2. If α interchanges F1 and F2,

then αµp ∈ PΓO+(8, q) fixes both families of generators and it also maps M1

onto M2. So we may assume that α preserves the families F1 and F2. In that
case we have that

(Mθ
1)

θ−1αθ = Mαθ
1 = Mθ

2,

so that θ−1αθ maps Mθ
1 onto Mθ

2. But, as α preserves the families of gener-
ators, the map θ−1αθ stabilizes the sets P, L, F1 and F2, preserves the inci-
dence between these sets and stabilizes Q+(7, q). Hence θ−1αθ is an element of
PΓO+(8, q), which shows thatMθ

1 andMθ
2 are also isomorphic under PΓO+(8, q).
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To prove the converse, assume that Mθ
1 and Mθ

2 are isomorphic under the
action of PΓO+(8, q), with isomorphism α ∈ PΓO+(8, q). Then it holds that
Mθα

1 = Mθ
2, from which one derives that Mθαθ−1

1 = M2. Here one should
distinguish between the case where α preseves F1 and F2 and the case where it
interchanges both families of generators.
If α preseves the families F1 and F2, one easily sees that θαθ−1 is itself an
element of PΓL(8, q), stabilizing Q+(7, q). So it immediately follows that M1 is
isomorphic to M2 under PΓO+(8, q), with isomorphism θαθ−1.
Suppose next that α interchanges F1 and F2. It still holds that the map θαθ−1

maps M1 onto M2, but now θαθ−1 is not a collineation. It is easily seen that
θαθ−1 still maps lines onto lines, but unfortunately it interchanges points and
generators of the first family, while preserving the second family of generators.
Now the element µp ∈ PGO+(8, q) comes into play, as we consider the map
θαθ−1µp. Clearly this map acts as follows on M1:

Mθαθ−1µp

1 = Mµp

2 = M2,

so θαθ−1µp also maps M1 onto M2. But by the fact that µp interchanges F1

and F2, θαθ−1µp maps points onto elements of F2, elements of F2 onto elements
of F1 and elements of F1 onto points. As it also preserves the incidence of
Ω, θαθ−1µp is a T-correspondence of Ω. Since M1 and M2 are 1-systems of
a Q(6, q) ⊆ Q+(7, q), it now follows from Theorem 2.4 that M1 and M2 are
spreads of a generalized hexagon H(q) on Q(6, q). Consequently Corollary 5.2
yields that M1

∼= M2 under PΓO+(8, q).
This proves the theorem. 2

Theorem 5.3 learns how many orbits under the action of PΓO+(8, q) there
are in the set of all 1-systems of Q+(7, q) of the form Mθ, with M a proper
locally hermitian, semiclassical 1-system of Q(6, q) ⊆ Q+(7, q) and θ a fixed
T-correspondence or triality of the D4-geometry Ω, attached to Q+(7, q). This
number of orbits equals the number of orbits under the action of PΓO(7, q) in
the set of all proper locally hermitian, semiclassical 1-systems of Q(6, q). This
number is known: for q odd, it equals the number of orbits of Aut(GF(q)) in the
set of squares of GF(q) \ {0, 1}; see the remark following Theorem 7.2 of [6]. If
q is even, it equals the number of orbits of Aut(GF(q)) in the set of all elements
of GF(q) \ {0} with trace zero; see the remark following Theorem 6.2 in [7].
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