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Abstract

For q odd, it was shown in [3] that the elliptic quadric Q−(7, q) possesses
a unique 1-system, the so-called classical 1-system. Here, the same result
will be obtained for even q.

1 Basic properties of 1-systems of Q−(7, q)

A 1-system M of the elliptic quadric Q−(7, q) is a set {L0, L1, . . . , Lq4} of q4 +1
lines of Q−(7, q) with the property that every plane of Q−(7, q) containing a line
Li of M has an empty intersection with (L0 ∪ L1 ∪ . . . ∪ Lq4) \ Li. We denote
the union of all elements of M by M̃. Concerning the generators of Q−(7, q),
which are planes, the following result is shown by Shult and Thas in [5] in a
more general context; here it is stated for 1-systems of Q−(7, q) in particular.

Theorem 1.1 (Shult and Thas [5]) If M is a 1-system of the elliptic quadric
Q−(7, q), then every generator of Q−(7, q) contains exactly q + 1 points of M̃.

In [2] a similar result for lines of Q−(7, q) is obtained, as it is shown that every
line of Q−(7, q) has 0, 1, 2 or q + 1 points in common with M̃, where the latter
occurs if and only if the line belongs to M. In combination with Theorem 1.1,
this implies that every totally singular plane of Q−(7, q) either contains a line
of M, or a (q + 1)-arc of points of M̃.

Let M be an arbitrary 1-system of Q−(7, q). If L1, L2 and L3 are arbitrary
lines of M, then 〈L1, L2〉 is 3-dimensional and it intersects Q−(7, q) in a hy-
perbolic quadric Q+(3, q). This hyperbolic quadric Q+(3, q) contains no points
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of M̃, apart from the points on L1 and L2, for otherwise there would exist a
line of Q+(3, q) meeting L1 and L2 and containing at least three points of M̃, a
contradiction since such a line cannot be a line of M. Hence L3 has no point in
common with 〈L1, L2〉 and it follows that 〈L1, L2, L3〉 is 5-dimensional for every
three distinct lines L1, L2 and L3 of M.

Both for q even and for q odd, there is exactly one 1-system of Q−(7, q)
known, which is the unique 1-system of Q−(7, q) if q is odd, see [3]. It is called
the classical 1-system of Q−(7, q) and can be constructed as follows. In the
extension PG(7, q2) of PG(7, q) = 〈Q−(7, q)〉, there exist two disjoint 3-spaces γ
and γ, which are conjugate with respect to the extension GF(q2) of GF(q), polar
with respect to the polarity defined by the extension Q+(7, q2) of Q−(7, q), and
such that γ ∩ Q+(7, q2) is an elliptic quadric Q−(3, q2). The classical 1-system
M of Q−(7, q) then consists of all lines xx∩PG(7, q), where x varies on Q−(3, q2)
and x is its conjugate, so is a point of γ ∩Q+(7, q2). In Shult and Thas [5], one
can find a proof that the set of lines M = {xx ∩ PG(7, q) | x ∈ Q−(3, q2)} is
indeed a 1-system of Q−(7, q).

From now on it is assumed that q is even and it will be shown that also in
this case, the classical 1-system is the unique 1-system of Q−(7, q).

2 A 1-system of Q−(7, q) is an egg of PG(7, q)

In this section, it will be shown that every 1-system of Q−(7, q), q even, is an egg
of the ambient space PG(7, q) of Q−(7, q), so we start with the general definition
of an egg O(n, 2n, q).
An egg O(n, 2n, q) of PG(4n−1, q) is a set of q2n+1 (n−1)-dimensional subspaces
π0, π1, . . . , πq2n of PG(4n−1, q), every three of which generate a PG(3n−1, q) and
such that each element πi of O(n, 2n, q) is contained in a PG(i)(3n− 1, q), having
no point in common with (π0 ∪ π1 ∪ · · · ∪ πq2n) \ πi. The space PG(i)(3n− 1, q)
is called the tangent space of O(n, 2n, q) at πi. An egg O(n, 2n, q) is called good
at an element πi if for all distinct πj , πk, j 6= i 6= k, the space generated by πi,
πj and πk contains exactly qn + 1 elements of O(n, 2n, q). An egg O(n, 2n, q) is
called regular if it is constructed in the following way.

Consider the algebraic extension GF(qn) of GF(q) and the corresponding ex-
tension PG(4n − 1, qn) of PG(4n − 1, q). Consider n 3-dimensional subspaces
PG(1)(3, qn),PG(2)(3, qn), . . . ,PG(n)(3, qn) of PG(4n− 1, qn), which generate the
space PG(4n− 1, qn) and constitute a conjugate n-tuple with respect to the ex-
tension GF(qn) of GF(q). Let O be an ovoid of PG(1)(3, qn). With every point
p(1) of O, there correspond n − 1 points p(2), p(3), . . . , p(n) such that the points
p(1), p(2), . . . , p(n) constitute a conjugate n-tuple with respect to the extension
GF(qn) of GF(q). The points p(1), p(2), . . . , p(n) define an (n−1)-dimensional sub-
space of PG(4n− 1, q). If we let p(1) vary in O, we obtain q2n + 1 such (n− 1)-
dimensional subspaces of PG(4n − 1, q), which form a regular egg O(n, 2n, q).
Regular eggs are good at each of their elements. In [6], Thas shows that the
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converse also holds.

Theorem 2.1 (Thas [6]) Every egg O(n, 2n, q) of PG(4n− 1, q) which is good
at each of its elements, is regular.

In the special case where the ovoid O of PG(1)(3, qn) is an elliptic quadric
Q−(3, qn), the egg is said to be classical.

Concerning 1-systems of Q−(7, q), with q even, a first result is obtained in
the following lemma.

Lemma 2.2 Let π be a totally singular plane of Q−(7, q), containing a (q + 1)-
arc O of points of M̃. If x ∈ O is arbitrary and M ∈ M is the line of M
containing x, then for any point z ∈ π \ O, the plane 〈z, M〉 is totally singular
if and only if z lies on the tangent line of O at x.

Proof.
If the plane 〈z,M〉 is totally singular and xz is a secant line of O, then the
generator 〈z,M〉 of Q−(7, q) contains the line M of M and a point of M̃ not
on M , namely the point (O ∩ xz) \ {x}. This contradicts the definition of a
1-system of Q−(7, q) and it follows that xz must be the tangent line of O at x.

To prove the converse, consider an arbitrary point y of M \ {x}. Then y⊥

intersects π in some line K through x. If K were a secant of O, then the totally
singular plane 〈y, K〉 would again contain the line M ∈ M, and some other
point of M̃, not on M , a contradiction. Hence K must be the unique tangent
of O at x and one concludes that the plane 〈z,M〉 is totally singular for every
point z of K \ {x}. 2

In Shult and Thas [5] it is proved that a 1-system of Q−(7, q) has two inter-
section numbers with respect to hyperplanes. In particular, a hyperplane H of
PG(7, q) contains exactly one line of M if and only if it is the tangent hyperplane
of Q−(7, q) at some point of M̃. Otherwise, H contains exactly q2 + 1 lines of
M. In the next lemma, it is stated that whenever H is the tangent hyperplane
of Q−(7, q) at a point p 6∈ M̃, then the q2 + 1 lines of M in H lie in fact in a
5-dimensional subspace of PG(7, q).

Lemma 2.3 For every point p of Q−(7, q) \M̃, the q2 +1 lines of M in p⊥ are
contained in a 5-dimensional subspace of PG(7, q).

Proof.
Consider a totally singular plane π of Q−(7, q) through the point p, and such
that π meets M̃ in a (q +1)-arc O. As q is even, the (q +1)-arc O has a nucleus
n, which is the intersection of all tangent lines of O. If p = n, then p lies on all
q+1 tangents of O and by the previous lemma, it follows that 〈p, M〉 is a totally
singular plane for all lines M ∈M containing a point of O. Hence the q+1 lines
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of M which intersect π in a point, are contained in p⊥. If p is not the nucleus
n of O, then p lies on exactly one tangent line of O, say at the point x ∈ O.
Again by the previous lemma, the line M ∈ M through x is the unique line of
M intersecting π with the property that 〈p, M〉 is a totally singular plane. It
follows that this line M is the only line of M containing a point of O, which is
completely contained in p⊥.

Let γ ⊆ p⊥ be a 5-dimensional subspace not through p, so that γ ∩Q−(7, q)
is an elliptic quadric Q−(5, q). We project the q2 + 1 lines of M in p⊥ from p
onto γ; this yields a set Mp of q2+1 mutually disjoint lines of Q−(5, q). Starting
from this set Mp, one can define a substructure S = (P,B, I) of the generalized
quadrangle Q−(5, q) as follows. The point set P is the set of all points on the
lines of Mp, the line set B consists of all lines of Q−(5, q) consisting entirely
of points of P, and incidence I is the incidence of Q−(5, q). We will show that
S is a subquadrangle of Q−(5, q). To that end, consider an arbitrary line L of
Q−(5, q), which does not belong to Mp. Then 〈p, L〉 is a totally singular plane of
Q−(7, q) containing a (q + 1)-arc O of points of M̃. By the previous paragraph
it follows that either exactly one, or all q + 1 points of L lie on a line of Mp, so
either L is a line of B, or it meets P in a unique point. Since this holds for all
lines L of Q−(5, q) not in Mp, it follows that every line of Q−(5, q) containing at
least two distinct points of P belongs to B. This implies that the substructure
S = (P,B, I) satisfies the conditions of [4, Theorem 2.3.1] and since the lines
of B are pairwise disjoint, one concludes from [4, Theorem 2.3.1] that S is a
subquadrangle of Q−(5, q). Moreover, the lines of Mp partition the point set of
this subquadrangle and hence Mp is a spread of S, so that |P| = (q +1)(q2 +1).
Consequently, S has order (q, q) and thus it is a generalized quadrangle Q(4, q).
It readily follows that the q2 + 1 lines of M in p⊥ all lie in a 5-dimensional sub-
space ε, where ε ∩ Q−(7, q) is a cone pQ(4, q) with p as vertex and a parabolic
quadric Q(4, q) as base. 2

We are now ready to show the main result of this section.

Theorem 2.4 If q is even, then every 1-system of Q−(7, q) is an egg O(2, 4, q)
of PG(7, q), which is good at each of its elements.

Proof.
By definition, all q4 + 1 lines of a 1-system M of Q−(7, q) are pairwise disjoint
and in Section 1 it has been explained that every three distinct elements of M
span a PG(5, q). Moreover, the quadric Q−(7, q) has a unique 5-dimensional
tangent space at each line L of M, and this tangent space is disjoint from all
lines of M\ {L} by definition. Hence the lines of M form an egg O(2, 4, q) of
PG(7, q) and it only remains to show that M, considered as an egg O(2, 4, q), is
good at each of its elements.

On Q−(7, q), there are (q4 +1)q2 points p which do not belong to M̃. By the
previous lemma, it holds for every such point p that the q2 + 1 lines of M in p⊥
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span a 5-dimensional subspace of PG(7, q), which intersects Q−(7, q) in a cone
pQ(4, q); also, for any three such lines Li, Lj , Lk, we have that 〈Li, Lj , Lk〉⊥ ∩
Q−(7, q) = {p}, and so p is uniquely defined by {Li, Lj , Lk}. It follows that
there exist

q2(q4 + 1) · (q2 + 1)q2(q2 − 1)
3 · 2 · 1

=
1
6
(q4 + 1)q4(q4 − 1)

triples (Li, Lj , Lk) of distinct lines of M with the property that 〈Li, Lj , Lk〉 ∩
Q−(7, q) is some cone pQ(4, q) containing exactly q2 + 1 lines of M. On the
other hand, the fact that |M| = q4 + 1 implies that 1

6(q4 + 1)q4(q4 − 1) is also
the total number of triples (Li, Lj , Lk) consisting of three distinct lines of M.
Hence it holds for every triple of distinct lines Li, Lj , Lk of M that 〈Li, Lj , Lk〉
is a 5-dimensional subspace of PG(7, q) which contains exactly q2 +1 lines of M.
So the 1-system M, considered as an egg O(2, 4, q) of PG(7, q), is good at each
of its elements. 2

As has been mentioned in Theorem 2.1, every egg which is good at each of
its elements, is regular. This implies that there exist two disjoint and conjugate
3-dimensional subspaces ρ and ρ in the extension PG(7, q2) of PG(7, q) to GF(q2),
and ovoids O ⊆ ρ, respectively O ⊆ ρ, such that M = {xx ∩ PG(7, q) | x ∈ O}.
In the next section, it will be deduced from this property that M is classical.

3 The uniqueness result

Using the same notation as above, there remain two more properties to show.
Firstly, it must hold that the ovoid O is the elliptic quadric Q−(3, q2) = ρ ∩
Q+(7, q2), and similarly for its conjugate O. Secondly, one must prove that
ρ = ρ⊥, so the conjugate ρ of ρ must coincide with the image ρ⊥ of ρ under
the polarity ⊥ of Q+(7, q2). These properties will be shown in the following
theorem.

Theorem 3.1 If q is even, the elliptic quadric Q−(7, q) has a unique 1-system
up to a projectivity.

Proof.
Let M be a 1-system of Q−(7, q), q even. Then by Theorem 2.4, M is a regular
egg of the ambient space PG(7, q) of Q−(7, q). Denote the extensions to GF(q2)
of PG(7, q) and Q−(7, q) by PG(7, q2), respectively Q+(7, q2). In PG(7, q2) there
exist two disjoint and conjugate 3-spaces ρ and ρ such that M = {xx∩PG(7, q) |
x ∈ O}, for some ovoid O ⊆ ρ.

Since all extensions of lines of M to GF(q2) are lines of Q+(7, q2), the ovoid
O must be contained in ρ∩Q+(7, q2). Moreover O is an ovoid of ρ, which implies
that a totally singular line, respectively plane, of ρ ∩ Q+(7, q2) may contain at
most 2, respectively q+2 points ofO. These observations exclude the possibilities
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that ρ ∩ Q+(7, q2) is a hyperbolic quadric Q+(3, q2), or a cone xQ(2, q2), or a
cone LQ+(1, q2) for some point x or some line L of Q+(7, q2); also ρ∩Q+(7, q2)
cannot be of type LQ−(3, q2) nor can be a unique plane. Furthermore, one easily
counts that the number of generators of Q+(7, q2) which intersect Q−(7, q) in a
plane equals 2(q2 + 1)(q3 + 1)(q4 + 1), that every generator of Q+(7, q2) which
contains a line of Q−(7, q) also contains a plane of Q−(7, q), and that there exist
2(q2 + 1)(q4 + 1)q3(q3 − 1) generators of Q+(7, q2) having exactly one point in
common with Q−(7, q). As 2(q2 +1)(q3 +1)(q4 +1)+2(q2 +1)(q4 +1)q3(q3− 1)
equals the total number of generators of Q+(7, q2), it follows that ρ must contain
at least one point of Q−(7, q) if it is a generator of Q+(7, q2). But this contradicts
the fact that ρ∩ρ = ∅ and consequently ρ∩Q+(7, q2) must be an elliptic quadric
Q−(3, q2), which thus coincides with the ovoid O.

We proceed to show that ρ = ρ⊥. First, let x be an arbitrary point of
O. Then the image x⊥ of x with respect to the polarity of Q+(7, q2) is a 6-
dimensional subspace containing L⊥, with L the line xx ∩ PG(7, q) of M. But
L⊥ ∩ PG(7, q) is the tangent space TL(Q−(7, q)) of Q−(7, q) at L, so that L⊥ ∩
Q−(7, q) = LQ−(3, q). If x⊥ contained a point of Q−(7, q) \ L⊥, then it would
contain a 6-dimensional subspace of PG(7, q), a contradiction. So x⊥ intersects
Q−(7, q) exactly in LQ−(3, q). If y is an arbitrary point of O\{x}, then x⊥ and
the line yy have a point in common, say p, which is a point of Q+(7, q2)\Q−(7, q)
by the above observation. Let C be any conic on O containing x and y. Now
the number of points on yy which do not belong to PG(7, q) equals q2 − q, while
C \ {y} has q2 points. Hence there must exist distinct points u, u′ on C \ {y}
such that u⊥ ∩ yy = u′⊥ ∩ yy = {w}. But then the point w is a point of
u⊥ ∩ y⊥ ∩ u′⊥ = 〈C〉⊥, and so z⊥ ∩ yy = {w}(= {p}) for any point z on C \ {y}.
Since C is any conic on O containing x and y, it follows that p is a point of ρ⊥

and consequently ρ⊥ has a point in common with all lines yy, y ∈ O.
Suppose next that ρ ∩ ρ⊥ is at least a point r. If ρ 6= ρ⊥, then these two

3-spaces have at most a plane in common and 〈ρ, ρ⊥〉 is at most 6-dimensional.
But both ρ and ρ⊥ contain a point of each line xx, x ∈ O, and as ρ ∩ ρ⊥ is
at most a plane, this implies that 〈ρ, ρ⊥〉 ∩ PG(7, q), so also any hyperplane of
PG(7, q) through 〈ρ, ρ⊥〉 ∩ PG(7, q), contains at least q4 − q2 lines of M. This
is a contradiction to the fact that a hyperplane of PG(7, q) contains either 1 or
q2 + 1 lines of M and one concludes that ρ ∩ ρ⊥ is either empty, or ρ and ρ⊥

coincide.
Finally, assume that ρ∩ ρ⊥ is empty. Then there exist 3 pairwise disjoint 3-

dimensional subspaces ρ, ρ and ρ⊥, having a point in common with the extensions
to GF(q2) of all lines of M. By Theorem 25.6.1 of [1], this implies that all lines
xx, x ∈ O, are elements of a system of maximal spaces of a Segre variety S1;3

in PG(7, q2). On the other hand, the lines of M are lines of PG(7, q), and
the restriction of S1;3 to PG(7, q) is a Segre variety S

′
1;3 of PG(7, q). This is

nevertheless impossible because the system of maximal lines of the Segre variety
S

′
1;3 in PG(7, q) contains q3 + q2 + q +1 lines and hence cannot contain all q4 +1

6



lines of M. It follows that ρ and ρ⊥ are not disjoint either. Consequently,
ρ = ρ⊥ and M is the classical 1-system of Q−(7, q). 2
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