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Abstract

Quasi-quadrics were introduced by Penttila, De Clerck, O’Keefe
and Hamilton in [2]. They are defined as point sets which have the
same intersection numbers with respect to hyperplanes as non-singular
quadrics. We extend this definition in two ways.

The first extension is to quasi-Hermitian varieties, which are point
sets which have the same intersection numbers with respect to hyper-
planes as non-singular Hermitian varieties.

The second one is to singular quasi-quadrics, i.e. point sets K
which have the same intersection numbers with respect to hyperplanes
as singular quadrics. Our starting point was to investigate whether ev-
ery singular quasi-quadric is a cone over a non-singular quasi-quadric.
This question is tackled in the case of a point set K with the same
intersection numbers with respect to hyperplanes as a point over an
ovoid.

1 Introduction

In [2] quasi-quadrics were introduced, i.e. point sets K in PG(n, q) which
have the same intersection numbers with respect to hyperplanes as non-
singular quadrics. In that paper there is a free construction of these struc-
tures, yielding an overwhelming amount of examples. In this paper we define
quasi-Hermitian varieties, i.e. the analogous concept of quasi-quadrics for
Hermitian varieties and provide similar free constructions of them.

In [4], we proved that if one additionally assumes that K has the same
intersection numbers with respect to spaces of codimension 2 as non-singular
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quasi-quadrics (non-singular Hermitian varieties), then K is a non-singular
quadric (non-singular Hermitian variety).

The goal of this paper is to extend the theory to singular quadrics (Her-
mitian varieties). We prove similar results in the low-dimensional case.

2 Quasi-Hermitian varieties

Definition 1
A set of points H in PG(n, q2), is called a quasi-Hermitian variety in
PG(n, q2), if its intersection numbers with hyperplanes are the size of a
non-singular Hermitian variety H(n− 1, q2), namely

(qn + (−1)n−1)(qn−1 − (−1)n−1)
q2 − 1

or the size of a cone with vertex a point p and base a non-singular Hermitian
variety H(n− 2, q2), shortly denoted by pH(n− 2, q2), namely

(qn + (−1)n−1)(qn−1 − (−1)n−1)
q2 − 1

+ (−1)n−1qn−1.

We will call hyperplanes intersecting H in |H(n − 1, q2)| points secant, the
other ones tangent.

We will show that not all quasi-Hermitian varieties are Hermitian va-
rieties. Our first construction is the Hermitian analogue of a construction
method by Penttila, De Clerck, O’Keefe and Hamilton, a method which they
call pivoting.

Let H(n, q2) be a non-singular Hermitian variety. Take a point p on
H(n, q2) and consider the tangent space Π of the Hermitian variety at p.
This space intersects the Hermitian variety in a cone with vertex p and base
a non-singular Hermitian variety H(n− 2, q2) lying in a PG(n− 2, q2). We
replace this non-singular Hermitian variety H(n−2, q2) by a quasi-Hermitian
variety in PG(n − 2, q2), say H ′. We call the set of points contained in
(H(n, q2)− pH(n− 2, q2))∪ pH ′ a pivoted set of H(n, q2) with respect to p.

Theorem 2
Every pivoted set of H(n, q2) with respect to a point p of H(n, q2) is a
quasi-Hermitian variety in PG(n, q2).

Proof. We have to prove that all hyperplanes intersect the pivoted set in the
correct number of points. Since we only replace points in the tangent space
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Π through p, we only have to look at the intersection of the hyperplanes α
with Π.

1) If α equals Π, then α has the same number of intersection points with
the pivoted set as with H(n, q2).

2) Next suppose that α intersects Π in an (n− 2)-dimensional space. If
α contains p then there are two cases to consider. The first possibility is
that α intersects H(n−2, q2) and H ′ in the same number of points, in which
case the total intersection number of α and the pivoted set is the same as
the intersection number of α with H(n, q2). The second possibility is that α
has different intersection numbers with H(n − 2, q2) and H ′, but then this
difference is equal to,

|H(n− 3, q2)| − |pH(n− 4, q2)| = (−1)nqn−3,

and so the total difference for the intersection size is q2(−1)nqn−3 = (−1)nqn−1

which equals
|H(n− 1, q2)| − |pH(n− 2, q2)|,

hence we get a valid intersection number.
If α does not contain p, then α intersects the intersection of the piv-

oted set and Π in a set of size |H ′| = |H(n − 2, q2)|, hence the number of
intersection points is unchanged. �

The second construction of a quasi-Hermitian variety only works in odd
dimension since in even dimension the generators are too small for this
construction to work. It is the Hermitian analogue of a theorem of Delanote
[3].

Theorem 3
Let Π be an (n− 1)-dimensional space lying on H(2n+ 1, q2). Consider the
q+1 generators Gi, 1 ≤ i ≤ q+1 on H(2n+1, q2) through Π. Consider also
spaces Πi, 1 ≤ i ≤ q + 1 through Π inside the tangent space Π∗ of H(2n+
1, q2) at Π which intersect the Hermitian variety exactly in Π. Consider

H ′ = (H(2n+ 1, q2)\ ∪i Gi) ∪ (∪iΠi)

This set H ′ is a quasi-Hermitian variety in PG(2n+ 1, q2).

Proof. Again we only have to look at the intersection of the hyperplanes α
with the (n+ 1)-space Π∗ since only there we replace points. If α contains
Π∗ then α has the same number of intersection points with H ′ as with
H(2n+1, q2). So suppose that α intersects Π∗ in an n-dimensional subspace.
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1) If α intersects Π∗ in one of the generators Gi, then it is a tangent
hyperplane, hence we get the following number of points in α ∩H ′.

|pH(2n− 1, q2)| − |Gi\Π| = |H(2n, q2)|.

2) If α∩Π∗ is one of the Πi then α is a secant hyperplane, hence we get
the following number of points in α ∩H ′.

|Πi\Π|+ |H(2n, q2)| = |pH(2n− 1, q2)|.

3) If α ∩ Π∗ is an n-dimensional space containing Π different from the
generators Gi and the spaces Πj , then clearly we get a correct number of
intersection points in α ∩H ′.

4) The last possibility is that α intersects each of the q+1 n-dimensional
spaces Gi in an (n − 1)-dimensional space Pi with Pi ∩ Π = α ∩ Π = Y an
(n− 2)-dimensional space.

Let Πj∩α = Pq+1+j , with j = 1, 2, ..., q+1. We have replaced (∪q+1
j=1Pj)\Y

by (∪2(q+1)
j=q+2Pj)\Y . This clearly yields a correct number of intersection points

in α ∩H ′.
4) �

Next we prove the Hermitian analogue of a remark in the Ph.D. thesis of
Delanote [3]. Again we give a construction of a quasi-Hermitian variety, one
which only works in odd dimension for q = 2.

Theorem 4
Consider H ′ = H(2n + 1, q2)\G where G is a generator of H(2n + 1, q2).
The complement of H ′ in PG(2n + 1, q2) is a quasi-Hermitian variety in
PG(2n+ 1, q2) if and only if q = 2.

Proof. A hyperplane α either contains G or intersects G in an (n − 1)-
dimensional space. If α contains G we know α is a tangent hyperplane. So
the possible intersections of H ′ with hyperplanes are

|pH(2n− 1, q2)| − |G| = q4n+1 − q2n+1

q2 − 1
,

|H(2n, q2)| − |PG(n− 1, q2)| = q4n+1 − q2n+1

q2 − 1
,

|pH(2n− 1, q2)| − |PG(n− 1, q2)| = q4n+1 − q2n+1

q2 − 1
+ q2n.
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So we get a two-character set. When looking at the complement of
H ′ in PG(2n + 1, q2) we get the following two intersection numbers with
hyperplanes.

h1 =
q4n+2 − q4n+1 + q2n+1 − 1

q2 − 1

h2 =
q4n+2 − q4n+1 + q2n+1 − q2n+2 + q2n − 1

q2 − 1

Hence we get the right intersection numbers if and only if q = 2. �

3 Singular quasi-quadrics

First we recall the theorem of Bose and Burton.

Definition 5
A blocking set with respect to t-spaces in PG(n, q) is a set B of points such
that every t-dimensional subspace of PG(n, q) meets B in at least one point.

The following result by Bose and Burton gives a nice characterization of the
smallest ones [1].

Theorem 6
If B is a blocking set with respect to t-spaces in PG(n, q) then |B| ≥ |PG(n−
t, q)| and equality holds if and only if B is an (n− t)-dimensional subspace.

Next we introduce the concept of singular quasi-quadric

Definition 7
A set K in PG(n, q) having the same number of points as a singular quadric
Q and for which each intersection number with respect to hyperplanes is
also an intersection number of Q with respect to hyperplanes, is called a
singular quasi-quadric.

A natural question is whether each singular quasi-quadric is formed by
the point set of a vertex over a quasi-quadric. The smallest non-trivial case
to investigate is the case of a point over an oval, this was solved in [5]. In
this paper we investigate the case of a point over an ovoid. It seems to be
hard to generalize this result to either greater vertex, because of the growing
number of hyperplane intersection possibilities or to greater base, because
the dimension of a generator becomes small compared to the dimension of
the ambient space.
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Consider a set K of q3 + q+ 1 points in PG(4, q) such that every hyper-
plane intersects K in q + 1, q2 + 1 or q2 + q + 1 points. A solid intersecting
K in i points will be called an i-solid.

Theorem 8
Every (q + 1)-solids contains a line which intersects K in at least q points.
If there are at least three (q+ 1)-solids which intersect K in a full line, then
the set K is a cone with vertex a point p and base an ovoid.

If we do not assume there are at least three (q+1)-solids which intersect
K in a line, we have the following counterexamples:

Example 9
Let q = 2 and let O be an ovoid in a hyperplane Γ of PG(4, q). Let π be a
tangent plane at O in Γ, say at the point x of O. Let p1 6= x and p2 6= x be
two different points in π and consider two disjoint lines L1 and L2, through
p1 and p2 respectively, which are not contained in Γ. Then the point set
K = O ∪ L1 ∪ L2 satisfies all the desired intersection properties.

Remark 10
Placing the lines L1 and L2 in different positions yields other examples for
the case q = 2.

Example 11
Let O be an ovoid in a hyperplane Γ of PG(4, q), let p be a point not in
Γ and consider the cone K := pO. Let π be a tangent plane at O in Γ,
say at the point x of O, and let L be a line in π through x. Then the set
K′ := K \ px ∪ L satisfies all the desired intersection properties.

We will prove Theorem 8 in several steps, which are described below.

Lemma 12
The number of (q + 1)-solids is q2 + 1.

Proof. Call the number of (q+1)-solids, (q2+1)-solids and (q2+q+1)-solids
a, b and c respectively. Counting the total number of solids in a 4-space, the
incident pairs (p, α) where p is a point of K and α a solid, and the number
of ordered triples (p, r, α) where p and r are distinct points of K lying in the
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solid α respectively, yields the following equations

a+ b+ c =
q5 − 1
q − 1

,

a(q + 1) + b(q2 + 1) + c(q2 + q + 1) = (q3 + q + 1)
q4 − 1
q − 1

,

a(q + 1)q + b(q2 + 1)q2 + c(q2 + q + 1)(q2 + q) = (q3 + q + 1)(q3 + q)
q3 − 1
q − 1

.

Solving these equations completes the proof. �

Lemma 13
(i) Every plane which does not meet K is contained in exactly two (q+1)-

solids.

(ii) Two (q + 1)-solids intersect in at most one point of K.

(iii) Any plane contains at most 2q + 1 points of the set K.

(iv) All (q + 1)-solids which intersect K in a line have a point of K in
common.

Proof. Consider a plane π and suppose that |π∩K| = x. Consider all solids
through π in PG(4, q) and denote the number of them which are (q + 1)-
solids, (q2 + 1)-solids and (q2 + q+ 1)-solids by a, b and c respectively. This
yields the following equation:

x+ a(q + 1− x) + b(q2 + 1− x) + c(q2 + q + 1− x) = q3 + q + 1.

After simplifying we get a+ c− x = (a− 1)q. This proves (i), (ii) and (iii)
immediately. Hence, all (q+1)-solids which intersect K in a line have a point
in common, otherwise we get a plane intersecting K in at least 3q points. �

Lemma 14
Every (q+ 1)-solid intersects K contains a line which intersects K in at least
q points.

Proof.
Let Σ be a (q + 1)-solid, and let L be any line of Σ having non-trivial

intersection with K. Suppose that L intersects K in 1 + k points. We cal-
culate a lower bound for the number of exterior planes (i.e. not intersecting
K) of Σ. One easily sees there are at least (q − k)(q2 + k) exterior lines
intersecting L. Furthermore, on each such line there are at least k exterior
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planes. Since every exterior plane intersects L, such plane contains exactly
q + 1 exterior lines intersecting L. It follows there are at least

E =
k(q − k)(q2 + k)

q + 1

exterior planes in Σ. By (i) of Lemma 13 this implies there at least E + 1
(q + 1)-solids in PG(4, q). Hence, by Lemma 12, E ≤ q2 must hold. We
obtain that k ∈ {0, 1, q − 1, q} or (k, q) = (2, 4). We will deal with (k, q) =
(2, 4) at the end of the proof. So suppose that k ∈ {0, 1, q − 1, q}, and that
Σ ∩ K would be an arc in Σ. Let π be a plane of Σ intersecting K in l + 1
points. We may assume without loss of generality that l ≥ 2. In π there are
exactly q2+q+1−(q+1−l)−(l+1)l/2 lines exterior to K, and through each
of these lines there pass at least l planes of Σ exterior to K. As the total
number of exterior planes in Σ can be at most q2 it follows that q2 ≤ l2/2,
a contradiction.

We now deal with the case (k, q) = (2, 4). There is a line L containing
exactly 3 points of Σ∩K. Let M be the line spanned by the two remaining
points in Σ ∩ K.

(a) If L ∩M = ∅ then in Σ there are 18 planes exterior to K. By (i)
of Lemma 13 each of them is contained in two (q + 1)-solids. This yields a
contradiction since there are only 17 (q + 1)-solids by Lemma 12.

(b) If L ∩M is a point p /∈ K then inside π = 〈L, m〉 there are 5 lines
exterior to K. Hence in Σ there are 20 planes exterior to K. By (i) of Lemma
13 each of them is contained in two (q+1)-solids. This yields a contradiction
since there are only 17 (q + 1)-solids by Lemma 12.

(c) If L ∩M is a point p ∈ K then inside π = 〈L, M〉 there are 4 lines
exterior to K. Hence in Σ there are 16 planes exterior to K. By (i) of Lemma
13 each of them is contained in two (q+ 1)-solids. Assume that at least one
(q + 1)-solid intersects K in a line. This yields a contradiction since there
are only 17 (q + 1)-solids by Lemma 12.

So we may suppose there are no (q+1)-solids intersecting K in a full line.
Hence every (q + 1)-solids contains either 1 line intersecting K in 4 points
(type I) or 2 lines intersecting K each in 3 points (type II). From the above,
the intersection of two (q + 1)-solids of type II can never contain a point of
K (as there are 16 exterior planes in such (q + 1)-solids). Hence there must
be (q + 1)-solids of type I, otherwise we get too many points in K. Let Π1

be such solid, and call h1 the unique point on L1 not belonging to K, where
L1 is the unique line of Π1 intersecting K in 4 points. We immediately see
that h1 is contained in at least 13 (q+1)-solids. Furthermore, as all exterior
planes of Π1 pas through h1, the point h1 is contained in all solids of type
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II. Now define Π2 and h2 analogously to Π1 and h1 for a second (q + 1)-
solid Π2 of type I. Assume that h1 6= h2. Since also h2 is contained in at
least 13 (q + 1)-solids it follows that the line h1h2 is contained in at least 9
(q+ 1)-solids. This implies the existence of a plane through h1h2 containing
at least three (q + 1)-solids, a contradiction. Hence h1 = h2, and the point
h1 is contained in all (q+1)-solids. Now consider any (q+1)-solid Σ of type
II. Then h1 ∈ Σ, and furthermore every exterior plane of Σ must contain
h1. This is clearly impossible, hence there are no solids of type II.

�

Lemma 15
Suppose there are at least three different (q+ 1)-solids which intersect K in
a line. Then all (q + 1)-solids intersect K in a line.

Proof. Suppose there is a (q + 1)-solid Π3 which does not contain the
common intersection point p of all (q + 1)-solids which intersect K in a line
Li. The space Π3 intersects each of the lines Li in a point of K. Since there
are at least three such lines, we get, using Lemma 14, a plane containing
more than 2q + 1 points of K, a contradiction.

Consequently every plane π not intersecting K is contained in at most
one (q + 1)-solid, namely 〈p, π〉, a contradicting (i) of Lemma 13. Hence
every (q+1)-solid is blocked by K, so Theorem 6 implies that all (q+1)-solids
intersect K in a line. �

Now we can complete the proof of Theorem 8.

Proof. By Lemma 15 all q2 +1 (q+1)-solids intersect K in a line, and these
lines have a point p in common. Since 1 + q(q2 + 1) = q3 + q + 1, it follows
that p is collinear with all other points of the set K.

Let M be a line not through p containing at least three points of K, say
r, s and t. Then t is contained in the plane π spanned by the lines 〈p, r〉
and 〈p, s〉. Hence π intersects K in at least 2q + 2 points, a contradiction
by (iii) of Lemma 13. Hence, all lines not through p intersect K in at most
2 points. Consider a solid Π not through p. If q > 2 then by the above,
Π intersects K in an ovoid. If q = 2, then an ovoid is a set of 5 points in
PG(3, 2) no four of which are coplanar. Let π be an arbitrary plane in Π.
If |π ∩ K| ≥ 4 then the solid 〈p, π〉 would contain more than 7 points, a
contradiction. This completes the proof. �

Acknowledgements. The research of the first author takes place within
the project ”Linear codes and cryptography” of the Fund for Scientific Re-
search Flanders (FWO-Vlaanderen) (Project nr. G.0317.06) and is sup-

9



ported by the Interuniversitary Attraction Poles Programme-Belgian State-
Belgian Science Policy: project P6/26-Bcrypt.

References

[1] R. C. Bose and R. C. Burton. A characterization of flat spaces in a
finite geometry and the uniqueness of the Hamming and the MacDonald
codes. J. Combin. Theory, 1:96–104, 1966.

[2] F. De Clerck, N. Hamilton, C. O’Keefe, T. Penttila Quasi-
quadrics and related structures, Australas. J. Combin. 22 (2000), 151-
166.

[3] M. Delanote Constructions and characterizations of (semi)partial ge-
ometries, Ph.D Thesis, Ghent University, 2001.

[4] S. De Winter and J. Schillewaert. A characterization of finite
polar spaces by intersection numbers. Combinatorica, accepted for pub-
lication.

[5] N . Durante, V. Napolitano and D. Olanda On quadrics of
PG(3, q), preprint, 2006.

10


