A GEOMETRIC PROOF OF THE UPPER BOUND ON THE SIZE OF PARTIAL SPREADS IN $H(4n+1,q^2)$

Frédéric Vanhove

Department of Mathematics, Ghent University Krijgslaan 281, S22 B-9000 Ghent, Belgium

ABSTRACT. We give a geometric proof of the upper bound of $q^{2n+1}+1$ on the size of partial spreads in the polar space $H(4n+1,q^2)$. This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in $H(4n+1,q^2)$.

1. Introduction

A classical finite polar space is an incidence structure, consisting of the totally isotropic subspaces of a projective space with respect to a non-degenerate sesquilinear form or a non-degenerate quadratic form. All dimensions will be assumed to be projective from now on, and we will also refer to m-dimensional subspaces as simply m-spaces. In particular, the 0- and 1-dimensional subspaces of such a polar space are known as its points and lines, respectively. The generators are its subspaces of maximal dimension. A partial spread of a classical finite polar space is a set of generators with no two incident with a common point. If a partial spread actually partitions the point set of the polar space, it is said to be a spread.

The Hermitian variety $H(n,q^2)$ is a particular type of classical finite polar space, consisting of the subspaces in $\mathsf{PG}(n,q^2)$, the points of which all have homogeneous coordinates (x_0,\ldots,x_n) satisfying the equation $x_0^{q+1}+\ldots+x_n^{q+1}=0$. In this polar space, the generators are (n-1)/2-dimensional, if n is odd, or (n-2)/2-dimensional, if n is even, and the number of points is given by $|H(n,q^2)|=(q^{n+1}+(-1)^n)(q^n-(-1)^n)/(q^2-1)$. We refer to [4] for proofs and much more information on Hermitian varieties and polar spaces in general.

Thas [6] proved that in $H(2n+1,q^2)$ spreads, or thus partial spreads of size $q^{2n+1}+1$, cannot exist, which has made the question on the size of a partial spread in such a polar space, an intriguing question. Improved upper bounds on the size of partial spreads in $H(2n+1,q^2)$ were proved in [2].

On the other hand, partial spreads of size $q^{n+1} + 1$ in $H(2n+1,q^2)$ were constructed for all $n \ge 1$ in [1], by use of a symplectic polarity of the projective space $PG(2n+1,q^2)$, commuting with the associated Hermitian polarity. In the Baer subgeometry of points on which these two polarities coincide, a (regular) spread of the induced symplectic polar space W(2n+1,q) can always be found, and these

 $^{2000\} Mathematics\ Subject\ Classification:\ 05B25,\ 51E23.$

Key words and phrases: Hermitian varieties, partial spreads.

This research is supported by the Research Foundation Flanders-Belgium (FWO-Vlaanderen).

 $q^{n+1} + 1$ generators extend to pairwise disjoint generators of $H(2n+1, q^2)$. Maximality of partial spreads of $H(2n+1, q^2)$ constructed in this way was also shown for n = 1, 2 in [1] and for all even n in [5].

In [3], De Beule and Metsch proved that the maximum size of a partial spread in $H(5,q^2)$ is q^3+1 , and they also obtained additional information on partial spreads meeting that tight bound. In particular, they found that every generator of $H(5,q^2)$, not meeting any element of such a partial spread S in a line or more, meets exactly q^2-q+1 elements of S in a point.

Using techniques from algebraic graph theory, we recently proved in [7] that the size of a partial spread in $H(4n+1,q^2)$ is at most $q^{2n+1}+1$, and this bound is thus tight as well. It turns out that a geometric property of partial spreads of maximum size in $H(5,q^2)$ can be generalized, and in fact paves the way for a new, completely geometric proof of the upper bound in $H(4n+1,q^2)$.

2. Tools

We first state a lemma by Thas [6].

Lemma 2.1. Let π_1, π_2 and π be three mutually disjoint generators in $H(2n+1, q^2)$. The set of points on π_1 , that are on a (necessarily unique) line of $H(2n+1, q^2)$ meeting both π and π_2 , form a non-singular Hermitian variety in π_1 .

Corollary 2.2. Let π_1, π_2 and π be three mutually disjoint generators in $H(2n+1,q^2)$. The number of generators meeting π in an (n-1)-space, and meeting both π_1 and π_2 in a point is $|H(n,q^2)| = \frac{(q^{n+1}+(-1)^n)(q^n-(-1)^n)}{q^2-1}$.

Proof. We let \bot denote the Hermitian polarity of $\mathsf{PG}(2n+1,q^2)$, associated with the polar space. It is obvious that every generator meeting π in an (n-1)-space, can meet π_1 and π_2 in at most one point. On the other hand, through any point $p_1 \in \pi_1$, there is a unique generator $\langle p_1, p_1^{\bot} \cap \pi \rangle$ meeting π in an (n-1)-space. Hence we have to determine the number of points $p_1 \in \pi_1$ such that the generator $\langle p_1, p_1^{\bot} \cap \pi \rangle$ also meets π_2 in a point.

First suppose that a point $p_1 \in \pi_1$ is such that the generator $\langle p_1, p_1^{\perp} \cap \pi \rangle$ meets π_2 in a point p_2 . In that case, the line p_1p_2 is a line of $H(2n+1,q^2)$, meeting π as well, as $p_1^{\perp} \cap \pi$ is a hyperplane of $\langle p_1, p_1^{\perp} \cap \pi \rangle$. Conversely, suppose a point $p_1 \in \pi_1$ is on a line of $H(2n+1,q^2)$, meeting π in p and π_2 in p_2 . In that case, both p_1 and p are in the generator $\langle p_1, p_1^{\perp} \cap \pi \rangle$, and hence so is the entire line p_1p , including the point p_2 . The desired result thus follows from Lemma 2.1.

3. The proof

Theorem 3.1. The size of a partial spread S in $H(4n+1,q^2)$, $n \ge 1$, is at most $q^{2n+1}+1$. If |S| > 1 and $\pi \in S$, then every generator meeting π in a (2n-1)-space, will meet the same number of other elements of S in just a point, if and only if $|S| = q^{2n+1} + 1$. In that case, that number must be q^{2n} .

Proof. Let S be a partial spread of size at least 2 in $H(4n+1,q^2)$. Consider a fixed element $\pi \in S$. Let $\{N_i | i \in I\}$ be the set of generators meeting π in a (2n-1)-space. As the number of (2n-1)-spaces in a generator equals $(q^{4n+2}-1)/(q^2-1)$, and the number of generators through any (2n-1)-space in $H(4n+1,q^2)$ is given by q+1, the cardinality of I is $\frac{q^{4n+2}-1}{q^2-1}q$.

Note that any generator N_i and any generator in $S\setminus\{\pi\}$, are either disjoint or meet in a point. For every $N_i, i \in I$, let t_i denote the number of generators in $S\setminus\{\pi\}$, meeting N_i in a point. We now count the number of pairs (N_i, π') , with π' an element of $S\setminus\{\pi\}$ meeting N_i in a point, in two ways. As through every point p' on an element π' of $S\setminus\{\pi\}$, there is a unique generator meeting π in a (2n-1)-space, we obtain:

(1)
$$\sum_{i \in I} t_i = (|S| - 1) \frac{q^{4n+2} - 1}{q^2 - 1}.$$

Now we count the number of ordered triples (N_i, π_1, π_2) , with π_1 and π_2 two distinct elements of $S\setminus\{\pi\}$, both meeting N_i in a point. We know from Corollary 2.2 that for every two distinct elements of $S\setminus\{\pi\}$, there will be exactly $|H(2n, q^2)|$ generators N_i , meeting both of them in a point. Hence we obtain:

(2)
$$\sum_{i \in I} t_i(t_i - 1) = (|S| - 1)(|S| - 2) \frac{(q^{2n+1} + 1)(q^{2n} - 1)}{q^2 - 1}.$$

Combining (1) and (2), we find:

(3)
$$\sum_{i \in I} t_i^2 = (|S| - 1) \frac{q^{2n+1} + 1}{q^2 - 1} \left((q^{2n+1} - 1) + (|S| - 2)(q^{2n} - 1) \right).$$

As $(\sum_{i\in I} t_i)^2 \leq (\sum_{i\in I} t_i^2)|I|$, with equality if and only if all t_i are equal, this implies:

$$(|S|-1)^2 \left(\frac{q^{4n+2}-1}{q^2-1}\right)^2 \leq (|S|-1)\frac{q^{2n+1}+1}{q^2-1} \bigg((q^{2n+1}-1)+(|S|-2)(q^{2n}-1)\bigg)\frac{q^{4n+2}-1}{q^2-1}q,$$

with equality if and only if all t_i are equal. Since we assumed that |S| > 1, we can cancel factors on both sides to obtain:

$$(|S|-1)(q^{2n+1}-1) \le \left((q^{2n+1}-1)+(|S|-2)(q^{2n}-1)\right)q,$$

implying that $|S| \leq q^{2n+1} + 1$, with equality if and only if all t_i are equal. In that case, their constant value must equal $(\sum_{i \in I} t_i)/|I| = q^{2n}$.

4. Remark

This technique fails when applied to partial spreads in $H(4n + 3, q^2)$, where it yields a negative lower bound on the size instead.

ACKNOWLEDGEMENTS

The author is grateful to Jan De Beule for his helpful suggestions while preparing this manuscript.

References

- A. Aguglia, A. Cossidente and G. L. Ebert, Complete spans on Hermitian varieties, Des. Codes Cryptogr., 29 (2003), 7–15.
- [2] J. De Beule, A. Klein, K. Metsch and L. Storme, Partial ovoids and partial spreads in Hermitian polar spaces, Des. Codes Cryptogr., 47 (2008), 21–34.
- [3] J. De Beule and K. Metsch, The maximum size of a partial spread in $H(5, q^2)$ is $q^3 + 1$, J. Combin. Theory Ser. A, **114** (2007), 761–768.
- [4] J. W. P. Hirschfeld and J. A. Thas, "General Galois Geometries," The Clarendon Press Oxford University Press, New York, 1991.

Advances in Mathematics of Communications

Volume X, No. X (200X), X-XX

- [5] D. Luyckx, On maximal partial spreads of $H(2n+1,q^2)$, Discrete Math., 308 (2008), 375–379.
- [6] J. A. Thas, Old and new results on spreads and ovoids of finite classical polar spaces, Ann. Discrete Math., 52 (1992), 529–544.
- [7] F. Vanhove, The maximum size of a partial spread in $H(4n+1,q^2)$ is $q^{2n+1}+1$, Electron. J. Combin., 16 (2009), Note 13, 1–6.

E-mail address: fvanhove@cage.ugent.be