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Abstract

We give several examples of designs and antidesigns in classical finite polar
spaces. These types of subsets of maximal totally isotropic subspaces generalize the
dualization of the concepts of m-ovoids and tight sets of points in generalized quad-
rangles. We also consider regularity of partial spreads and spreads. The techniques
that we apply were developed by Delsarte. In some polar spaces of small rank, some
of these subsets turn out to be completely regular codes.

Keywords: dual polar graph, antidesigns, (partial) spreads, completely regular codes.

1 Introduction

Classical finite polar spaces are incidence structures, consisting of the totally isotropic
subspaces in a vector space with respect to a non-degenerate sesquilinear or quadratic form
(see Subsection 2.3 for an explicit description of all types). The vertices of the associated
dual polar graph that we will consider, are the maximal totally isotropic subspaces or
simply maximals, with two vertices adjacent if they meet in a subspace of codimension
one. The rank of the polar space is the dimension of its maximals.

It is our aim to study certain types of subsets of vertices in the dual polar graph.
The terminology and techniques that we will use were developed by Delsarte, and will
be explained in Section 2. In [8], he introduced powerful algebraic techniques to study
subsets in association schemes (see Subsection 2.1 for the definition). He also developed a
general theory of regular semilattices in [10], providing a generalizing notion of t-designs
in several association schemes and an algebraic characterization of them. Roos [16] then
introduced the notion of t-antidesigns in these schemes, which behave in a nice way with
respect to t-designs.

We will consider partial spreads in Section 4. These are sets of maximals, all at
maximum distance in the dual polar graph. For a particular Hermitian polar space of rank
three, a tight upper bound for the size of partial spreads was given in [6], together with
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regularity properties of those meeting the bound. A generalizing tight upper bound for
arbitrary odd rank d was given in [24], and we will use algebraic techniques in Subsection
4.2 to prove that partial spreads meeting that bound in these polar spaces are (d − 1)-
antidesigns and possess similar regularity properties. A partial spread is a spread if every
1-dimensional totally isotropic subspace is incident with exactly one of its elements. We
will prove in Subsection 4.3 that in parabolic quadrics and symplectic spaces of odd rank
d, spreads are also (d− 1)-antidesigns and therefore exhibit a “higher regularity” than in
other polar spaces. This will generalize a result for rank three by Thas in [20].

We will conclude by giving more examples of antidesigns in Sections 5 and 6.

2 Background

2.1 Association schemes

Bose and Shimamoto [4] introduced the notion of a d-class association scheme on a finite
set Ω as a pair (Ω,R) withR = {R0, R1, . . . , Rd} a set of symmetric (non-empty) relations
on Ω, such that the following axioms hold:

(i) R0 is the identity relation,

(ii) R is a partition of Ω2,

(iii) there are intersection numbers pkij such that for (x, y) ∈ Rk, the number of elements
z in Ω for which (x, z) ∈ Ri and (z, y) ∈ Rj equals pkij.

The relations Ri(i > 0) are all symmetric regular relations with valency p0
ii, and hence

define regular graphs on Ω.
Consider the real vector space RΩ, with an orthonormal basis indexed by the elements

of Ω. It can be shown (see for instance [2]) that RΩ has an orthogonal decomposition into
d+1 subspaces Vj called strata, all of them eigenspaces (or subspaces of eigenspaces) of the
relations Ri of the association scheme. We will write V ⊥ for the orthogonal complement
in RΩ of a subspace V . The (d + 1) × (d + 1)-matrix P , where Pji is the eigenvalue of
the relation Ri for the stratum Vj, is called the matrix of eigenvalues of the association
scheme. Let ∆m be the diagonal matrix with (∆m)jj the dimension of the eigenspace
Vj, and let ∆n be the diagonal matrix with (∆n)ii the valency of the relation Ri, then P
satisfies the orthogonality relation P T∆mP = |Ω|∆n (see for instance Lemma 2.2.1 (iv)
in [5]).

The characteristic vector of a subset S in Ω is the vector χS in RΩ with (χS)x = 1 if
x ∈ S, and (χS)x = 0 if x /∈ S. In [8], the outer distribution and inner distribution of a
non-empty subset S of Ω is introduced. The outer distribution of S is the |Ω| × (d + 1)-
matrix B, with Bx,i = |{x′ ∈ S|(x, x′) ∈ Ri}|. The inner distribution a := (a0, . . . , ad) of
S is defined as follows:

ai =
1

|S|
|{(S × S) ∩Ri}|, for all i ∈ {0, . . . , d}.
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Hence, the i-th entry of a equals the average number of elements x′ ∈ S, such that
(x, x′) ∈ Ri for some x ∈ S. It follows immediately from the definitions that a0 = 1, and
that the sum of all of its entries must equal |S|. The following theorem is due to Delsarte,
and by use of the orthogonality relation, can be expressed in the following form (see for
instance Proposition 2.5.2 in [5]).

Theorem 2.1 Let S be a non-empty subset in an association scheme (Ω, {R0, . . . , Rd}).
If for some stratum Vj, the eigenvalue of the relation Ri is given by λi, while the valency
of Ri is ki, then:

d∑
i=0

λi
ki

ai ≥ 0,

with equality if and only if χS ∈ V ⊥j . In that case, the outer distribution B of S satisfies

the equation
∑

λi

ki
Bx,i = 0 for every x ∈ Ω.

2.2 Distance-regular graphs

Let Γ be a connected undirected graph with diameter d on a set of vertices Ω. We let
d(x, y) denote the distance between two vertices x and y in the graph. For every i in
{0, . . . , d}, we let Γi denote the graph on the same set Ω, with two vertices adjacent if
and only if they are at distance i in Γ, and we write Ri for the corresponding symmetric
relation on Ω. The graph Γ is said to be distance-regular if (Ω, {R0, R1, . . . , Rd}) is an
association scheme. It can be shown (see [5]) that this is equivalent with the existence of
parameters bi and ci, such that for every (v, vi) ∈ Ri, there are ci neighbours vi−1 of vi
with (v, vi−1) ∈ Ri−1 if i ∈ {1, . . . , d}, and bi neighbours vi+1 of vi with (v, vi+1) ∈ Ri+1 if
i ∈ {0, . . . , d− 1}. These parameters bi and ci are known as the intersection numbers of
the distance-regular graph Γ.

A code in a distance-regular graph is a non-empty subset of the set of vertices. The
distance of a vertex x to a code C, denoted by d(x,C), is min{d(x, y)|y ∈ C}. The covering
radius of C, denoted by t(C), is max{d(x,C)|x ∈ Ω}. If the sets {y|d(x, y) ≤ t(C)} with
x ∈ C partition the set of vertices, then the code C is perfect. The minimum distance
δ(C) of a code C with |C| > 1 is min{d(x, y)|x, y ∈ C, x 6= y}.

A code C is called s-regular if for every x ∈ Ω with d(x,C) = l ≤ s, the entry Bx,i

of its outer distribution B only depends on l and i. If C is t(C)-regular, or hence if Bx,i

only depends on d(x,C) and i, the code C is completely regular. Every perfect code is a
completely regular code (see for instance Theorem 11.1.1 in [5]).

2.3 Polar spaces and the dual polar graph

A classical finite polar space is an incidence structure, consisting of the totally isotropic
subspaces of a finite-dimensional vector space V over a finite field, with respect to a
certain non-denegerate sesquilinear or quadratic form f . The rank of the polar space is
the dimension of the maximal totally isotropic subspaces or simply maximals. Two totally
isotropic subspaces of different dimension are said to be incident if one is included in the
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other. The classical finite polar spaces of rank two are the classical finite generalized
quadrangles. We will refer to a-dimensional subspaces simply as a-spaces. A polar space
will be said to have parameters (q, qe) if each totally isotropic 2-space (or line) is incident
with exactly q+1 totally isotropic 1-spaces (or points), and every totally isotropic (d−1)-
space is incident with exactly qe + 1 maximals. We now explicitly list all different types
of classical finite polar spaces of rank d, together with their parameters. For the sake of
clarity, we give the notation related to Chevalley groups, as well as the more geometric
notation, based on the embedding of the polar space in a projective space.

• the hyperbolic quadric Dd(q) or Q+(2d − 1, q), with V = GF(q)2d and f a non-
degenerate quadratic form of Witt index d, with parameters (q, 1),

• the Hermitian variety 2A2d−1(q) or H(2d− 1, q2), with V = GF(q2)2d and f a non-
degenerate Hermitian form, with parameters (q2, q),

• the parabolic quadric Bd(q) orQ(2d, q), with V = GF(q)2d+1 and f a non-degenerate
quadratic form, with parameters (q, q),

• the symplectic space Cd(q) or W (2d − 1, q), with V = GF(q)2d and f a non-
degenerate symplectic form, with parameters (q, q),

• the Hermitian variety 2A2d(q) or H(2d, q2), with V = GF(q2)2d+1 and f a non-
degenerate Hermitian form, with parameters (q2, q3),

• the elliptic quadric 2Dd+1(q) or Q−(2d + 1, q), with V = GF(q)2d+2 and f a non-
degenerate quadratic form of Witt index d, with parameters (q, q2).

We will often use the Gaussian coefficient
[
a
b

]
q
, which gives the number of subspaces

of dimension b in a vector space of dimension a over GF(q) with 0 ≤ b ≤ a:

[a
b

]
q

=
b∏
i=1

qa+1−i − 1

qi − 1
.

If b < 0 or b > a, the coefficient
[
a
b

]
q

is defined to be zero. More generally, the number

of b-spaces in a vector space V of dimension a over GF(q) and through a fixed c-space in
V , is given by:

[
a−c
b−c

]
q
.

The number of points in the polar space is given by
[
d
1

]
q

(qd+e−1 + 1), and the number

of maximals by
∏d

i=1(qi+e−1 + 1) (see for instance Lemma 9.4.1 in [5]).
Consider a classical finite polar space of rank d with parameters (q, qe). The dual polar

graph has as vertices the maximals, and two vertices are defined to be adjacent when their
intersection has dimension d − 1. We refer to Lemma 9.4.2 and Theorem 9.4.3 in [5] for
the following results.

• Γ is distance-regular with diameter d,

• two vertices x and y are at distance i if and only if x ∩ y has dimension d− i,
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• two pairs of vertices (x1, y1) and (x2, y2) are in the same orbit of the automorphism
group of Γ, if and only if d(x1, y1) = d(x2, y2),

• the intersection numbers are given by bi = qi+e
[
d−i

1

]
q

for every i ∈ {0, . . . , d − 1}
and ci =

[
i
1

]
q

for every i ∈ {1, . . . , d},

• every vertex is at distance i from exactly qi(i−1)/2qie
[
d
i

]
q

vertices.

In the remainder of this paper, the full set of maximals will be denoted by Ω, and the
ordering relations of the association scheme (Ω, {R0, . . . , Rd}) induced by the dual polar
graph will be such that Ri corresponds with the i-distance relation.

2.4 The regular semilattice associated with the polar space

In [10], Delsarte developed a general theory of semiregular lattices, which gives a meaning
to the strata in many well-known association schemes. See [19] for a treatment of the case
of the dual polar graph. We will only give the results we need from [10] with respect to
the dual polar graph.

Consider a classical finite polar space of rank d with parameters (q, qe). We will denote
the column span of any matrix M by Im(M), and its transpose by MT . Let Ci denote the
incidence matrix between the totally isotropic subspaces of dimension i and the maximals.
This means that the rows are indexed by the i-spaces of the polar space, and the columns
by the vertices of the dual polar graph, with (Ci)yx = 1 if y ⊆ x and (Ci)yx = 0 if y 6⊆ x.
Now define V0 as Im(CT

0 ) = 〈χΩ〉, and Vi as Im(CT
i ) ∩ ker(Ci−1) if 1 ≤ i ≤ d. Now

Im(CT
i ) = V0 ⊥ . . . ⊥ Vi if 0 ≤ i ≤ d, and the subspaces Vi are precisely the strata of

the association scheme induced by the dual polar graph. The eigenvalue of the dual polar
graph for the subspace Vi is qe

[
d−i

1

]
q
−
[
i
1

]
q

for every i ∈ {0, . . . , d} (see for instance

Theorem 4.23 in [13]). The dual degree set of a set of vertices S of the dual polar graph,
is the set of non-zero indices i such that χS /∈ V ⊥i . If the size r of the dual degree set of S
with |S| > 1 satisfies δ(S) ≥ 2r− 1, then S is a completely regular code (see for instance
Theorem 11.1.1(iv) in [5]). Note that the latter is certainly the case if r = 1.

If the dual degree set of S contains no index from {1, . . . , t} with 1 ≤ t ≤ d, we say
that S is a t-design. It follows from the theory of semiregular lattices that this is the case,
if and only if there is a constant λ such that every totally isotropic t-space is incident
with exactly λ elements of S. Similarly, we say that S is a t-antidesign (with 1 ≤ t ≤ d)
if the dual degree set of S is a subset of {1, . . . , t}. Antidesigns were introduced by Roos
because of the following important property, which we will present here in the particular
case of the dual polar graph.

Theorem 2.2 ([9]) Let X and Y be two subsets of vertices in the dual polar graph as-
sociated with a classical finite polar space. If their dual degree sets are disjoint, then
|X ∩ Y | = |X||Y |

|Ω| . Conversely, if |X ∩ (Y g)| is independent of the element g of the au-
tomorphism group of the dual polar graph, then the dual degree sets of X and Y are
disjoint.
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A similar result (for distance-regular graphs in general) that does not rely on a group
action is proved in [7]. In particular, we have the following special case.

Corollary 2.3 Every t-design X and t-antidesign Y in a dual polar graph have exactly
|X||Y |
|Ω| elements in common.

The following result gives the most straightforward way to construct t-antidesigns.

Theorem 2.4 Let πt be a totally isotropic t-space in a classical finite polar space of rank
d with 1 ≤ t ≤ d. If S is the set of maximals incident with πt, then S is a t-antidesign.

Proof We can write χS = CT
t χπt . As Im(CT

t ) = V0 ⊥ . . . ⊥ Vt, this yields the desired
result. �

Tight sets in generalized quadrangles were introduced by Payne in [14]. These are
subsets of points such that the number of pairs of collinear points in it reaches a certain
upper bound. Thas defined an m-ovoid in a generalized quadrangle in [21] as a subset of
points such that every line intersects it in m points. It can be shown (see for instance
Theorem 2.1 in [12]) that 1-designs and 1-antidesigns in classical finite polar spaces of
rank two (hence in classical finite generalized quadrangles), are precisely the dual concepts
of m-ovoids and tight sets of points, respectively.

It should be noted that the definitions of tight sets of points and m-ovoids have also
been generalized for polar spaces of arbitrary rank in [11] and [18], respectively. See [3]
for a discussion of both types of sets of points.

In the hyperbolic quadric Dd(q), the dual polar graph is bipartite, and each totally
isotropic (d−1)-space is incident with exactly one element of both parts. Hence each half
is a (d− 1)-design. Apart from this example, no non-trivial t-designs with t ≥ 2 in dual
polar graphs are known to the author. However, many 1-designs are known, among which
the spreads that we will discuss in Section 4. We will also encounter several examples of
1-antidesigns and (d− 1)-antidesigns in classical finite polar spaces of rank d in Sections
4, 5 and 6.

3 A criterion for (d− 1)-antidesigns

Consider a dual polar graph Γ with diameter d, and its corresponding orthogonal decom-
position into strata: V0 ⊥ . . . ⊥ Vd, using the same ordering as in Subsection 2.4. As the
association scheme induced by the dual polar graph is related to a regular semilattice, we
could use Theorem 9 from [10] to calculate the entire matrix of eigenvalues. However, the
subspace Vd is of particular interest to us, and we will only consider the corresponding
eigenvalues of each relation of the association scheme. In [24], a general but not so elegant
technique from the theory of distance-regular graphs was used for this. We will now use
yet another method, which only works for Vd.

Lemma 3.1 Let Γ denote the dual polar graph associated with a classical finite polar
space of rank d with parameters (q, qe). If λi denotes the eigenvalue of the i-distance
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relation in Γ corresponding with the subspace Vd, and if ki is the valency of the i-distance

relation, then λi/ki =
(
− 1
qe

)i
.

Proof For every i ∈ {0, . . . , d}, let Ai be the symmetric matrix, the rows and columns of
which indexed by the vertices of the dual polar graph, with (Ai)xy = 1 if d(x, y) = i and
(Ai)xy = 0 in all other cases. Let Ωd−1 denote the set of totally isotropic (d − 1)-spaces
in the polar space. For each i ∈ {0, . . . , d − 1}, we also let W i denote the matrix, the
columns of which are indexed by the totally isotropic (d− 1)-spaces and the rows by the
vertices of Γ, with (W i)xy = 1 if dim(x ∩ y) = (d − 1) − i and (W i)xy = 0 in all other
cases.

We now consider W iCd−1. For every two maximals x1 and x2, we have:

(W iCd−1)x1x2 =
∑

y∈Ωd−1

(W i)x1y(Cd−1)yx2 = |{y ∈ Ωd−1| dim(x1 ∩ y) = (d− 1)− i, y ⊂ x2}|.

If a maximal x2 contains a totally isotropic (d − 1)-space y, meeting a maximal x1 in a
(d − 1 − i)-space, then x1 ∩ x2 can only have dimension d − i or d − i − 1. In the first

case, there are exactly
[

d
d−1

]
q
−
[

d−(d−i)
(d−1)−(d−i)

]
q

= qi
[
d−i

1

]
q

possibilities for a (d − 1)-space

y in x2 intersecting x1 in a (d − i − 1)-space, and in the second case, there are exactly[
d−(d−i−1)

(d−1)−(d−i−1)

]
q

=
[
i+1

1

]
q

possibilities for such a subspace y. Hence we can write for all

i ∈ {0, . . . , d− 1}:

W iCd−1 = qi
[
d− i

1

]
q

Ai +

[
i+ 1

1

]
q

Ai+1.

We know that Vd = (Im(CT
d−1))

⊥
= ker(Cd−1). Let v be any non-zero vector in

Vd. As W iCd−1v = 0, Aiv = λiv and Ai+1v = λi+1v, it follows from the above that
0 = qi

[
d−i

1

]
q
λi +

[
i+1

1

]
q
λi+1.

On the other hand, the valencies ki and ki+1 are linked by the intersection numbers:
biki = ci+1ki+1, for all i ∈ {0, . . . , d − 1}, or hence: qi+e

[
d−i

1

]
q
ki =

[
i+1

1

]
q
ki+1. We can

hence conclude that for every i ∈ {0, . . . , d − 1}, the following holds: λi+1

ki+1
= − 1

qe
λi

ki
. As

k0 = λ0 = 1, the desired result now follows immediately by induction. �
The simplicity of the ratio λi/ki obtained in the last lemma, allows us to formulate a

fairly simple criterion for (d− 1)-antidesigns in a dual polar graph with diameter d.

Lemma 3.2 If S is a non-empty subset in the dual polar graph associated with a classical
finite polar space of rank d with parameters (q, qe), then its inner distribution a satisfies

d∑
i=0

(
− 1

qe

)i
ai ≥ 0,

with equality if and only if S is a (d − 1)-antidesign. Moreover, in that case the outer

distribution B of S also satisfies the equation
∑d

i=0

(
− 1
qe

)i
Bx,i = 0 for every maximal x.

Proof This follows immediately from Theorem 2.1 and Lemma 3.1. �
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4 Partial spreads as antidesigns

4.1 Partial spreads in general

A partial spread in a classical finite polar space is a set of maximals, all intersecting
trivially. In other words, a partial spread is a set of vertices in the corresponding dual
polar graph, all at maximal distance. In a classical finite polar space of rank d with
parameters (q, qe), the number of points incident with a fixed maximal is

[
d
1

]
q

and the

total number of points in the polar space is
[
d
1

]
q

(qd+e−1 +1). Hence qd+e−1 +1 is certainly

an upper bound for the size of a partial spread S, and it is reached if and only if every
point is incident with exactly one element of S, or hence if and only if S is a 1-design. In
that case, we say that the partial spread S is a spread.

Lemma 4.1 Let S be a (non-empty) partial spread in a classical finite polar space of rank
d with parameters (q, qe). If d is even, then S cannot be a (d− 1)-antidesign. If d is odd,
then |S| ≤ qde + 1, and this bound is reached if and only if S is a (d− 1)-antidesign.

Proof As all distinct elements of a partial spread S are at distance d, the inner distribu-

tion a of S is simply: (1, 0, . . . , 0, |S| − 1). Lemma 3.2 yields that 1 + (−1)d

(qe)d (|S| − 1) ≥ 0,

with equality if and only if S is a (d− 1)-antidesign. This yields the desired result. �
Comparing the bound qde + 1 with the upper bound qd+e−1 + 1 from the above, we

see that (non-empty) partial spreads cannot be (d − 1)-antidesigns if e > 1. If e = 0, or
hence if the polar space is the hyperbolic quadric Dd(q), then Lemma 4.1 yields the trivial
upper bound 2 for odd d. We will consider the cases e = 1

2
and e = 1 in Subsections 4.2

and 4.3, respectively.

4.2 Partial spreads in Hermitian varieties

In this Subsection, we will focus on the Hermitian varieties 2A2d−1(q). Non-existence of
spreads of 2A2d−1(q) was already obtained by Thas in [22]. A construction for partial
spreads of size qd + 1 in 2A2d−1(q) was given in [1]. The inequality in Lemma 4.1 was used
in [24] to prove that this size is in fact the maximum size if d is odd. We will now give
properties of partial spreads meeting that bound in this polar space.

Theorem 4.2 If S is a (non-empty) partial spread in 2A2d−1(q) with d odd, then |S| ≤
qd + 1 and S is a (d− 1)-antidesign if and only if its size reaches this bound. If this is the
case, then:

• S is a 1-regular code and for every maximal x the outer distribution B of S satisfies

the equation
∑d

i=0

(
−1
q

)i
Bx,i = 0,

• every maximal intersecting an element of S in a (d − 1)-space, intersects precisely
qd−1 elements of S in a point and intersects the other qd−qd−1 elements of S trivially,

• every maximal at distance d − 1 from S (hence not meeting any element of S in

more than a point) meets exactly qd+1
q+1

elements of S in a point.
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Finally, a partial spread of size q3 + 1 in 2A5(q) is completely regular.

Proof In this case, the polar space has parameters (q2, q), and hence the desired bound
and the condition for S being a (d − 1)-antidesign follow immediately from Lemma 4.1.
Suppose from now on that |S| is indeed qd + 1. Lemma 3.2 also implies that the outer
distribution B of S satisfies the stated equality.

If x is a maximal at distance 1 from S, then x can only be at distance d or d− 1 from
any other element of S, and hence Bx,0 = 0, Bx,1 = 1 and Bx,i = 0 if 2 ≤ i ≤ d− 2. Hence

the remaining unknown entries Bx,d−1 and Bx,d satisfy the equation −1
q
+

Bx,d−1

qd−1 − Bx,d

qd = 0.

As 1 +Bx,d−1 +Bx,d = |S| = qd + 1 must also hold, one easily obtains that Bx,d−1 = qd−1

and Bx,d = qd − qd−1. This establishes 1-regularity of S.
Similarly, if x is at distance d − 1 from S, then Bx,i = 0 if 0 ≤ i ≤ d − 2. Here, the

remaining unknown entries Bx,d−1 and Bx,d satisfy the equation
Bx,d−1

qd−1 − Bx,d

qd = 0. As

Bx,d−1 + Bx,d = |S| = qd + 1 must also hold, one now obtains that Bx,d−1 = qd+1+1
q+1

and

Bx,d = q q
d+1+1
q+1

.
If d = 3, a maximal can only be at distance 0, 1 or 2 = d − 1 from S, and hence the

above implies complete regularity of S. �
The previous theorem generalizes a result from [6], where it was shown that partial

spreads in 2A5(q) have size at most q3 + 1, and that when this bound is reached, every
maximal at distance 2 from the partial spread meets exactly q2 − q + 1 of its elements in
a point.

Theorem 4.2 motivates us to consider (d − 1)-designs in 2A2d−1(q). We first mention
the following famous result by Segre.

Theorem 4.3 ([17]) If T is a set of lines (different from the empty set and the full set
of lines) in the classical generalized quadrangle 2A3(q), such that each point is on precisely
λ lines of T , then q is odd and λ = (q + 1)/2.

Corollary 4.4 If T is a (d− 1)-design (different from the empty or full set of maximals)
in 2A2d−1(q) with d ≥ 2, such that each totally isotropic (d − 1)-space is incident with
exactly λ elements of T , then q is odd and λ = (q + 1)/2.
If d is odd, then exactly half of the elements of any partial spread of size qd + 1 are in T .

Proof Let π be any totally isotropic (d−2)-space. The residual incidence geometry of π,
consisting of the totally isotropic (d−1)-spaces and the maximals through π as the points
and lines, respectively, is isomorphic to the generalized quadrangle 2A3(q). The elements
of T through π will correspond with a set T ′ of lines in this 2A3(q), such that each point
in 2A3(q) is on exactly λ elements of S ′. Theorem 4.3 now yields that λ = (q + 1)/2.

Now let Ωd−1 denote the set of (d − 1)-spaces in the polar spaces. As each element

of Ωd−1 is incident with q + 1 maximals and (q + 1)/2 elements of T , we obtain: |T ||Ω| =

|T |[ d
1 ]

q

|Ω|[ d
1 ]

q

= |Ωd−1|(q+1)/2

|Ωd−1|(q+1)
= 1

2
. If S is any partial spread of size qd + 1, then Corollary 2.3 and

Theorem 4.2 yield that |S ∩ T | = |S||T |/|Ω| = |S|/2. �
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4.3 Spreads of parabolic quadrics and symplectic spaces

We now move on to spreads of parabolic quadrics and symplectic spaces. In Bd(q) and
Cd(q), a partial spread is a spread when it has size qd + 1. The symplectic space Cd(q)
has a spread for all d ≥ 2. If q is even, then the parabolic quadric Bd(q) is isomorphic
to Cd(q) and hence has a spread as well. If q is odd, then Bd(q) has no spreads for all
even d ≥ 2. While B3(q) is known to have spreads for many odd values of q, including
all powers of 3, no spreads of Bd(q) with q odd, d odd and d ≥ 5 are known. We refer to
[22] for proofs of these results and much more information on spreads in general.

In any classical finite polar space of rank d with parameters (q, qe), a spread S is
always a 1-regular code in the dual polar graph. Indeed, if a maximal x is adjacent to
some element s0 of S, it is at distance d− 1 or d from any other element of the set, and
hence it can intersect the other elements of S in at most a point. As all

[
d
1

]
q
−
[
d−1

1

]
q

= qd−1

points in x but not in s0 must be contained in some element of S, the maximal x is at
distance d − 1 from exactly qd−1 elements of S, and at distance d from the remaining
qd − qd−1 elements of S. However, the next result will improve this regularity in Bd(q)
and Cd(q) in case the rank d is odd.

Theorem 4.5 For any odd d ≥ 3, a (non-empty) partial spread S of the parabolic quadric
Bd(q) or of the symplectic space Cd(q) is a (d− 1)-antidesign if and only if it is a spread.
In that case, it is also a 1-design and a 2-regular code.
For every spread S of Bd(q) or Cd(q) with d odd, the outer distribution B of S satisfies

the equation
∑d

i=0

(
−1
q

)i
Bx,i = 0 for any maximal x, and in particular:

• if x intersects an element of S in a (d− 1)-space, it intersects exactly qd−1 elements
of S in a point and intersects qd − qd−1 elements trivially,

• if x intersects an element of S in a (d − 2)-space (with d ≥ 5), then x intersects
exactly qd−3 elements of S in a line, qd−1 − qd−3 elements in a point, and intersects
the remaining qd − qd−1 elements of S trivially,

• if x intersects no element of S in more than a line, then x intersects qd−1−1
q2−1

elements

of S in a line, qd−1 elements in a point and intersects the remaining qd − q2 qd−1−1
q2−1

elements of S trivially.

Spreads in Bd(q) or Cd(q) with d odd have covering radius at most d− 2, and if d = 3 or
d = 5, they are completely regular codes.

Proof In this case, the polar space has parameters (q, q), and so it follows from Lemma
4.1 that S is a (d − 1)-antidesign if and only if |S| = qd + 1, or hence if and only if S
is a spread. Suppose from now on that this is the case. As each point is on exactly one
element of S, it is also a 1-design. Lemma 3.2 also implies that the outer distribution B
of S satisfies the stated equality.

For every maximal x, the sum Bx,0 + . . . + Bx,d must equal |S|. As each of the
[
d
1

]
q

points in x must be on a unique element of S, we also have that
∑d

i=0Bx,i

[
d−i

1

]
q

=
[
d
1

]
q
.
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If x is at distance 1 from S, then Bx,0 = 0, Bx,1 = 1 and Bx,i = 0 if 2 ≤ i ≤ d − 2.
If x is at distance 2 from S and d ≥ 5, then Bx,0 = 0, Bx,1 = 0, Bx,2 = 1 and Bx,i = 0
if 2 ≤ i ≤ d − 3. Finally, if x is at distance at least d − 2 from S, then Bx,i = 0 if
0 ≤ i ≤ d − 3. In all cases, the three equations given above, allow explicit computation
of the remaining entries Bx,d−2, Bx,d−1 and Bx,d of the outer distribution. In particular,
we see that for no maximal x it is possible that Bx,0 = . . . Bx,d−2 = 0, and hence the
covering radius of S is at most d − 2. This establishes 2-regularity of S (if d = 3, then
every maximal is in S or at distance d− 2 = 1 from S).

If d = 3 or d = 5, a maximal can only be at distance 0, 1, 2 or d− 2 from S, and hence
the above implies complete regularity of S. �

For C3(q), the previous result was already noted by Thas in [20], where the spreads
are not only completely regular, but even perfect codes.

5 Embeddings of dual polar graphs as antidesigns

Consider a classical finite polar space of rank d, consisting of the totally isotropic subspaces
with respect to a non-degenerate sesquilinear or quadratic form on a vector space V . By
choosing a hyperplane of V , the restriction of this form to which is non-degenerate, one
can obtain the following embeddings:

• the hyperbolic quadric Dd(q) in the parabolic quadric Cd(q),

• the Hermitian variety 2A2d−1(q) in the Hermitian variety 2A2d(q),

• the parabolic quadric Bd(q) in the elliptic quadric 2Dd+1(q).

Theorem 5.1 Consider one of the three embeddings constructed in the above, and let Ω′

and Ω denote the sets of maximals of the smaller and the bigger polar space, respectively.
Now Ω′ is a 1-antidesign and a completely regular code in the bigger dual polar graph.

Proof
Let P ′ and P denote the sets of points in the smaller and bigger polar space, respec-

tively, and suppose the first has parameters (q, qe). Each maximal in Ω is incident with
exactly

[
d
1

]
q

points in P . A maximal is also incident with exactly
[
d
1

]
q

or
[
d−1

1

]
q

points of

P ′ if it is in Ω′ or Ω\Ω′, respectively. We can rewrite this algebraically, using the incidence
matrix between points and maximals as defined in Subsection 2.4:

CT
1 χP ′ =

[
d

1

]
q

χΩ′ +

[
d− 1

1

]
q

(χΩ − χΩ′) = qd−1χΩ′ +

[
d− 1

1

]
q

χΩ,

CT
1 χP =

[
d

1

]
q

χΩ.

We now see that χΩ′ ∈ Im(CT
1 ) = V0 ⊥ V1, and hence Ω′ is a 1-antidesign in the bigger

dual polar graph. As the dual degree set of Ω′ has size one, this is certainly a completely
regular code. �
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We now give a short algebraic proof of a result that can also be obtained by counting
arguments (see for instance [18] for the result on spreads).

Corollary 5.2 Consider one of the three embeddings given above, and let Ω′ and Ω denote
the sets of maximals of the smaller and the bigger polar space, respectively. Suppose the
rank of both polar spaces is d, and that the smallest has parameters (q, qe). Now every
1-design S in the bigger dual polar graph has exactly (qe + 1)|S|/(qd+e + 1) elements in
common with Ω′.
In particular, if S is a spread of the bigger polar space, then |S ∩ Ω′| = qe + 1.

Proof
First note that in all three embeddings under consideration, the bigger polar space

has parameters (q, qe+1). We know from Theorem 5.1 that Ω′ is a 1-antidesign, and so we
can use Corollary 2.3 to see that:

|S ∩ Ω′| = |S||Ω
′|

|Ω|
=

∏d
i=1(qi+e−1 + 1)∏d

i=1(qi+(e+1)−1 + 1)
|S| = qe + 1

qd+e + 1
|S|.

We have seen in Subsection 4.1 that spreads of the bigger polar space are 1-designs of size
qd+e + 1. Hence every spread has exactly qe + 1 elements in common with Ω′. �

The following theorem shows that even when the number of points on one line in the
smaller polar space is also different, an embedding can still give us a (d − 1)-antidesign
for polar spaces of rank d.

Theorem 5.3 Let Γ′ and Γ be dual polar graphs, associated with classical finite polar
spaces of the same rank d with the first embedded in the last, such that the distance
between vertices of Γ′ is the same in both graphs. If the smaller polar space has parameters
(q, qe1) and the bigger polar space has parameters (qa, (qa)e2), then the vertices of Γ′ form
a (d− 1)-antidesign in Γ if and only if ae2 − e1 is an integer with 0 ≤ ae2 − e1 ≤ d− 1.

Proof The inner distribution a of the set of vertices of Γ′ consists of the valencies of
the relations between maximals in the smaller polar space: ai = qi(i−1)/2qie1

[
d
i

]
q
, for any

i ∈ {0, . . . , d}. The quotient λi/ki from Theorem 2.1 is in this case: (−1)iq−aie2 . Lemma
3.2 now implies that the set of vertices of Γ′ is a (d− 1)-antidesign if and only if:

d∑
i=0

(−1)iq−aie2qi(i−1)/2qie1
[
d

i

]
q

= 0.

The q-binomial theorem gives us that for any indeterminate z:

d∑
i=0

qi(i−1)/2zi
[
d

i

]
q

=
d∏
j=1

(1 + qj−1z).

If we let z be equal to −qe1−ae2 , we see that the set of vertices of Γ′ is a (d− 1)-antidesign
in Γ if and only if

∏d
j=1(1 − qj−1+e1−ae2) = 0, which holds if and only if ae2 − e1 is an

integer with 0 ≤ ae2 − e1 ≤ d− 1. �
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For rank two, the previous theorem yields that the set of lines of a classical generalized
quadrangle with parameters (s′, t′) = (q, qe1), embedded in a classical generalized quad-
rangle with parameters (s, t) = (qa, (qa)e2), is a 1-antidesign (or hence a tight set of lines)
if and only if t = t′ or t = s′t′. This is precisely the dual of II.6 in [14] when restricted to
classical generalized quadrangles.

6 The hexagon planes from the embedding of H(q) in

B3(q)

The Split Cayley hexagon H(q) is a particular incidence structure, namely a generalized
hexagon. It can be embedded in the parabolic quadric B3(q), which leads to an interesting
set of maximals or planes in this polar space. We refer to [23] for more information and
proofs. In this embedding, the points of H(q) are simply the points of B3(q), and the
lines are a particular subset of lines of B3(q), known as the hexagon lines. The collinearity
graph of H(q), the vertices of which are points of H(q) and with two points adjacent if
they are on a (necessarily unique) common line of H(q), is distance-regular with diameter
three. Each point is collinear with q(q + 1) points, at distance two from q3(q + 1) points,
and at distance three from q5 points. The number of common adjacent vertices to two
vertices in this graph is q−1, 1 or 0, depending on the vertices being at distance one, two
or three, respectively. Each point p is on a plane pα of B3(q), such that another point is
collinear with p if and only if it is in pα. The planes of form pα are the hexagon planes.
No two distinct points can yield the same hexagon plane. It follows from the above that
the planes pα1 and pα2 meet in a line, a point or trivially, depending on p1 and p2 being at
distance one, two or three, respectively.

Theorem 6.1 If S is the set of hexagon planes of an embedded H(q) in the parabolic
quadric B3(q), then S is a 1-design, a 2-antidesign and a completely regular code.

Proof The polar space B3(q) has parameters (q, q). Let π be any element of S. Suppose
π = pα. We know from the above that π intersects precisely q(q + 1) hexagon planes in
a line, q2(q + 1) in a point, and intersects q5 hexagon planes trivially. Hence the inner
distribution of S is given by: (1, q(q + 1), q3(q + 1), q5). Lemma 3.2 implies that S is a
2-antidesign.

On the other hand, a point p1 is in pα2 , if and only if p2 is one of the points in pα1 .
This means that every point is on exactly q2 + q+ 1 hexagon planes, and thus S is also a
1-design.

Finally, as the dual degree set of S is just {2}, this code is also completely regular. �
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