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Abstract. A combinatorial characterization of the Veronese variety of all quadrics in PG(n, q) by
means of its intersection properties with respect to subspaces is obtained. The result relies on a
similar combinatorial result on the Veronesean of all conics in the plane PG(2, q) by Ferri [2],
Hirschfeld and Thas [4], and Thas and Van Maldeghem [9], and a structural characterization of
the quadric Veronesean by Thas and Van Maldeghem [8].
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1. Introduction

An important branch in combinatorics is the characterization of algebraically defined objects in a
combinatorial way. In several situations, it might occur that one has information about the intersec-
tion numbers with subspaces of a certain point set K, but no substantial structural information. In
such cases, characterization results classifying the possible structures having these properties can be
very useful. In this paper, we characterize the finite Veronese variety by means of such intersection
properties and some structural information. For the smallest Veronesean, the conic, this was already
done (in the odd case) by Segre, in his celebrated characterization of conics (“every set of q+1 points
in PG(2, q), q odd, no three of which are collinear, is a conic”) [5]. This was in fact the starting point
of this kind of results. For the Veronese surface of all conics in PG(2, q), it was already done by Ferri
[2], Hirschfeld and Thas [4], and Thas and Van Maldeghem [9].

Definition 1.1. The Veronese variety V2n

n of all quadrics of PG(n, q), n ≥ 1 is the variety

V2n

n = {p(x2
0, x

2
1, · · · , x2

n, x0x1, x0x2, · · · , xn−1xn) || (x0, · · · , xn) is a point of PG(n, q)}

of PG(n(n+3)
2 , q); this variety has dimension n and order 2n. The natural number n is called the

index of V2n

n .

For the basic properties of Veroneseans we refer to [4].

The image of an arbitrary hyperplane of PG(n, q) under the Veronesean map is a quadric Veronesean
V2n−1

n−1 , and the subspace generated by it has dimension Nn−1 = (n−1)(n+2)
2 . Such a subspace is called
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a Vn−1-subspace. In particular for n = 2, the V1-subspaces are called conic planes. The image of a
line of PG(n, q) is a plane conic, and if q is even, then the set of nuclei of all such conics is the
Grassmanian of the lines of PG(n, q) and hence generates a subspace of dimension (n−1)(n+2)

2 , which
we call the nucleus subspace of V2n

n , see [8].

One can also consider the Veronesean from a matrix point of view.

Theorem 1.2. The quadric Veronesean V2n

n of PG(n, q) consists of all points
p(y0,0, · · · , yn,n, y0,1, · · · , yn−1,n) of PG(n(n+3)

2 , q) for which [yij ], with yi,j = yj,i for i 6= j, is a
symmetric matrix of rank 1.

For V2n

n , one can define a so-called tangent space at each point, and these tangent spaces have nice
intersection properties. These can be used to characterize them.

Definition 1.3. The tangent space of V2n

n at p ∈ V2n

n is the union of the tangent lines at p of the
conics on V2n

n containing p (for q = 2 one considers the conics which are the images of the lines of
PG(n, 2)).

The set of tangent spaces can also be described algebraically, as shown in the following example for
q odd.

Example 1.4. Starting with PG(2, q), the mapping ζ : PG(2, q)→ PG(5, q) with

ζ(x0, x1, x2) = (x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2)

defines the quadric Veronesean V4
2 .

If p = (a, b, c), one can define a plane D(p) which has the following representation

D(p) = {(ax0, bx1, cx2, ax1 + bx0, ax2 + cx0, bx2 + cx1) || x0, x1, x2 ∈ Fq} .

This set F of q2 + q + 1 planes in PG(5, q) has the following properties:

(P1) Each two of these planes intersect in a point.
(P2) Each three of these planes have an empty intersection.

If q is odd, then D(p) is the tangent plane to V4
2 at p.

In 1958, Tallini [6] (see also [4]) showed that every set of q2 + q + 1 planes in PG(5, q), q odd, for
which (P1) and (P2) hold, must be isomorphic to the set F of Example 1.4. Furthermore, we have
the following theorem.

Theorem 1.5. If q is odd, then PG(5, q) admits a polarity which maps the set of all conic planes of
V4

2 onto the set of all tangent planes of V4
2 .

This allows to state a dual version of Tallini’s result.

Theorem 1.6. If L is a set of q2 + q + 1 planes of PG(5, q), q odd, with the following properties

(i) There is no point belonging to all elements of L.
(ii) Any two distinct elements of L have exactly one point in common.

(iii) Any three distinct elements of L generate PG(5, q).

Then L is the set of all conic planes of a Veronesean V4
2 .

This result was generalized in [8] to the following characterization of the set of Vn−1-subspaces of a
finite quadric Veronesean V2n

n .
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Theorem 1.7. ([8]) Let F be a set of qn+1−1
q−1 subspaces of dimension (n−1)(n+2)

2 in PG(N = n(n+3)
2 , q), n ≥

2, with the following properties:

(VS1) Each two members of F generate a hyperplane of PG(N, q).
(VS2) Each three elements of F generate PG(N, q).
(VS3) No point is contained in every member of F .
(VS4) The intersection of any nonempty collection of members of F is a subspace of dimension Ni =

i(i+3)
2 for some i ∈ {−1, 0, 1, · · · , n− 1}.

(VS5) There exist 3 members Ω1, Ω2, Ω3 of F with Ω1 ∩ Ω2 = Ω2 ∩ Ω3 = Ω3 ∩ Ω1.

Then either F is the set of Vn−1-subspaces of a quadric Veronesean V2n

n in PG(n, q) or q is even,
there are two members Ω1,Ω2 ∈ F with the property that no other member of F contains Ω1∩Ω2, and
there is a unique subspace Ω of dimension (n−1)(n+2)

2 such that F ∪ {Ω} is the set of Vn−1-subspaces
together with the nucleus subspace of a quadric Veronesean V2n

n . In particular, if n = 2, then the
statement holds under the weaker hypothesis of F satisfying (VS1), (VS2), (VS3) and (VS5).

For n = 2 one can classify all examples that do not satisfy (VS5) by a result of [1], and the only
possibilities are q = 2 and q = 4. This classification remains open for n ≥ 3, although an infinite class
of examples is known for q = 2, see [8].

In particular for n = 2, this result generalizes Theorem 25.2.14 of [4] to q even, and allows to generalize
Theorem 25.3.14 of [4] to q even, and so one obtains

Theorem 1.8. ([7]) If K is a set of k points of PG(5, q), q 6= 2, 4, which satisfies the following
conditions

(i) |Π4 ∩ K| = 1, q + 1, 2q + 1 for every hyperplane Π4 of PG(5, q) and there exists a hyperplane
Π4 for which |Π4 ∩ K| = 2q + 1.

(ii) Any plane of PG(5, q) with four points in K has at least q + 1 points in K.

Then K is the point set of a Veronesean V4
2 .

A theorem by Zanella [10] gives an upper bound for the intersection of k-dimensional subspaces with
the quadric Veronese variety, so for the intersections Πk ∩ Vn.

Theorem 1.9. ([10]) Consider the Veronese variety defined by the mapping

ζ : PG(n, q)→ PG(
n(n+ 3)

2
, q),

(x0, x1, · · · , xn)→ (x2
0, x

2
1, · · · , xn−1xn).

If k, a are natural numbers such that k + 1 ≤ (a+3)(a+2)
2 , then the intersections Πk ∩ Vn contain at

most
qa+1 − 1
q − 1

+ qk− (a+2)(a+1)
2

points.

Applying this for small dimensions yields the upper bounds q + 1, q + 2, 2q + 1 and q2 + q + 1 for
k = 2, k = 3, k = 4 and k = 5 respectively.

A result of the second and third author [9] of this paper characterizes Veronese varieties in terms of
ovals.
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Theorem 1.10. Let X be a set of points in Π := PG(M, q), M > 2, spanning Π, and let P be a
collection of planes such that for any π ∈ P, the intersection X ∩ π is an oval in π. For π ∈ P and
x ∈ X ∩ π, we denote by Tx(π) the tangent line to X ∩ π at x in π. We assume the following three
properties.

(U) Any two points x, y ∈ X lie in a unique member of P which we denote by [x, y].
(NE) If π1, π2 ∈ P and π1 ∩ π2 is non-empty then π1 ∩ π2 ⊂ X.
(TP) If x ∈ X and π ∈ P with x /∈ π, then each of the lines Tx([x, y]), y ∈ X ∩ π, is contained in a

plane of Π, denoted by T (x, π).

Then there exists a natural number n ≥ 2 (called the index of X), a projective space Π′ := PG(n(n+3)
2 , q)

containing Π, a subspace R of Π′ skew to Π, and a quadric Veronesean Vn of index n in Π′, with
R ∩ Vn = ∅, such that X is the (bijective) projection of Vn from R onto Π. The subspace R can be
empty, in which case X is projectively equivalent to Vn.

To conclude this introduction, we define k-arcs in PG(3, q).

Definition 1.11. A k-arc of PG(3, q), k ≥ 4 is a set of k points, no 4 of which are coplanar.

By Theorem 21.2.4 and Theorem 21.3.8 of [3], we have the following

Theorem 1.12. If q ≥ 4, then k ≤ q + 1.

2. First characterization

We want to use the following set of conditions to characterize the quadric Veronesean. Consider a
set K of qn+1−1

q−1 points spanning PG(n(n+3)
2 , q), with n ≥ 2, such that the following conditions are

satisfied.

(P) If a plane intersects K in more than three points then it contains exactly q + 1 points of K.
Furthermore, any two points p1, p2 of K are contained in a plane containing q + 1 points of K.

(S) If a 3-space Π3 intersects K in more than 4 points then there are four points of K contained in
a plane of Π3. In particular, by (P), this implies that if |Π3 ∩ K| > 4, then |Π3 ∩ K| ≥ q + 1.

(V) If a 5-space Π5 intersects K in more than 2q+ 2 points then it intersects K in exactly q2 + q+ 1
points.

Definition 2.1. Planes intersecting K in q + 1 points and 5-spaces intersecting K in q2 + q + 1 points
will be called big planes and big 5-spaces respectively.

Assume q ≥ 5 in the following.

We will prove the following main theorem.

Theorem 2.2. If q ≥ 5, then the set K is the point set of the Veronese variety of all quadrics of
PG(n, q).

Remark.

A counterexample for q = 2, n > 2, to the previous theorem is given by removing one point of a
Veronese variety and replacing it by a point in the projective space which corresponds with a matrix
of maximal rank, using the correspondence of Theorem 1.2.

A counterexample for q = 3, n = 2, is given by the point set formed by the points of an elliptic quadric
E lying in a space Π3 ⊂ PG(5, 3) and 3 points on a line L ⊂ PG(5, 3) which does not intersect Π3.

First of all we have to prove that these conditions are well-chosen, meaning the object we want to
characterize satisfies them.
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Theorem 2.3. The Conditions (P), (S) and (V) above hold for the Veronesean V2n

n .

Proof. For Condition (P), we cannot use Lemma 25.3.1 of [4] directly, since we don’t know a priori
that every plane containing more than three points of V2n

n is contained in a 5-space intersecting K in
a V4

2 but a slight adaptation of the argument works. Suppose that the plane π contains at least four
distinct points q1, q2, q3, q4 of V2n

n . By Corollary 1 of Theorem 25.1.9 of [4], the points qi, qj , with
i 6= j, are contained in a unique conic of V2n

n . Let C ′, in the plane π′, be the conic defined by q1 and
q2, and let C ′′, in the plane π′′, be the conic defined by q2 and q3. Suppose that C ′ 6= C ′′. By Theorem
1.9 the conic planes π′ and π′′ generate a 4-space Π4 such that |Π4 ∩ K| ≤ 2q + 1. But besides the
2q+ 1 points in C ′ ∪C ′′, the point q4 would also be contained in this 4-space, a contradiction. Hence
|π ∩ K| ≥ q + 1 and by Theorem 1.9, |π ∩ K| = q + 1. Conditions (S) and (V) can be proved using a
coordinatization and checking the different possibilities for the position of the inverse images of the
points in PG(n, q).

�

We prove some upper bounds on the number of points of K contained in low-dimensional spaces.

Lemma 2.4. If n > 2, every 4-space contains at most 2q + 2 points of K.

Proof. Let Π be a 4-space. By Condition (V), it follows directly that |Π∩K| ≤ q2 + q+ 1 and clearly
|Π ∩ K| = q2 + q + 1 also yields a contradiction.

Suppose that 2q+2 < |Π∩K| < q2 +q+1. Again by Condition (V), every 5-space through Π contains
exactly q2 + q + 1 points of K. The number of 5-spaces through a fixed 4-space in PG(n(n+3)

2 , q) is

equal to q
n(n+3)

2 −4−1
q−1 . Hence, we get at least

q
n(n+3)

2 −4 − 1
q − 1

+ 2q + 2 >
qn+1 − 1
q − 1

points in K, a contradiction for n > 2.

�

Lemma 2.5. Any line l meets K in at most 2 points. Hence, a plane π with |π ∩K| = q+ 1 intersects
K in an oval.

Proof. First suppose that |l∩K| = 3. If n > 2, then consider 3 planes π1, π2, π3 through l containing
more than 3 points of K and hence by Condition (P) q + 1 points of K. Then dim〈π1, π2, π3〉 ≤ 4.
For q > 5, this yields a contradiction by Lemma 2.4. If q = 5, then consider a 3-space Π3 through l
containing at least 9 points of K inside a big 5-space Π5. But then considering all 4-spaces through
Π3 inside Π5, by Lemma 2.4, we get at most 6 · 3 + 9 = 27 points in Π5 ∩ K, a contradiction.

If n = 2 then we get the following equation for the number α of planes through l which contain
exactly q + 1 points of K:

α(q − 2) + 3 = q2 + q + 1.
This yields a contradiction if q ≥ 5. Next, suppose that |l ∩ K| = x, with 3 < x < q + 1. Consider
all planes through l. Then clearly, we get too many points for our set K, a contradiction. Finally, if
|l ∩ K| = q + 1, we also get a contradiction as planes can contain at most q + 1 points of K.

�

The previous lemma allows us for n = 2 to prove the same upper bound as in Lemma 2.4.
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Lemma 2.6. Every 4-space intersects K in at most 2q + 2 points. Hence, every 3-space contained in
a big 5-space intersects K in at most q + 3 points.

Proof. For n > 2 this is Lemma 2.4. Next let n = 2.

Suppose there exists a 3-space Π3 which contains two planes π1 and π2 which intersect K in ovals
O1 and O2 respectively which have two points p1, p2 of K in common. Consider two points r1 and
r2, different from p1 and p2, which lie on O1 and O2 respectively. Then there are at most 4 planes
through the line 〈r1, r2〉 which are not (q + 1)-planes, namely the planes containing either the point
p1 or p2 or those which intersect πi in a tangent line to Oi at ri for i = 1 or i = 2.

Hence, we get at least
2 + (q − 3)(q − 1) + 4 = q2 − 4q + 9

points in Π3 ∩ K.

The bound above is already sufficient for the remainder of the proof if q > 5. But since we now know
there is a point p in Π3 ∩ K not contained in O1 ∪ O2 we can consider all planes through the line
〈p, p1〉 inside Π3. In this case, we get at most three exceptions, namely the plane containing p2 and
those which intersect πi in a tangent line to Oi at p1. Hence we get at least

2 + 3 + (q − 2)(q − 1) = q2 − 3q + 7

points in Π3 ∩ K.

If one would carry out this argument a bit more carefully one can get up to q2 + 1 points in Π3 ∩K,
and hence this intersection is an ovoid. However this does not shorten the reasonings made in the
remainder of this proof.

Hence if there are three such 3-spaces we distinguish the following cases.

Case (i): Any two of them only intersect in a line. Then the union of the 3-spaces contains at least
3(q2 − 3q + 7)− 3 · 2 points of K, a contradiction since q ≥ 5.

Case (ii): There are two of them which intersect in a plane. Then we get a 4-space Π4 containing at
least 2(q2 − 3q + 7) − (q + 1) = 2q2 − 7q + 13 points of K. Consider a point p in K not contained
in Π4. Through p and any point r in Π4 ∩ K there passes an oval of K by Condition (P). If none of
these ovals have two points of K in common, we get too many points, a contradiction. If two of these
ovals have two points of K in common then the 3-space spanned by these two ovals contains at least
q2 − 3q + 7 points of K. Hence, we get at least

2q2 − 7q + 13 + q2 − 3q + 7− (q + 1)

points in K, a contradiction since q ≥ 5.

If there are exactly one or two such 3-spaces we consider a 4-space Π4 containing such a 3-space Π3

and a point p in K not contained in Π4. Through p and each point r in Π4 ∩ K there passes an oval
by Condition (P). For each such point r we choose exactly one such oval. If we have two ovals of
K through p and a point r of K in Π4, then these two ovals define a 3-space Π′3 containing at least
q2−3q+7 points of K, and then the line rp lies in at most q+1 planes of the solid containing an oval
of Π′3 ∩K. If there are more than q+ 1 ovals through p sharing two points of K, then there would be
another 3-space Π′′3 through p sharing at least q2−3q+7 points with K. Now Π′3 and Π′′3 are different
from the solid Π3 in Π4 sharing at least q2 − 3q+ 7 points of K. But this contradicts the assumption
that there are no three such solids. Hence we clearly get too many points in K, a contradiction.

Now consider a 4-space Π4 which intersects K in x points. Consider a point p of K not in Π4. By
Condition (P) through every 2 points of K there passes an oval of K. Consider all ovals through p
and a point r of Π4 ∩ K. Any two of these ovals can intersect in at most one point. Since any oval
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through p intersects Π4∩K in at most 2 points, we get at least x
2 ovals, which all contain q−2 points

in Π5 ∩ K different from p and the x points in Π4 ∩ K. Hence we get the following equation,
x

2
(q − 2) + x+ 1 ≤ q2 + q + 1.

This yields x ≤ 2q + 2.

Consider a 3-space Π3 in a big 5-space Π5 which intersects K in q + 3 + y points. Since all 4-spaces
through Π3 inside Π5 intersect K in at most 2q + 2 points we get the following inequality

(q + 1)(q − 1− y) + q + 3 + y ≥ q2 + q + 1.

This implies y ≤ 0.

�

Now we are able to lower the bound of Lemma 2.6.

Lemma 2.7. (i) Every 4-space Π4 intersecting K in more than q + 1 points contains a plane which
intersects K in an oval.

(ii) Every 4-space Π4 contains at most 2q + 1 points of K.

Proof. (i) Suppose that |Π4 ∩K| > q + 1. Since q ≥ 5, by a result on arcs, namely Theorem 27.6.3 of
[4], there are 5 points which are contained in a 3-space. By Condition (S), it follows that there are 4
of them which are contained in a plane π. Hence, by Lemma 2.5, π intersects K in an oval.

(ii) Suppose that |Π4 ∩ K| = 2q + 2. Consider a plane π in Π4 intersecting K in an oval O. Such a
plane always exists by (i).

Consider 2 points a and b in Π4 ∩ K, but not in π, such that 〈a, b〉 ∩ π = ∅. Note that this is always
possible, since at most q + 3 points of K are contained in a 3-space by Lemma 2.6.

Consider a third point c in (Π4 ∩ K)\π, and let p be the intersection point of π and π′ = 〈a, b, c〉.
We distinguish the following cases.

Case (i): p ∈ O.

Since π′ contains at least 4 points of K it contains at least q + 1 points of K by Condition (P). The
planes π and π′ both intersect K in an oval, O and O′. Denote the remaining point in Π4 ∩ K by p′.
Consider a plane π′′ spanned by p′ and two points a′ and b′ belonging to O\{p}. The planes π′ and
π′′ intersect in a point r. If r belongs to K then π′′ contains at least 4 and hence, by Condition (P),
q + 1 points of K. If r does not belong to K we may assume it is not the nucleus of O′, otherwise we
can restart the reasoning with two other points of O. Then the 3-space spanned by π′′ and a bisecant
to O′ through r, but not through p, contains at least 5 and hence by Condition (S) at least q + 1
points. Since q ≥ 5, in both cases we get more than 2q+2 points in Π4∩K, a contradiction by Lemma
2.6.

Case (ii): p /∈ O.

(ii.A) First of all, we assume that not all points in Π4∩K are contained in π∪π′. Since not all points
in Π4 ∩ K are contained in π ∪ π′, we may assume that p is not the nucleus of O. Indeed, if p would
be the nucleus of O we consider a point c′ of Π4 ∩ K not in π′ ∪ π and the plane π′′ = 〈a, b, c′〉
which then intersects π in a point p′, with p′ not the nucleus of O. So in that case we continue the
reasonings with π′′ instead of π′. Consider two secants of O through p, say l and l′. The 3-spaces
〈π′, l〉 and 〈π′, l′〉 both contain at least 5 points of K, hence they both contain a plane intersecting K
in an oval. These planes have to coincide, since also π intersects K in an oval, otherwise we get too
many points in Π4 ∩ K. Hence, the plane π′ intersects K in an oval O′. This yields a contradiction
with the assumption at the beginning of this paragraph. Note that as a byproduct we proved that
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if a 4-space contains at least q + 5 points of K, it contains two planes which intersect K in an oval,
hence |Π4 ∩ K| ≥ 2q + 1. Indeed we only used 4 points a, b, c and c′ in K but not in π to find the
second oval O′. Furthermore, these ovals can have at most one point in common, otherwise they only
span a 3-space, but a 3-space inside Π5 intersects K in at most q + 3 points by Lemma 2.6.

(ii.B) Next, we may suppose that Π4 ∩K is a union of two ovals O and O′ contained in planes π and
π′ which intersect in a point p.

(ii.B.1) If p is the nucleus of neither O nor of O′, then consider a secant t of O and a secant t′

of O′ through p. The plane spanned by t and t′ contains 4 and hence q + 1 points of K, and so
|Π4 ∩ K| > 2q + 2, a contradiction.

(ii.B.2) If p is the nucleus of O, but not the nucleus of O′, then consider a 5-space Π5 containing Π4

which intersects K in q2 + q + 1 elements. Since p is not the nucleus of O′, there is a secant l′ of O′
through p. Hence, by Lemma 2.6, the 3-space Π3 spanned by O and l′ contains exactly q+3 elements
of K. It follows that exactly one of the 4-spaces containing Π3 in Π5 intersects K in 2q + 1 points,
while all the other 4-spaces through Π3 in Π5 contain 2q + 2 points of K.

By the foregoing there is a 4-space Π′4 6= Π4 containing Π3 inside Π5 which intersects K in 2q + 2
elements on two ovals O and O′′, where the planes of O′ and O′′ intersect in l′. Hence the 3-space Π′3
spanned by O′ and O′′ contains at least 2q elements of K. Consider all 4-spaces through Π′3 inside
Π5. By Lemma 2.6 we get at most 2q+2(q+1) = 4q+2 points in Π5∩K, a contradiction since q ≥ 5.

(ii.B.3) Finally, if p is the nucleus of both O and O′, then consider a 3-space Π3 spanned by O and a
tangent l to O′ through p. Consider a big 5-space Π5 through Π4. Consider all 4-spaces through Π3

inside Π5. No 4-space through Π3 inside Π5 different from Π4 can intersect K in 2q+ 2 points as well.
Indeed, by Case (i) and the previous subcases of Case (ii) such a 4-space Π′4 again has to intersect
K in two ovals O and O′′, contained in planes π and π′′ respectively. The planes π′ and π′′ have to
intersect in the tangent line l, and p again has to be the nucleus of both the ovals O and O′′.

But then the 3-space Π′′3 spanned by O′ and O′′ contains at least 2q + 1 points of K. Consider all
4-spaces through Π′′3 inside Π5. Then by Lemma 2.6 |Π∩K| ≤ 2q+ 1 + q+ 1 = 3q+ 2, a contradiction
since q ≥ 5.

Consider now all 4-spaces through Π3 inside Π5. Exactly one of them intersects K in 2q + 2 points
by the previous and all the others intersect K in at most 2q+ 1 points. Hence, by an easy inspection,
there is exactly one 4-space through Π3 in Π5 containing exactly 2q points of K, but this yields a
contradiction by the remark made at the end of Case (ii.A).

�

Remark. A 4-space intersecting K in 2q + 1 points will be called a big 4-space.

Lemma 2.8. (i) Inside a big 5-space Π5 all 3-spaces contain at most q + 2 points. Furthermore, all
4-spaces inside Π5 through a 3-space intersecting K in q + 2 points are big ones.

(ii) A big 4-space Π4 contained in a big 5-space Π5 intersects K in two ovals O1,O2 with O1 ∩O2 =
{P}, P ∈ K.

Proof. (i) Suppose a 3-space Π3 of the big 5-space Π5 intersects K in q + 2 + x points, with x ≥ 0.
Then considering all 4-spaces in Π5 through Π3, we get at most (2q+1−(q+2+x))(q+1)+q+2+x =
q2 + q + 1 − xq points in Π5 ∩ K by Lemma 2.7, a contradiction if x > 0. The second part follows
directly if x = 0.

(ii) By (i) of Lemma 2.7 there is a plane π in Π4 which intersects K in an oval. We claim we can find
a second plane in Π4 which intersects K in an oval. Take 3 points contained in Π4 ∩K not lying in π.
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These points span a plane π′. The space 〈π, π′〉 is a 4-space, otherwise we get a 3-space intersecting
K in more than q + 2 points, contradicting (i).

If π′ contains exactly 3 points of K then consider all 3-spaces through π′ in Π4. If none of them
contains at least 5 points of K we get at most q + 1 + 3 = q + 4 points in Π4 ∩ K, a contradiction.
So there is a 3-space Π3 through π′ in Π4 containing more than 4 points of K, hence by Conditions
(P) and (S) we find a plane π′′ containing q+ 1 points of K inside Π3. Clearly π and π′′ are different
since π and π′ span a 4-space.

If the two different planes π and π′′ which intersect K in an oval intersect in a point, then we are done
by Lemma 2.7. Suppose that π and π′′ intersect in a line. Then the 3-space Π′3 = 〈π, π′′〉 intersects
K in more than q + 2 points, contradicting (i).

�

Lemma 2.9. Every 4-space contained in a big 5-space Π5 intersects K in 1, q+ 1 or 2q+ 1 points and
each such big 5-space contains at least one 4-space intersecting K in exactly 2q + 1 points. Hence,
each big 5-space intersects K in a V4

2 .

Proof. Denote the number of points belonging to K contained in a 4-space Πi ⊂ Π5 by xi; here Π5 is
a big 5-space. In the following sum and all the others below, i runs over all 4-spaces Πi contained in
Π5. We have ∑

i

(xi − 1)(xi − (q + 1))(xi − (2q + 1)) = 0. (1)

Indeed, by a standard counting technique counting in two different ways respectively the number of
pairs (p,Π) in Π5, where p ∈ K and Π is a 4-space in Π5, the number of triples (p1, p2,Π), p1 6= p2 ∈
Π ∩ K and Π a 4-space in Π5, and the quadruples (p1, p2, p3,Π), pi ∈ Π ∩ K, where the points pi are
all distinct and Π is a 4-space in Π5 yields∑

i

xi =

(
q2 + q + 1

) (
q5 − 1

)
q − 1

, (2)

∑
i

xi(xi − 1) =

(
q2 + q + 1

) (
q2 + q

) (
q4 − 1

)
q − 1

, (3)

∑
i

xi(xi − 1)(xi − 2) =

(
q2 + q + 1

) (
q2 + q

) (
q2 + q − 1

) (
q3 − 1

)
q − 1

. (4)

Now Equations (2), (3) and (4) together lead to Equation (1).

If a 4-space Π4 inside a big 5-space contains more than q+ 1 points of K, then it is a big one. Indeed,
by Lemma 2.7 there is a plane in Π4 intersecting K in an oval. Hence we can find a 3-space in Π4

which intersects K in q + 2 points. The claim now follows from (i) of Lemma 2.8.

Suppose |Π4 ∩ K| = x, Π4 ⊂ Π5, with 4 ≤ x < q + 1. Let Π3 be a 3-space containing 4 points
p1, p2, p3, p4 in Π4 ∩ K. Hence, by Condition (S), |Π3 ∩ K| = 4. Consider all 4-spaces through Π3

inside Π5. If there are less than 4 big ones among them, we get less than

3(2q − 3) + (q − 2)(q − 3) + 4 = q2 + q + 1

points in Π5 ∩ K, a contradiction.

By (ii) of Lemma 2.8, in each of the at least 4 big 4-spaces inside Π5 containing Π3 the points
p1, p2, p3, p4 are contained in 2 ovals. Hence either there is an oval containing 3 of them, which
yields a contradiction, or there is a pair pi, pj contained in two different ovals. But the latter yields
a contradiction by (i) of Lemma 2.8.
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Suppose now that |Π4 ∩ K| = 3. Consider a 3-space Π3 in Π4 containing the 3 points p1, p2, p3 of
Π4 ∩ K and all 4-spaces inside Π5 containing Π3. By the previous arguments these intersect K in
3, q + 1 or 2q + 1 points. Denote the number of them intersecting K in q + 1 and 2q + 1 points by α
and β respectively. This yields the following equation

α(q − 2) + β(2q − 2) + 3 = q2 + q + 1.

We deduce that α is a multiple of q − 1. If α = q − 1, then we get at most (q − 1)(q − 2) + 2q + 1
points in Π5 ∩ K, a contradiction.

Hence, we find that α = 0 and β = q+2
2 . This already yields a contradiction if q is odd. As q > 2,

the points p1, p2, p3 are contained in 2 ovals in each of the at least 3 different big 4-spaces of Π5

containing Π3 by (ii) of Lemma 2.8. This yields a contradiction.

Finally, suppose that |Π4 ∩ K| = 2. Consider a 3-space Π3 in Π4 containing the 2 points p1, p2 of
Π4 ∩ K and all 4-spaces inside Π5 containing Π3. By the previous these all intersect K in 2, q + 1
or 2q + 1 points. Denote the number of them intersecting K in q + 1 and 2q + 1 points by α and β
respectively. This yields the following equation,

α(q − 1) + β(2q − 1) + 2 = q2 + q + 1.

This yields that β − 1 is a multiple of q− 1. If β = 1, we get at most (q− 1)(q− 1) + 2q+ 1 = q2 + 2
points of K in Π5, a contradiction. If β = q, we get exactly 2q2 − q + 2 points in Π5 ∩ K, also a
contradiction.

In the previous paragraphs we proved that if a 4-space contains at least 2 points of K, then it contains
at least q + 1 points of K. By (i) of Lemma 2.8 and (ii) of Lemma 2.7 the only possibilities in this
case are q + 1 and 2q + 1. By Equation (1), this implies that there are no 4-spaces which have an
empty intersection with K.

Hence, every 4-space contained in Π5 intersects K in 1, q + 1 or 2q + 1 points.

We prove there is a 4-space contained in Π5 which intersects K in 2q + 1 points. If this is not the
case, then consider a 3-space in Π5 containing x > 1 points of K. We get the following equality:

(q + 1)(q + 1− x) + x = q2 + q + 1,

hence x = 1, a contradiction.

Hence by Theorem 1.8, Π5 intersects K in a Veronese variety V4
2 .

�

Theorem 2.10. The set K is a Veronese variety V2n

n .

Proof. We check the conditions of Theorem 1.10. The set P consists of all planes intersecting K in
an oval.

Any two points of K are contained in at least one oval of K by Condition (P) and Lemma 2.5. If two
points p1, p2 are contained in two ovals, namely O1 in the plane π1 and O2 in the plane π2, then
these ovals span a 3-space Π3 containing too many points of K, a contradiction. Indeed, consider
a point r on the intersection line l of π1 and π2 which is not the nucleus of O1 neither of O2 and
two bisecants l1 and l2 through r to O1 and O2 respectively. Then the plane spanned by l1 and l2
contains at least 4 points of K and hence by Condition (P) q + 1 points of K. In this way we get at
least 2q + q − 3 = 3q − 3 ≥ 2q + 2 (since q ≥ 5) points in Π3 ∩ K, a contradiction by Lemma 2.6.
Hence, Property (U) is proved.

To prove Property (NE), consider two planes π1 and π2 which intersect K in an oval. If π1 ∩ π2 is a
point then the property follows directly from Lemma 2.7. If π1 ∩π2 is a line then we get a 3-space Π3
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containing at least and so exactly 2q + 1 points. But then there are 4-spaces through Π3 containing
more than 2q + 1 points of K, a contradiction.

For Property (TP), take a point p not contained in a plane π which intersects K in an oval O1.
Consider two points r and s on O1 and the ovals O2 and O3 which are uniquely determined by p and
r, and p and s respectively. The point set of the ovals O1, O2 and O3 are contained in a 5-space Π5

intersecting K in more than 2q+ 2 points. Hence, by Lemma 2.9 Π5 ∩K is a Veronesean V4
2 . Take an

arbitrary point t on O1 and consider the oval determined by p and t. Since Π5 ∩ K is a V4
2 , this oval

is contained in Π5. For each of these ovals there is a tangent at p to these ovals. By Lemma 25.4.2 of
[4] the union of these tangents forms a plane.

�

3. Second characterization

In this section, we show that for n > 2, we can replace the set of conditions of Section 2 by the
following set of conditions. Furthermore, we provide a counterexample for the case n = 2.

Consider a set K of qn+1−1
q−1 points spanning PG(n(n+3)

2 , q), with n > 2, such that

(P’) If π is a plane then the intersection π ∩ K contains at most q + 1 points of K.
(S’) If a 3-space Π3 intersects K in more than 4 points, then |Π3 ∩ K| ≥ q + 1 and Π3 ∩ K is not a

(q + 1)-arc.
(V’) If a 5-space Π5 intersects K in more than 2q+ 2 points then it intersects K in exactly q2 + q+ 1

points. Furthermore, any two points p1, p2 of K are contained in a 5-space containing q2 + q+ 1
points of K.

Lemma 3.1. Every 4-space contains at most 2q + 2 points of K. Hence, a 3-space contained in a big
5-space contains at most q + 3 points of K.

Proof. Exactly the same as the proof of Lemma 2.6 using Condition (V’), since we only used there
that part of Condition (V).

�

Lemma 3.2. For n > 2 , q > 7, if a plane π contains at least 4 points of K, then it contains exactly
q + 1 points of K.

Proof. First suppose that 4 < |π ∩ K| < q + 1. Then all 3-spaces through π contain at least q + 1

points. This yields at least q
n(n+3)

2 −2−1
q−1 points for the set K, a contradiction since n > 2.

Next, suppose that |π ∩K| = 4. Consider points a, b and c of K such that 〈π, a〉, 〈π, b〉 and 〈π, c〉 are
three different 3-spaces. By Condition (S’) each of these three 3-spaces intersects K in at least q + 1
points. Then the space 〈π, a, b, c〉 contains at least 3(q − 3) + 4 points of K. Hence, since q > 7, by
Lemma 3.1 and Condition (V’) it is a big 5-space Π5.

By Lemma 3.1, a 3-space Π3 in Π5 contains at most q + 3 points of K.

From the previous paragraph it follows that we get the following inequality for the number x of
3-spaces Πi

3 through π inside the big 5-space Π5 containing at least q + 1 points of K.

x(q − 1) + 4 ≥ q2 + q + 1.

Hence we get x ≥ q + 2− 1
q−1 , this implies x ≥ q + 2 if q > 2.
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Now consider a 3-space Π′′3 containing π and at least q + 1 points of K which is not contained in Π5

and consider also the 6-space Π6 = 〈Π5,Π′′3〉. Take one fixed 3-space Π1
3 and consider the 5-spaces

〈Π1
3, Π′′3 , Πi

3〉 with i 6= 1. Each of these 5-spaces intersects K in more than 2q + 2 points since q > 7
and hence is a big 5-space. It follows that Π6∩K contains at least (q+ 1)(q2− q−1) + 2q+ 2 = q3 + 1
points.

Repeating this reasoning yields inductively the following recursion formula for the number of points
φk+1 in Πk+1 ∩ K where Π̃3 is a 3-space containing π and at least q + 1 points of K which is not
contained in Πk and where Πk+1 = 〈Πk, Π̃3〉, where φ5 = q2 + q + 1.

φk+1 ≥ (
φk − 4
q − 1

− 1)(q2 − q − 1) + 2q + 2. (5)

We will adapt the recursion formula to a recursion formula for numbers ψk such that ψk ≤ φk for all
k ≥ 5.

First we rewrite the recursion formula for φk as follows.

φk+1 = (φk − q − 3)
q2 − q − 1
q − 1

+ 2q + 2.

Since q2−q−1
q−1 > q − 1 if q > 2 we get after a little calculation

φk+1 > (q − 1)φk − q2 + 5.

Since φ5 = q2 + q + 1 we can even write for all integers k ≥ 5

φk+1 > (q − 2)φk.

Now we set ψ5 = φ5 and ψk+1 = (q− 2)ψk. Hence we get ψN = (q− 2)N−5(q2 + q+ 1) for all N ≥ 5.
This yields the following inequality

(q − 2)
n(n+3)

2 −5(q2 + q + 1) ≤ qn+1 − 1
q − 1

.

This is an equality if n = 2 and the left hand side increases faster than the right hand side if n
increases, hence this yields a contradiction for n > 2.

�

The remaining cases are q = 5 and q = 7. First we prove a lemma for q = 5.

Lemma 3.3. Let q = 5, n > 2, and consider a plane π which intersects K in 4 points. If inside a big
5-space Π5 there is a 4-space Π4 through π intersecting K in 12 points then there are no 4-spaces
through π inside Π5 intersecting K in 11 or 10 points.

Proof. Suppose the contrary and consider a 6-space Π6 containing Π5 which intersects K in more
than 31 points. Such a 6-space always exists otherwise we don’t get enough points for the set K.

If Π5 contains a 4-space Π′4 through π intersecting K in 11 points, then consider all 5-spaces through
Π4 and Π′4 inside Π6. By Conditions (S’) and (V’) the only ones which yield extra points are big
5-spaces. For take a 5-space with an extra point p, then we have at least two extra points. Namely,
the 3-space 〈π, p〉 contains more than 4 points of K and hence by Condition (S’) at least 6 points of
K.

Denote the number of big 5-spaces inside Π6 through Π4 and Π′4 by α and β respectively. We get the
following equation

19α+ 12 = 20β + 11
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If we rewrite this as 1 + 19(α−β) = β, then clearly the only solution with 1 ≤ α, β ≤ 6 is α = β = 1,
a contradiction since Π6 intersects K in more than 31 points.

If there is a 4-space Π′4 in Π5 through π intersecting K in 10 points then 5-spaces through Π′4 inside
Π6 which yield extra points intersect K either in 12 or in 31 points by Condition (S’) and Condition
(V’). Denote the number of big 5-spaces through Π4 inside Π6 by x, the number of 5-spaces of Π6

through Π′4 intersecting K in 12 points by y and the number of big 5-spaces through Π′4 inside Π6 by
z. Then the following equation is obtained

19x+ 12 = 2y + 21z + 10, with x ≥ 1 and x, y, z ≤ 6.

The only solution is x = z = 1 and y = 0, a contradiction since Π6 intersects K in more than 31
points.

�

Lemma 3.4. For q = 5 or q = 7 and n > 2, a plane π intersecting K in exactly 4 points is never
contained in a big 5-space Π5.

Proof. Case (a) q = 5:

Assume π is contained in a big 5-space Π5. First of all, a 3-space in Π5 contains at most 8 points of
K by Lemma 3.1.

Project Π5 from π onto a plane π′ which is skew to π in Π5. For the 3-spaces through π which contain
6, 7 or 8 points of K, the projection in π′ is given weight 2, 3 or 4 respectively.

First suppose there is a 3-space Π3 in Π5 which contains π and which intersects K in 8 points. Then
five 4-spaces through Π3 in Π5 intersect K in 12 points and one 4-space through Π3 in Π5 intersects
K in 11 points. But this yields a contradiction by Lemma 3.3.

Hence, from now on, we may assume that each 3-space through π inside a big 5-space which contains
more than 4 points of K contains 6 or 7 points of K. Hence if we denote the number of 3-spaces
through π inside Π5 which intersect K in 6 points by α and those which intersect K in 7 points by β,
we get the following equation,

4 + 2α+ 3β = 31.

The rest of the proof is case-by-case analysis.

(A) β ≥ 7 :

In this case we have a set P of at least 7 points with weight 3 in π′. Since an oval in PG(2, 5) contains
at most 6 points, three points of P will be collinear. But this implies that the 4-space spanned by the
line L containing them and π intersects K in more than 12 points, a contradiction by Lemma 3.1.

(B) α = 6, β = 5 :

Consider a point p of weight 3 in π′ and all lines L1, · · · , L6 through it. On four of these lines, say
L1, · · · , L4 we have exactly one other point which has weight 3 otherwise we get a 4-space with more
than 12 points. If none of L1, · · · , L4 contains a point of weight 2 then the six points of weight 2 have
to be distributed over the remaining two lines through p, a contradiction since then we get a 4-space
intersecting K in more than 12 points of K, a contradiction by Lemma 3.1. Hence we have already
found a 4-space through π inside Π5 which intersects K in 12 points. By Lemma 3.3, this implies that
no 4-space through π inside Π5 can intersect K in 10 or in 11 points. Now consider a point of weight 2
in π′ and all lines through it. Then the 5 points of weight 3 are distributed over these lines as 2+2+1,
as 2+1+1+1 or as 1+1+1+1+1. The latter two possibilities clearly yield a 4-space intersecting K in
more than 12 points, a contradiction by Lemma 3.1. Namely, in the last case for instance, since no
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4-space inside Π5 is allowed to intersect K in exactly 11 points, all points of weight two are contained
in one line through p in π′. The other case is similar.

But if it is always the 2+2+1 possibility then through each point of weight 2 there passes a line L
containing 4 points of weight 2, which yields a contradiction.

(C) α = 9, β = 3 :

Consider a point p of weight 3 in π′ and all lines through it. On two of these lines, L1 and L2, we
have exactly one other point which has weight 3 otherwise we get a 4-space with more than 12 points.
If there is no 4-space through π in Π5 which intersects K in 12 points, then the 9 points of weight 2
have to be distributed over the remaining 4 lines, which again yields a too big 4-space. Hence there is
a 4-space inside Π5 intersecting K in 12 points, implying no 4-spaces through π inside Π5 are allowed
to intersect K in 10 or in 11 points by Lemma 3.3. This is impossible.

(D) α = 12, β = 1 :

Denote the 3-space through π inside Π5 which intersects K in 7 points by Π3. We have a set P of 13
points of weight 2 and 3 in π′. We claim that there has to be a line L containing 4 points of P.

Indeed, consider an arbitrary point p contained in P and all lines through it. If there is no line which
intersects P in 4 points then all lines of π′ through p intersect K in 3 points. Since p was arbitrary
this implies that all lines in π′ intersect P in 0 or 3 points. But consider now a point r in π′ not
contained in P and all lines through it. Then we get a contradiction, since 3 does not divide 13. So
we may assume that there is a line L in π′ which intersects P in 4 points.

Hence, the 4-space spanned by L and π intersects K in 12 points. It has to be contained in another big
5-space otherwise we don’t get enough points in K. There again there has to be at least one 3-space,
say Π′3, through π which intersects K in 7 points.

But now consider a space Π̂ spanned by Π3, Π′3 and another 3-space through π which contains at
least 6 points of K.

Then Π̂ is certainly contained in a big 5-space, otherwise we don’t have enough points in the set K.
But this is a contradiction since in any big 5-space we already excluded all cases with β > 1.

Case (b) q = 7:

Assume the plane π is contained in a big 5-space Π5. First of all, a 3-space in Π5 contains at most
10 points of K by Lemma 3.1.

Project Π5 from π onto a plane π′ which is skew to π in Π5. For the 3-spaces through π which contain
8, 9 or 10 points of K, the projection in π′ is given weight 4, 5 or 6 respectively. Denote this set of
points by P.

First suppose there is a 3-space Π3 in Π5 which contains π and which intersects K in 10 points. Then
seven 4-spaces through Π3 in Π5 intersect K in 16 points and one 4-space through Π3 in Π5 intersects
K in 15 points. Consider all lines through the point p in π′ corresponding with Π3. There is exactly
one line through p which contains one point p′ of weight 5.

This implies that inside a big 5-space through Π3 there is exactly one 3-space Π′3, namely the one
which corresponds with p′, which contains π and which intersects K in 9 points.

But a 4-space Π4 through Π3 intersecting K in 16 points has to be contained in at least one other big
5-space Π̃5. Inside Π̃5 we also find a 3-space Π̃3 which contains π and which intersects K in 9 points.
But now the big 5-space spanned by Π3,Π′3 and Π̃3 contains Π3 and two 3-spaces which contain π
and which intersect K in 9 points, a contradiction by the previous paragraph.

Hence, from now on, we may assume that each 3-space through π inside a big 5-space through π
which contains more than 4 points of K contains 8 or 9 points of K. Hence if we denote the number
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of 3-spaces through π inside Π5 which intersect K in 8 points by α and those which intersect K in 9
points by β, we get the following equation,

4 + 4α+ 5β = 57.

Remark that inside π′ each line through a point of weight 5 can contain at most one other point of
weight 4 or 5 otherwise we get a 4-space which intersects K in more than 16 points. Hence |P| =
α+ β ≤ 1 + 8 · 1 = 9.

The only solutions of the above equation for (α, β) are the pairs (12, 1), (7, 5) and (2, 9), which yields
a contradiction by the previous paragraph.

�

Remark. The method of proof of the above theorem can also be used for the general case. However,
Lemma 3.2 directly excludes all planes containing 4 points of K for q > 7.

Lemma 3.5. Any line l meets K in at most 2 points. Hence, a plane π with |π ∩K| = q+ 1 intersects
K in an oval.

Proof. Similar to the proof of Lemma 2.5; use Lemma 3.1 and Lemma 3.2.

�

Theorem 3.6. If q ≥ 5 and n > 2, then the set K is the point set of the Veronese variety of all quadrics
of PG(n, q).

Proof. We check Conditions (P), (S) and (V) of Theorem 2.2. Conditions (S) and (V) are implied by
Condition (S’) and Theorem 1.12 and by Condition (V’) respectively. The first part of Condition (P)
was proved in Lemma 3.2 for q > 7.

Furthermore, for q = 5 and q = 7 we proved the first part of Condition (P) for all planes which
are contained in a big 5-space. In fact, we did only use Condition (P) for these planes in our first
characterization.

The second part of Condition (P), namely that every 2 points of K are contained in an oval of K, is
never used to obtain Lemma 2.9 if n > 2. If n = 2, we did use Condition (P) for the proof of Lemma
2.6. Since every two points are contained in a big 5-space Π5 by Condition (V), and since Π5 ∩K is a
Veronese surface V4

2 by Lemma 2.9 the second part of Condition (P) is proved. The proof is finished
by Theorem 2.2.

�

The counterexample for the case n = 2 is the following. Consider in PG(5, q) a point p on an ovoid O
in PG(3, q) and a tangent line L to O at p. Furthermore, consider a second 3-space Π′3 intersecting Π3

exactly in L and containing an oval O′ which intersects L in p. Then the set O∪O′ fulfills Conditions
(P’), (S’) and (V’) but it is not a Veronesean V4

2 .

References

[1] A. Del Fra, On d-dimensional dual hyperovals, Geom. Dedicata, 79, (2000), 157–178.

[2] O. Ferri, Su di una caratterizzazione grafica della superficie di Veronese di un S5,q, Atti Accad. Naz.
Lincei Rend., 61 (1976), 603–610.

[3] J. W. P. Hirschfeld. Finite projective spaces of three dimensions, Second edition. Oxford University
Press, Oxford, 1985, 316pp.



16 J. Schillewaert, J.A. Thas and H. Van Maldeghem

[4] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, Oxford,
1991.

[5] B. Segre, Ovals in a finite projective plane, Canad. J. Math., 7 (1955), 414-416.
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