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Abstract

Lower bounds for the size of a complete partial ovoid in a non-
degenerate Hermitian surface are obtained. For even characteristic, a
sharp bound is obtained and all examples of this size are described.
Next, a general construction method for locally hermitian partial
ovoids is explained, which leads to interesting small examples. Fi-
nally, a conjecture is given for the size of the largest complete strictly
partial ovoid. By using partial derivation, several examples of com-
plete strictly partial ovoids of this size are provided.

1 Introduction

Let H = H(3, q2) be a Hermitian surface of the projective space PG(3, q2),
where q is any prime power. The lines lying on H are called its generators,
and an ovoid ofH is defined to be a point set inH having exactly one common
point with every generator. Thus any ovoid must have q3 + 1 points. Any
non-tangent plane of H cuts out on H a Hermitian curve, which is an ovoid of
H called the classical ovoid. Non-classical ovoids of H were first constructed
by Payne and Thas [14], and are now known to exist in abundance.

A partial ovoid or cap of H is any point set in H which has at most one
common point with every generator. A partial ovoid is called complete if it is
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not contained in a larger partial ovoid of H. Since ovoids are known to exist,
we will be most interested in complete strictly partial ovoids; that is, complete
partial ovoids which are not ovoids. In particular, we will be interested in
the spectrum of sizes for such objects. Examples of complete strictly partial
ovoids will be given, and the results of various computer searches will be
reported.

2 Lower Bounds

Let O be a complete partial ovoid of H. Any generator of H which contains
no point of O will be called a free generator of H. If X is a point of H that
does not belong to O, then X must be collinear with at least one point of O,
for otherwise O∪{X} would be a partial ovoid properly containing O, which
contradicts the completeness of O. The number of points of O collinear with
X will be called the strength of X. Note that O is an ovoid of H if and only
if all points of H \ O have strength q + 1.

Theorem 2.1 Let O be a complete strictly partial ovoid of the Hermitian
surface H = H(3, q2) in Σ = PG(3, q2). Then the number of points in O is
at least q2 + 1.

Proof. Let g be a free generator of H, the existence of which follows from
the assumption that O is not an ovoid of H. Let P be a point of g. Then
there must be a generator through P , say gP , whose intersection with O is
not empty, since P has strength at least 1.

Now the set {gP |P ∈ g} consists of q2 + 1 skew generators of H as the
Hermitian surface does not contain any triangle. Since each of these genera-
tors meets O, we see that |O| ≥ q2 + 1. 2

It should be noted that in [8] it is shown that the above lower bound
holds in H(n, q2) for all dimensions n ≥ 3.

If q is even, then there are complete partial ovoids of size q2 + 1. For
instance, let Q be an elliptic quadric of a Baer subspace Σ0 = PG(3, q) of
Σ, and let L be the set of tangent lines to Q in Σ0. Since q is even, L
is a general linear complex of PG(3, q). As shown in [1], the lines of any
general linear complex L, when extended over GF (q2), cover the points of
a Hermitian surface H. Moreover, the generators of the resulting Hermitian
surface are either extended lines of L or they are skew to the Baer subspace
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Σ0. Therefore, no generator meets Q in more than one point, and Q is a
partial ovoid of size q2 + 1. To show that Q is complete, observe that every
point of Σ0 lies on q + 1 tangents to Q and every point of H \ Σ0 lies on a
unique (extended) tangent line to Q.

We will proceed to show that there are no other examples of size q2 + 1,
which will imply an increase of the lower bound if q is odd.

Lemma 2.2 Let O be a complete partial ovoid of H. Then |O| = q2 + 1 if
and only if all points of H\O have strength 1 or q + 1, where both strengths
occur.

Proof. Let O be a complete partial ovoid of H of size q2 + 1. As O is not an
ovoid, there exists a free generator g of H, and every point of g is collinear
with at least one point of O. Since g has q2 + 1 points and |O| = q2 + 1, it
follows that every point of g must be collinear with exactly one point of O,
so all points of g have strength 1. In particular, there exist points of strength
1.

Let P , Q be two points of O and denote the polarity associated with
H by τ . Then every point of P τ ∩ Qτ has strength at least 2. Consider a
point X of H \ O with strength at least 2. If there exists a free generator
g on X, then the completeness of O implies that every point of g must be
collinear with at least one point of O, and consequently |O| ≥ q2 + 2. Since
|O| = q2 + 1 by assumption, there cannot exist a free generator containing
X and X must have strength q + 1. In particular, there also exist points of
strength q + 1.

Conversely, let O be a complete strictly partial ovoid of H with the prop-
erty that all points of H \O have strength 1 or q + 1, and assume that both
strengths occur. Consider a point X 6∈ O with strength 1 and let g be a
free generator on X. The q2 + 1 points on g cannot have strength q + 1, so
they must all have strength 1. On the other hand, every point of O must
be collinear with exactly one point of g, since H is a generalized quadrangle.
Hence O has size q2 + 1. 2

Theorem 2.3 Let O be a complete partial ovoid of H. Then |O| = q2 + 1
if and only if q is even and O is an ovoid of some W3(q), which is the
intersection of H with a Baer subspace PG(3, q) of PG(3, q2) as in the model
for H described above.
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Proof. By Lemma 2.2, O has size q2 + 1 if and only if every point of H off O
has strength 1 or q + 1. The generalized quadrangle H is isomorphic to the
dual of the generalized quadrangle Q−(5, q), and O corresponds to a maximal
partial spread S of Q−(5, q) of size q2 + 1. Denote by S̃ the set of all points
of Q−(5, q) on the lines of S. Then every line of Q−(5, q) has either 1 or
q + 1 points in common with S̃, again by Lemma 2.2. Define a substructure
T := (P ,B, I) of the generalized quadrangle Q−(5, q) as follows. The point
set P coincides with S̃, the set B of lines of T consists of all lines of Q−(5, q)
having q + 1 points in common with S̃, and incidence I is the incidence of
Q−(5, q). Since every line of Q−(5, q) either contains exactly one point of S̃
or is a line of B, it follows that T = (P ,B, I) satisfies the conditions of [10,
Theorem 2.3.1]. Since the lines of S are pairwise disjoint, one concludes
from [10, Theorem 2.3.1] that T is a subquadrangle of Q−(5, q). Moreover,
the lines of S partition the point set of this subquadrangle and hence S is
a spread of T , so that |P| = (q + 1)(q2 + 1). Consequently, T has order
(q, q) and it is a generalized quadrangle Q(4, q) having a spread S. By [11], a
spread of Q(4, q) exists if and only if q is even. Since Q(4, q) corresponds to
a subquadrangle W3(q) which is the intersection of H with a Baer subspace
PG(3, q), the theorem follows. 2

Corollary 2.4 If q is odd, then a complete partial ovoid of H has at least
q2 + 2 points.

In fact, one can show that a complete partial ovoid of H cannot have
exactly q2 + 2 points. This was first pointed out to the authors by J. A.
Thas [13],and can easily be shown as follows.

Theorem 2.5 There are no complete partial ovoids of H with size q2 + 2.
In particular, if q is odd, then every complete partial ovoid has size at least
q2 + 3.

Proof. Suppose O is a complete partial ovoid in H of size q2 + 2. Then
every free generator has q2 points of strength 1 and one point of strength
2. Moreover, each point of H \ O with strength 2 lies on exactly q − 1 free
generators. Since there are (q + 1)(q3 − q2 − 1) free generators, we see that
there are precisely (q + 1)(q3 − q2 − 1)/(q− 1) points of strength 2. But this
is not an integer unless q = 2 or q = 3, and computer searches show no such
examples exist for these values of q. 2
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We now improve the lower bound for complete partial ovoids under some
very special circumstances, when q is odd.

Theorem 2.6 Let q be an odd prime power, and let H be a Hermitian surface
in Σ = PG(3, q2) obtained by extending over GF (q2) the lines of a general
linear complex L in a Baer subspace Σ0 = PG(3, q). Let O be a complete
partial ovoid of H, and let O′ = O ∩ Σ0. Then |O′| ≤ q2 − q + 1. Moreover,
if |O′| = q2 − q + 1, then

|O| ≥ 3

2
q2 − 1

2
q + 1.

Proof. Let W (3, q) denote the symplectic geometry (polar space) consisting
of the points of Σ0 and the lines in L. Since the (extended) generators of
W (3, q) are also generators of H, no two points of O′ determine a generator
of W (3, q) and O′ is a partial ovoid of W (3, q). As q is odd, |O′| ≤ q2− q +1
by a result of Tallini [11].

Now suppose that |O′| = q2 − q + 1. The number of free generators of
W = W (3, q) is q(q + 1). These generators may or may not intersect in Σ0,
but they are certainly mutually skew in Σ \ Σ0. Thus the number of points
of H\Σ0 lying on these free (extended) generators of W is q(q +1)(q2− q) =
q2(q2 − 1). We define these points to be “free points”.

Let P be a point of O \ O′. Then, by the construction of H, we know
that P lies on a unique free generator of W , say `, and thus P is a free point.
The q2 − q points of ` \ Σ0, one of which is P , are free points that are now
blocked by the addition of P . The remaining q generators of H through P
are all skew to Σ0 (see [1]), and we let m be any one of them. There are
exactly q2 +1 W -generators that meet m and they form a regular symplectic
spread S of Σ0.

Since |O′| = q2 − q + 1, exactly q2 − q + 1 lines of S meet O′ (in one
point each), and hence q lines of S are skew to O′. Therefore there are q
free generators of W meeting m, one of which is `. Thus we get another
q− 1 points on m that are now blocked by the addition of P to O′. Allowing
m to vary over the q generators through P skew to Σ0, we get a total of
q(q − 1) = q2 − q free points not on ` that are now blocked by P . So,
adjoining P to O′ blocks a total of q2− q + q2− q = 2(q2− q) previously free
points.

Adding another point P ′ will block another 2(q2 − q) free points, not
necessarily disjoint from the above set of 2(q2− q) free points. Now we must
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eventually block all the free points since O is complete. Therefore we must

adjoin to O′ at least q2(q2−1)
2(q2−q)

= 1
2
q(q + 1) points. That is,

|O \ O′| ≥ 1

2
q(q + 1)

and hence

|O| ≥ q2 − q + 1 +
1

2
q(q + 1) =

3

2
q2 − 1

2
q + 1,

proving the result. 2

It should be noted that if O′ is “large”, say of size greater than 1
2
q2, then

the above lower bound for O still holds. In fact, the same argument gives
an even stronger bound. However, if O′ is “small”, this counting argument
breaks down and the lower bound gets weaker. Eventually, it degenerates
into the general lower bound given in Theorem 2.1.

Perhaps more importantly, for odd q we have not been able to construct
complete partial ovoids of any size close to the bound given in Theorem 2.6.
For instance, for q = 5, the smallest complete partial ovoid we have been able
to construct has size 61. It appears that much work remains in improving
the general lower bound when q is odd.

3 Complete Caps from Maximal Partial Spreads

of PG(3, q)

In this section we present a construction method for maximal partial spreads
of Q−(5, q), starting from a maximal partial spread of PG(3, q). As the
generalized quadrangles H = H(3, q2) and Q−(5, q) are dual to each other,
this is equivalent to constructing complete caps of H. All partial spreads
of Q−(5, q) we obtain will be locally hermitian at some line L, which means
that they are the union of (3–dimensional) reguli pairwise meeting in L. The
method is based on a known construction for locally hermitian spreads of
Q−(5, q), see [12], and was suggested to the authors by J. A. Thas.

Consider the elliptic quadric Q−(5, q), with associated polarity ⊥. Let L
be a line of Q−(5, q), and thus L⊥ is a 3-dimensional projective space PG(3, q)
intersecting Q−(5, q) exactly in L. Consider a maximal partial spread S in
L⊥, such that L ∈ S. For every line M ∈ S \ {L}, M⊥ is a 3-dimensional
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projective space containing L and meeting Q−(5, q) in a hyperbolic quadric
Q+(3, q). If RM denotes the regulus through L of this hyperbolic quadric,
we let

SS :=
⋃

M∈S\{L}

RM .

Theorem 3.1 With the above notation, SS is a maximal partial spread of
Q−(5, q).

Proof. Let K and M be any two distinct lines of S \ {L}. Then we have
that K⊥ ∩ M⊥ = 〈K, M〉⊥ = (L⊥)⊥ = L. As the reguli RK and RM share
the line L, it follows that no two lines of SS intersect. Hence SS is a partial
spread of Q−(5, q).

In order to show that SS is maximal, suppose by way of contradiction
that there exists a line A of Q−(5, q) which is skew to all lines of SS. For
every line M ∈ S \ {L}, the lines of RM cover all points of M⊥ ∩ Q−(5, q).
Hence A is also skew to M⊥, and consequently A⊥ is disjoint from M . But
then A⊥ ∩ L⊥ is a line of L⊥, skew to all lines of S, contradicting the maxi-
mality of S. 2

By this construction, one can associate a maximal partial spread SS of
Q−(5, q), and equivalently a complete cap OS of H, with every maximal
partial spread S of PG(3, q). The resulting complete cap has size |OS| =
|SS| = (|S| − 1)q + 1. By relying on the known results concerning small
maximal partial spreads of PG(3, q), we obtain examples of “small” complete
caps on H, as follows.

In [6] maximal partial spreads of sizes 13, 14, 15, . . . , 22 in PG(3, 5) are
constructed by computer. Using the smallest one, our method above pro-
duces a maximal partial spread of size 61 on Q−(5, 5). This in turn yields
a complete cap of size 61 on H(3, 25), the smallest one we have constructed
so far. Similarly, in [5] maximal partial spreads of sizes 23, 24, 25 are con-
structed by computer in PG(3, 7). The smallest one produces a maximal
partial spread of size 155 on Q−(5, 7) and hence a complete cap of the same
size on H(3, 49). Again, this is the smallest complete cap we have been
able to construct on this Hermitian surface. In general, maximal partial
spreads of size n in PG(3, q) for odd q ≥ 7 have been constructed for all
q2+1

2
+ 6 ≤ n ≤ q2 − q + 2 (see [7]). In fact, for certain values of q this result

can be slightly improved (again, see [7]). For each of these maximal partial
spreads there is a corresponding complete cap on H of size (n− 1)q + 1.
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The general construction producing the smallest maximal partial spreads
in PG(3, q) known to the authors is the one presented in [3]. In that paper (see
the comments at the end of Section 3 in [3]) a certain randomized selection
process guarantees the existence of a maximal partial spread in PG(3, q), for
odd q, of size (m + 1)q + 1, where m is the smallest integer greater than
or equal to 2 log2(q). Thus, using our method above, one obtains complete
caps of size (m + 1)q2 + 1 on H(3, q2) for any odd q, where m = d2 log2(q)e.
Of course, this is still much larger than the general lower bound given in
Theorem 2.5 for odd q.

4 Construction of Large Complete Caps

Randomized and biased computer searching in [4] found complete partial
ovoids of H for q = 5 with sizes between 78 and 119, inclusive, as well as sizes
121 = q3−q+1 and 126 = q3+1. For q = 7 the computer searches in [4] found
complete partial ovoids of various sizes between 195 and 337 = q3 − q + 1,
as well as 344 = q3 + 1. For q = 3 our random searching found complete
partial ovoids of sizes 28 = q3 + 1 and 25 = q3 − q + 1 through 16, inclusive.
There seems to be strong evidence to conjecture that there are no complete
partial ovoids of size between q3− q +1 and q3 +1. In fact, the authors have
recently been told that this has been proven in [9]. In this section we provide
several (related) construction methods for complete strictly partial ovoids,
valid for any prime power q. In particular, we produce several examples of
size q3 − q + 1, which is now known to be the largest possible size for a
complete strictly partial ovoid of H(3, q2).

Construction I

Let σ be a non-tangent plane of the Hermitian surface H, and let U be
the Hermitian curve cut out on H by σ. Consider two chords of U through
a given point P ∈ U , say ` and m. Then S := U \ (` ∪m) is a partial ovoid
of H of size q3 − 2q. We will complete S to a complete strictly partial ovoid
O of U of size q3 − q + 1.

If a point X of H \ S is not collinear with any point of S, then either
X is a point of ` ∪ m, or Xτ ∩ σ ∈ {`, m}, where τ denotes the polarity
associated with H. This means that the points of H \ S which are not
collinear with any point of S are precisely the points of (`∪m∪ `τ ∪mτ )∩H.
Since ` and m meet in P , the chords `τ and mτ of H lie in the plane P τ ,
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and `τ ∩ mτ is some point that does not belong to H. Let g1, g2, . . . , gq+1

denote the q + 1 generators of H containing P , and define X1 := g1 ∩ `τ and
Yi := gi ∩mτ for i = 2, 3, . . . , q + 1. Then the points X1, Y2, Y3, . . . , Yq+1 are
pairwise noncollinear in H, and they are contained in (`τ ∪ mτ ) ∩ H. As a
consequence, they are not collinear with any point of the partial ovoid S. So
O := S ∪ {X1, Y2, Y3, . . . , Yq+1} is a partial ovoid of H of size q3 − q + 1.

In order to show that O is complete, recall that (` ∪ m ∪ `τ ∪ mτ ) ∩ H
consists of all the points of H \ S which are not collinear with any point of
S. Every point of `∩H is collinear with the point X1 of O, while every point
of m ∩ H is collinear with the q points Y2, Y3, . . . , Yq+1 of O. Finally, every
point of (`τ ∪mτ ) ∩ H either lies on g1 and hence is collinear with X1 ∈ O,
or lies on the generator gi for some i ∈ {2, 3, . . . , q +1} and hence is collinear
with the point Yi ∈ O. Thus we see that all points of H \ O are collinear
with at least one point of O, and the partial ovoid O is complete.

This construction can be modified to obtain many examples of complete
strictly partial ovoids of H, all with the same size. If we define Xi := gi ∩ `τ

and Yi := gi ∩mτ for all i ∈ {1, 2, . . . , q + 1}, then it is obvious that for any
two nonempty subsets I ⊆ {1, 2, . . . , q +1} and J := {1, 2, . . . , q +1} \ I, the
set O′ := S ∪ {Xi | i ∈ I} ∪ {Yj | j ∈ J} also is a complete strictly partial
ovoid of H of size q3 − q + 1.

Construction II

Consider three chords `, m and n in σ, such that ` and m are as in
the first example, l ∩ n is a point Q of H, and m ∩ n is a point R not on
H. Further, let O be the complete partial ovoid in the first construction
above, and define T := O \ n. Then T has size q3 − 2q + 1. Suppose
that the generators gi and the points Xi and Yi, i = 1, 2, . . . , q + 1, are
defined as above, and let the generators of H through Q be denoted by
h1, h2, . . . , hq+1. Here we assume that the numbering has been chosen such
that Xi is a point of hi for all i ∈ {1, 2, . . . , q + 1}. Finally, let Zi be the
point nτ ∩ hi for i = 1, 2, . . . , q + 1. Since the common point R of m and n
is not a point of H, mτ and nτ are chords of the hermitian curve H ∩ Rτ ,
which implies that the points Y1, Y2, . . . , Yq+1, Z1, Z2, . . . , Zq+1 are pairwise
noncollinear. It thus follows by similar arguments to those given above that
the set O′′ := T ∪ {Z2, Z3, . . . , Zq+1} is a complete strictly partial ovoid of
H of size q3 − q + 1. Note that this procedure can be applied repeatedly by
considering other chords of H in σ which meet m in R and meet ` in some
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point of H other than Q.

Construction III

Let `1, `2, . . . , `q+1 be q + 1 distinct chords of H in σ through a common
point P of H. Then `τ

1, `
τ
2, . . . , `

τ
q+1 are chords of H in P τ containing a

common point S = στ , which is not a point of H. For any nonempty subset
I ⊂ {1, 2, . . . , q + 1}, it is possible to find q + 1 points X1, X2, . . . , Xq+1 of
H in the plane P τ which are pairwise noncollinear, and such that for every
i ∈ I, `τ

i contains at least one point Xj. By defining O := (U \ {li | i ∈ I})∪
{X1, X2, . . . , Xq+1}, one obtains a complete partial ovoid of H of size q3 −
kq + 1, where |I| = k + 1.

Construction IV

Consider three chords `, m and n of H in σ such that P := ` ∩ m,
Q := `∩n, and R := m∩n are distinct points of H. In P τ we pick one point
X of `τ ∩ H and q points of mτ ∩ H which are not collinear with X. In Qτ

we pick the unique point Z of nτ ∩H which is not collinear with any of the
chosen points of mτ ∩H, thus obtaining q + 2 points in total. If one removes
the 3q points of (` ∪ m ∪ n) ∩ H from U and adds these q + 2 points, one
obtains a complete strictly partial ovoid of H of size q3 − 2q + 3. Note that
X and Z are not collinear in H for they are both collinear with the point Y ,
which is the intersection of `τ and the generator PX of H, and H does not
contain triangles.

Remark 4.1 The general method underlying all of the above constructions
may be thought of as “partial derivation” of the classical ovoid of H, in the
sense that chords of H are replaced by parts of their images under the polarity
of H. This replacement procedure can be applied consecutively many times,
thus yielding a wealth of complete (strictly) partial ovoids of H. Moreover,
partial derivation can be combined with the usual derivation (see [14]) of
ovoids of H, provided that one derives with respect to chords which have not
been affected by the partial derivation. Finally, partial derivation can also be
applied to nonclassical ovoids of H which contain a suitable configuration of
chords.
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Extension of the method to T3(O)

The construction of complete caps of H(3, q2) by partial derivation can be
formulated for maximal partial spreads of the generalized quadrangle T3(O)
as well, where O is an arbitrary ovoid of PG(3, q). This generalized quadran-
gle can be described as follows, see [10].

Let PG(3, q) be embedded as a hyperplane H in PG(4, q) and consider an
ovoid O of PG(3, q). Then points of T3(O) are of three types:

(i) the symbol (∞);

(ii) the 3-dimensional subspaces of PG(4, q) which meet H in the tangent
plane of O at some point;

(iii) the points of PG(4, q) \H.

Lines of T3(O) are of two types:

(a) the points of O;

(b) the lines, not contained in H, through a point of O.

A point of type (iii) is only incident with lines of type (b); the incidence is
inherited from PG(4, q). A point of type (ii) is incident with all lines of type
(b) that are contained in it and with the unique line of type (a) corresponding
to the point of tangency. The point (∞) is incident with no lines of type (b)
and with all lines of type (a).

The generalized quadrangle T3(O), with O an arbitrary ovoid of PG(3, q),
is known to have spreads which are constructed in the following way, see [10].
Let x be a point of O, and let π ⊆ H be a plane not containing x. Consider a
3-dimensional subspace δ ⊆ PG(4, q) such that δ∩H = π. Define L = π∩πx,
where πx is the tangent plane to O at x, and consider a spread S of δ
containing L. For every point xi ∈ O \ {x}, i = 1, 2, . . . , q2, let yi be the
point xxi ∩ π and denote the line of S incident with yi by Li. If the lines of
the plane 〈x, xi, Li〉, different from xxi, that are incident with xi are labelled
Mij, j = 1, 2, . . . , q, then S := {x} ∪ {Mij | i = 1, 2, . . . , q2; j = 1, 2, . . . , q}
is a spread of T3(O). Similarly, if S is a maximal partial spread of PG(3, q),
by this construction one obtains a maximal partial spread of T3(O), as was
described in [2]. If O ∼= Q−(3, q), then this example corresponds to the
construction of Section 3.
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In order to extend the notion of partial derivation to the setting of T3(O),
we need to introduce some more notation. Let the lines of the plane 〈x, xi, Li〉,
different from xxi, that are incident with the point x be denoted by M ij,
j = 1, 2, . . . , q. Assume furthermore that the labelling has been chosen such
that for a fixed j ∈ {1, 2, . . . , q}, the 3-spaces 〈πx, M ij〉 coincide for all i ∈
{1, 2, . . . , q2}. Now we pick two distinct points xk and xl of O \ {x}, and
define Skl := S \

(
{Mkj, Mlj | j = 1, 2, . . . , q} ∪ {x}

)
. In order to extend

Skl to a maximal partial spread of T3(O), consider a nontrivial subset I ⊂
{1, 2, . . . , q}. Then the set of lines S ′ := Skl ∪ {Mkj | j ∈ I} ∪ {M lj | j ∈
{1, 2, . . . , q}\I}∪{xk} is a maximal partial spread of T3(O). If O ∼= Q−(3, q)
and S is the regular spread of δ, then this maximal partial spread is the dual
of the complete cap of H(3, q2) described in Construction I.
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[3] A. Gács and T. Szőnyi. On maximal partial spreads in PG(n, q). Des.
Codes Cryptogr., 29: 123–129, 2003.

[4] L. Giuzzi. Looking for ovoids of the Hermitian surface: A computational
approach. preprint, 2003.

[5] O. Heden. A greedy search for maximal partial spreads in PG(3, 7). Ars
Combin., 32: 253–255, 1991.

[6] O. Heden. Maximal partial spreads in PG(3, 5). Ars Combin., 57: 97–
101, 2000.

[7] O. Heden. Maximal partial spreads and the modular n–queen problem
III. Discrete Math., 243: 135–150, 2002.

[8] J. W. P. Hirschfeld and G. Korchmáros. Caps on Hermitian varieties
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