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Abstract

An André embedding is a representation of a point-line geometry S with ap-
proximately s2 points on a line in a planar space with approximately s points per
line, but such that the lines of S are contained in planes of the planar space. An
example is the André representation (also sometimes called the Bose-Bruck repre-
sentation) of an affine translation plane of order q2 (with kernel of order at least q)
in 4-dimensional affine space AG(4, q), using a line spread at infinity. In this paper,
we classify all André embeddings of affine planes of order q2 in PG(4, q), q > 2, and
obtain, besides the natural extension to PG(4, q) of the above example, two other
related constructions. We also consider André embeddings of affine planes of order
q2 in PG(d, q), with d > 4 and q > 2.

1 Introduction

In the theory of translation planes, the so-called Bruck-Bose representation [2] of a transla-
tion plane plays a central and prominent role. In fact, this representation already appeared
in the work of André [1] much earlier, and so we shall call it in this paper the André rep-
resentation. In essence, this representation shows the equivalence of a translation plane
over a quasifield which is at most n-dimensional over its kernel K with a spread of (n−1)-
dimensional subspaces in the (2n− 1)-dimensional projective space PG(2n− 1, K). Then
one embeds PG(2n − 1, K) in a 2n-dimensional space PG(2n, K) and the points of the
(affine) translation plane are the points of PG(2n, K) \ PG(2n − 1, K), whereas the lines
are the n-dimensional subspaces of PG(2n, K) intersecting PG(2n − 1, K) in precisely a
spread element, with natural incidence.

The lowest dimensional nontrivial case appears in projective 4-space, for n = 2. In
this case, the points of any line of the affine translation plane A are contained in a
projective plane. One can see this as an embedding of A in PG(4, K) where points of A

1



are represented by points of PG(4, K) and lines of A by planes of PG(4, K). A similar
situation occurs with the Veronesean embedding of a Pappian projective plane PG(2, K):
there, points of PG(2, K) are represented by points of PG(5, K) and lines of PG(2, K) by
planes of PG(5, K). Characterizations of the latter embedding are given in [5, 6, 7]. Note
that Veronesean embeddings were recently used to construct authentications codes, and
hence it is worthwhile to try to find other varieties which can relate to codes. In the present
paper, we characterize the André representation. Our motivation is not only to do this
because of the similarity with (quadric) Veroneseans and to find a way to axiomatically
distinguish these embeddings, but also for practical reasons: such characterization is
necessary in order to classify the Hermitian Veronesean embeddings of projective spaces,
which recently gained interest because of their connection with triality and ovoids of
the triality quadric, see [3], and also because their similarity with quadric Veroneseans
suggests a possible application to authentication codes.

However, exactly because of the existence of the Veronesean embeddings of projective
planes, the additional axioms to distinguish these from the André representations for the
moment only work in the finite case. Indeed, the point is that Veronesean embeddings
occur in spaces containing planes of the same size as the embedded plane whereas in
the André setting the embedded plane has, so to speak, a dimensional double in size
compared to the planes of the ambient projective space. In the infinite case, this seems
hard to capture in axioms, whereas in the finite case, a simple condition on the size of
the planes suffices.

In general, one could define an André embedding of a point-line geometry S with approxi-
mately s2 points on a line as a representation of S in a planar space S ′ with approximately
s points per line, such that points of S correspond to points of S ′, and such that the lines
of S are contained in planes of the planar space S ′. More exactly, we define an André
embedding of an affine plane A of order q2 in the projective space PG(d, q), d ≥ 4, as a
representation of A in PG(d, q) where the points of A are points of PG(d, q) which generate
PG(d, q), and where the induced lines of A are contained in planes of PG(d, q). The same
definition holds for projective planes of order q2 in projective spaces PG(d, q), d ≥ 4. We
briefly say that the plane is André embedded in PG(d, q).

In the present paper, we classify the André embeddings of affine and projective planes of
order q2. This yields a characterization of the André representation of affine translation
planes in the case n = 2 mentioned above. In the next section, we state our Main Result
in detail, after we define the relevant examples.

As for notation, we will denote an affine and projective plane with a triple mentioning
the point set, the line set and the incidence relation.
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Finally, we would like to remark that all our results exclude the case q = 2, where our
methods completely fail. However, it should not be too difficult to settle the case q = 2
separately. We did not try to do this, since it would take too much space, and this would
overemphasize this small case.

2 Three constructions and statement of the Main Re-

sult

Let A = (P ,L,∈) be an affine translation plane of order q2 and kernel containing GF(q).
Then, by [1], there is a line spread S of PG(3, q) such that A can be represented as follows.
Embed PG(3, q) in PG(4, q). Then the points of A are all points of PG(4, q)\PG(3, q) and
the lines of A are the planes of PG(4, q) meeting PG(3, q) in a member of S; incidence is
the natural one. This clearly defines an André embedding of A in PG(4, q), which we will
call the standard André embedding of A.

Next, consider the projective completion Â of A (denote the line at infinity by A∞). We

can embed Â in PG(4, q) by first letting A∞ correspond to an arbitrarily chosen plane
π∞ in PG(3, q), by secondly noting that π∞ contains a unique member S of S, by thirdly
choosing an arbitrary point x on S, and by finally letting the points of A∞ correspond to
all points of the set (π∞ \ S) ∪ {x}. This way, we obtain an André embedding of Â in

PG(4, q), which we call a standard André embedding of Â.

Now, choose an arbitrary line L in Â, with L 6= A∞, and denote the associated affine
plane by AL. If we delete in the standard André embedding of Â all points corresponding
to L, then we obtain an André embedding of AL in PG(4, q), which we call a nonstandard
André embedding of AL. If the plane of PG(4, q) corresponding to L contains the spread
line S, then we say that the corresponding nonstandard André embedding of AL is of
Type I, otherwise it is of Type II.

Main Result. If the affine plane A of order q2, q > 2, is André embedded in PG(d, q),

with d ≥ 4, then d = 4, the projective completion Â of A is a projective translation plane,
and the embedding is either the standard André embedding of the (translation) affine plane

A, or a nonstandard André embedding of A (and Â has a translation line belonging to
A).

An immediate corollary is the following.

Corollary. Every André embedding of a projective plane of order q2, q > 2, in PG(d, q),
d ≥ 4, is the standard André embedding.
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3 Proof of the Main Result

We first prove the assertion for d = 4.

We assume throughout that A = (P ,L,∈) is an affine plane of order q2, which is André
embedded in PG(4, q), with q > 2. For every L ∈ L, we denote by πL the corresponding
plane in PG(4, q). For two points x, y ∈ P , we denote by xy the unique line of A incident
with both x and y, and by 〈x, y〉 the unique line of PG(4, q) containing both x and y.

First we claim that, if x ∈ P and x belongs to πL, for some L ∈ L, then x ∈ L. Indeed,
suppose not. Since (q + 1)(q − 1) < q2, we can choose q points y1, . . . , yq ∈ L such that
x, y1, . . . , yq are collinear in PG(4, q). The line 〈x, yi〉 only contains two points of xyi;
hence all points of πxyi

\ 〈x, yi〉 except two belong to xyi, for all i ∈ {1, 2, . . . , q}. Since
q > 2, there is a line A in πxy2 through y1 all points of which, except y1, belong to xy2.
Set A = {y1, z1, . . . , zq}. At least two lines y1zi, say y1z1 and y1z2, are not parallel to xy3.
Hence the planes πy1z1 and πy1z2 intersect the plane πxy3 in two distinct lines of PG(4, q)
(indeed distinct, because clearly πy1z1 6= πy1z2), so that each of these lines contains exactly
one point of xy3. It follows that these lines contain in total 2q − 2 points which do not
belong to xy3 and which neither belong to the line 〈x, y3〉 of PG(4, q). So 2q − 2 ≤ 2, a
contradiction.

Our claim is proved.

For ease of speech, we will call any point of PG(4, q) \ P an imaginary point. For con-
venience, imaginary points will be denoted with letters at the beginning of the alphabet
such as a, b, c, up to m, possibly furnished with subscripts. Likewise, lines of PG(4, q) will
be denoted by A, B, C, possibly furnished with subscripts. Points of A will be denoted
with lower case letters at the end of the alphabet, and lines of A with capital letters
ranging from L to Z.

A plane of PG(4, q) containing all the points of a line of A will be referred to as an A-plane.

Now we first assume that for every pair of nonparallel lines L, M ∈ L, the intersection
πL ∩ πM is a point.

Let N ∈ L be arbitrary and let x ∈ P with x /∈ N . Let ξ be a solid of PG(4, q) containing
πN but not x. Then the q2 + 1 planes πK through x intersect ξ in the lines of a spread
S of ξ. It follows that exactly one line of S is contained in πN . The corresponding plane
πR thus meets πN in a line and hence R and N must be parallel, by our assumption. Our
first claim above also implies that C := πR ∩ πN consists of imaginary points only, and
these are the only imaginary points in the planes πN and πR. It now also follows that for
all lines R′ of A parallel to N , the plane πR′ contains C. We will call C a special line.
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Since the q2 + 1 special lines lie in the q2 + 1 planes πK through x, we immediately see
that the former are mutually disjoint, and hence that their union forms the complete set
of q3 +q2 +q+1 imaginary points. Suppose that this set does not constitute a solid. Then
we can find a point z ∈ P and two imaginary points a, b such that z, a, b are collinear. Let
A and B be the respective special lines containing a and b. Letting z play the role of x
above, we see that the two planes 〈z, A〉 and 〈z, B〉 (which correspond to two intersecting
lines of A) meet in a line, a contradiction.

It is now clear that we obtain a standard André embedding of A (and hence the latter is
a translation affine plane).

So, from now on, we may assume that there are intersecting lines L, M ∈ L with πL ∩πM

a line A of PG(4, q). Let L ∩ M = {u}. By our claim above, the line A contains exactly
q imaginary points. The remaining imaginary point of πL and of πM is denoted by ` and
m, respectively.

Let L′ ∈ L be parallel to L in A and suppose by way of contradiction that πL′ does not
contain `. Then it contains exactly one imaginary point a of A. Since L′ is not parallel
to M , the planes πL′ and πM have a point z ∈ P in common. But then the line 〈a, z〉
belongs to both planes, and this line contains at least two members of P , a contradiction.
Hence πL ∩ πL′ = {`}. The point ` will be called the special point of πL.

Suppose now, by way of contradiction, that for some line T not parallel to L, the plane
πT contains `. If L∩T = {t}, then πT ∩πL = 〈`, t〉 and hence T and L would have at least
two points in common, a contradiction. Hence the only planes πX , X ∈ L, containing `
are the q2 planes corresponding to the lines of A parallel to L.

Now we claim that all points of the line 〈`, m〉 are imaginary points. Indeed, suppose by
way of contradiction that some point w ∈ 〈`, m〉 belongs to P . Let L′ ∈ L be parallel to
L and incident with w. Then, by the foregoing, πL′ contains ` and hence m. Since m is
the special point of πM , this implies that L′ is parallel to M , a contradiction. Our claim
follows.

Now let b be an arbitrary imaginary point on A and let B be a line of PG(4, q) through
b. Suppose that B contains at least two points v, w of A, and that it is not contained in
πL ∪ πM . Since πvw contains b /∈ {`, m}, the line vw ∈ L is not parallel to either L or M .
If it met L in a point distinct from u, then vw and L would share at least two points, a
contradiction. We conclude that πvw contains u and hence A.

If αA denotes the number of planes πX , X ∈ L, containing A, then the foregoing implies
that there are exactly qαA lines of PG(4, q) through b containing at least two members of
P , and the total number of points of A covered by such lines is equal to (q2 − 1)αA. All
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other points — and there are q4− (q2− 1)αA of these — are responsible for different lines
through b. Hence, there are exactly q4− (q2− q− 1)αA lines through b containing at least
one member of P . Expressing that this number does not exceed q3 + q2 + q +1, we obtain

αA ≥ q2 − q + 1

q2 − q − 1
.

Consequently αA ≥ q2 and so αA ∈ {q2, q2 + 1}.
From the previous paragraph, we deduce two cases.

(1) The first case is that for each line C of PG(4, q), which is the intersection of two
planes πL′ , πM ′, with L′, M ′ ∈ L not parallel, we have αC = q2.

Let {X1, X2, . . . , Xq2} be the collection of lines of A whose corresponding planes in
PG(4, q) contain A. All these lines are incident with the point u. Let U ∈ L be the
remaining line through u. Let u′ ∈ U , u′ 6= u. We claim that u′ is contained in two inter-
secting lines L′, M ′ ∈ L such that πL′ ∩πM ′ is a line A′ of PG(4, q). Indeed, assume on the
contrary that the planes corresponding to lines of A through u′ pairwise meet in u′; then
one of them, say πY , Y ∈ L, meets πL in a line distinct from A, implying |L ∩ Y | > 1, a
contradiction. Our claim follows. By assumption, there are now q2 lines X ′

1, X
′
2, . . . , X

′
q2

of A such that their corresponding planes contain A′.

We now claim that A∩A′ is empty. Indeed, if not, then A and A′ intersect in an imaginary
point c. We can choose two lines Xi and X ′

j, i, j ∈ {1, 2, . . . , q2} such that Xi is parallel
to X ′

j, and then c must be the special point of πXi
, contradicting the fact that the special

point of that plane does not belong to A. Our claim is proved.

Projecting πU and all πXi
, i = 1, 2, . . . , q2, from A onto a plane of PG(4, q) skew to A, we

obtain a line (corresponding to πU) and a set of q2 points, not any of them on that line;
hence (πX1 ∪ πX2 ∪ · · · ∪ πXq2 ) \ A is an affine space AG(4, q).

Let ai be the special point of πXi
, i = 1, 2, . . . , q2. For distinct i, j ∈ {1, 2, . . . , q2}, the

line 〈ai, aj〉 only contains imaginary points, but it also contains q points of AG(4, q); hence
these must all be special points of certain planes πXk

, with k ∈ {1, 2, . . . , q2}. It follows
that {a1, a2, . . . , aq2} is the point set of an affine plane AG(2, q) contained in AG(4, q). We
denote the line at infinity of AG(2, q) by A∞. It is contained in the solid PG(3, q) spanned
by A and πU .

Since A′ contains a point u′ of A, it is clear that it cannot contain a special point ai,
i = 1, 2, . . . , q2, and so A′ is contained in PG(3, q) (otherwise q2 lines of A through u′
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would be parallel). At least q2 − 1 A-planes through A′ are parallel to some A-plane
through A, and hence at least q2 − 1 special points of A-planes through A′ are contained
in AG(2, q). It follows that all of them are contained in AG(2, q). Consequently πU does
not contain A′. This also implies that PG(3, q) = 〈U,A′〉 and consequently that the affine
4-space defined by all A-planes through A′ coincides with AG(4, q).

Varying u′ over U , there arise q2 mutually disjoint lines A′ in PG(3, q); they all play
the same role. So we see that they are all disjoint from A∞. Consequently, the lines
A′ together with A∞ define a spread of PG(3, q). Notice also that, since no line A′ is
contained in πU , we must necessarily have that A∞ is contained in πU .

Now let R 6= U be a line of A parallel to U . We claim that πR contains A∞ and no further
points of PG(3, q). Clearly, all of the non-imaginary points of πR are contained in AG(4, q)
since these points must belong to an A-plane through A. If πR contained a point of A,
then it would contain a line of each A-plane through A, contradicting the fact that lines
of A meet in at most one point. Since all A′ play the same role, πR does not meet any of
these. Hence it must contain A∞ and our claim is proved.

If we now remove the line U = πU \ A∞ and all its points, and add the plane AG(2, q)
together with all its points, then we obtain a standard André embedding of some transla-
tion affine plane. It now easily follows that the embedding of A is a nonstandard André
embedding of Type I.

We now treat the second case.

(2) There is a line A of PG(4, q), which is the intersection of two planes πL, πM , with
L, M ∈ L not parallel, and with αA = q2 + 1.

Let πXi
, i = 0, 1, 2, . . . , q2, be the A-planes containing A. Let ai be the special point of

πXi
, i = 0, 1, 2, . . . , q2.

We first claim that the union of q2 A-planes through A, minus the line A, is an affine
4-space AG(4, q). Indeed, let y ∈ P belong to X0, with y 6= u (as before u ∈ P is the point
common to all Xi, i = 0, 1, 2, . . . , q2). There are two possibilities. Either all A-planes
through y intersect mutually in only y, or there exist two such planes intersecting in a
line C.

Suppose first that there are two A-planes through y meeting in a line.

At least one of these planes does not contain u, say πK , K ∈ L (in fact, both do not, but
we do not need this). Note that one easily sees that A and πK are not contained in a
solid. Let k be the special point of πK , and let B be the line in πK containing q imaginary
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points. Then the A-plane containing A and corresponding to a line of A parallel to K,
intersects πK in k. Also, q2−1 other A-planes through A meet πK in points off B. Hence,
these q2 A-planes, minus their common line A, are contained in the affine space obtained
by joining A with πK \B, and then deleting A. The claim follows.

Suppose now that all A-planes through y intersect mutually in only y.

In this case, we consider any A-plane πN not containing u nor y. Then one of the A-planes,
say πK , K ∈ L, through y intersects πN in a line. If K and N are not parallel, then the
claim follows similarly as in the first case. If they are parallel, then it is easy to see that
the claim follows by considering the q2 A-planes through A whose corresponding line in
A is not parallel to K (again use the easy observation that A and πK are not contained
in a solid).

Hence the claim is proved.

So we may assume that (πX1 ∪πX2 ∪ · · · ∪πXq2 ) \A is an affine space AG(4, q), which does

not contain πX0 . We denote by PG(3, q) its solid at infinity.

As before, it follows that the special points a1, a2, . . . , aq2 form the point set of an affine
plane AG(2, q), and that the corresponding line A∞ at infinity consists of imaginary points
only, among which a0.

Take an arbitrary point u′ of X0, u′ 6= u. We claim that there are two A-planes through
u′ intersecting in a line. Indeed, suppose all A-planes through u′ intersect mutually in
u′. Then one of them, say πV , intersects the projective completion PG(2, q) of AG(2, q)
in a line; this line necessarily coincides with A∞, as otherwise V is parallel to at least
q different lines through u′, a contradiction. It follows that πV is parallel to and hence
coincides with πX0 . But πX0 cannot contain A∞, as it would otherwise contain too many
imaginary points (the ones on A and the ones on A∞). The claim follows.

So we obtain q2 − 1 lines B1, B2, . . . , Bq2−1 of PG(4, q) which each are the intersection of
two A-planes whose corresponding lines of A are not parallel. Since clearly none of these
lines can contain a special point ai, i ∈ {0, 1, 2, . . . , q2} (as otherwise two nonparallel
lines of A are parallel to a common one), we see that B1, B2, . . . , Bq2−1 are contained in
PG(3, q). Similarly as in (1), the lines A, B1, B2, . . . , Bq2−1 are mutually skew. Also, none
of A, Bi, i = 1, 2, . . . , q2−1, contains a point of A∞ as otherwise an A-plane through such
a line which corresponds to a line of A that is parallel to some line Xj, j ∈ {1, 2, . . . , q2},
contains at least q special points of the planes πXi

, i = 1, 2, . . . , q2, a contradiction. Hence
{A∞, A,B1, B2, . . . Bq2−1} is a spread S of PG(3, q).

Now let W be a line of A parallel to but distinct from X0. Let w be a point on W .
Then w ∈ AG(4, q). Since q2 A-planes through w mutually meet in w (because they
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contain A, B1, B2, . . . , Bq2−1), the unique missing A-plane through w must also intersect
the others in just w and hence must contain A∞ (and hence contains a0 and therefore
coincides with πW ).

We conclude that all A-planes except πX0 meet PG(3, q) in an element of the spread S.
Since also PG(2, q) meets PG(3, q) in A∞, we obtain an André embedding of a translation
plane by removing the line X0 = (πX0\(A∪{a0}))∪{u} of A and all its points, and adding
AG(2, q) and all its points. It easily follows that the embedding of A is a nonstandard
André embedding of Type II.

This completes the proof for the case d = 4.

Now we prove the Main Result for d ≥ 6.

We use the same notation as in the case d = 4.

Let d ≥ 6. The number of points of PG(d, q) lying in some A-plane is at most q4 + (q4 +
q2)(q + 1) = q5 + 2q4 + q3 + q2 < q6 + q5 + q4 + q3 + q2 + q + 1, hence there exists an
imaginary point c not contained in any A-plane. Consequently c is not contained in any
line of PG(d, q) that contains at least two points of A. So we can project from c onto a
suitable hyperplane to obtain an André embedding in some PG(d− 1, q). We can do this
procedure d − 5 times to end up with an André embedding in PG(5, q). Hence we have
reduced this case to the next case.

Finally, we prove the assertion for d = 5.

We again use the same notation as in the case d = 4.

Let d = 5. First suppose that for every pair of intersecting lines L, M of A, the planes πL

and πM meet in a line of PG(5, q). We treat this case including the possibility of q being
equal to 2. Consider such lines L, M and let S be the solid they span. Since πL ∩ πM

contains at most q + 1 < q2 points of L, there is some point y ∈ L not contained in πM

(and only if q = 2, this point could be unique). Similarly, there is some point z ∈ M not
contained in πL. Let x in A be arbitrary, but not in L∪M . If one of the lines xy and xz
can be chosen not parallel to either L or M (and this can only fail when q = 2), then the
corresponding A-plane must meet πL and πM in distinct lines, and hence this A-plane is
contained in S. Consequently only the point x with xy parallel to M and xz parallel to
L (and with q = 2) is possibly not contained in S, but this situation cannot occur since it
would require that πL∩πM contains 3 points of L and also 3 points of M , a contradiction.

Hence we may assume that there are two A-planes πL and πM that meet in a point, and
for which the corresponding lines L and M are not parallel in A.

First assume that there exists a point x of A not in L ∪ M and contained in the 4-
dimensional space ξ := 〈πL, πM〉.
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There are only q+1 lines in ξ through x meeting both planes πL and πM ; hence for at least
q2 − 2 − q lines of A through x, the corresponding A-plane contains three non-collinear
points of ξ and hence is contained in ξ. Let q > 3. Now, for any point y of A, not
contained in ξ, we can find a line N of A containing y, not through x, and not parallel to
any of the q2−2−q above mentioned lines. Hence πN meets ξ in at least q2−2−q > q+1
points, and so must be contained in it. Hence ξ = PG(5, q), a contradiction.

If q = 3, then the only case in which the above argument fails is when exactly 4 lines
through x have a corresponding A-plane in ξ. If R is such a line, then, with the same
reasoning, we may assume that every point on R, except R∩L and R∩M , is incident with
exactly 4 lines contained in ξ (including R). In total, this gives us already 7 ·3+1+2 = 24
lines of A contained in ξ. Let y be as above, then each line of A through y meets the
union of these 24 lines in at most 4 points; hence this union contains at most 40 points.
A double count reveals that the average number of lines of A contained in ξ through a
point of that union is at least 27/5. Consequently there is some point in A incident with
at least 6 lines of A contained in ξ. Since 6 > q + 1 = 4, the previous argument now
works to obtain a contradiction.

Now assume that, with the above notation, ξ ∩ (L ∪M) = L ∪M .

Set x = L ∩M . Since q2 − 1 > q + 1, we can find a point y ∈ L such that 〈x, y〉 contains
at least three points of A; let y′ be a point of A on 〈x, y〉 distinct from x, y. Now choose
two points z, z′ in M such that the lines 〈y, z〉 and 〈y′, z′〉 are skew; this is easy as not all
points of M are contained in a line of PG(5, q) through x. Moreover, since q2 > q + 2, we
can choose z′ such that the lines yz and y′z′ of A are not parallel. But then the planes
πyz and πy′z′ meet in a point and span a 4-space containing the point x which does not
belong to πyz ∪ πy′z′ , a contradiction as in the previous paragraph.

The Main Result is completely proved.
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