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Abstract

We consider Erdős-Ko-Rado sets of generators in classical finite polar spaces.
These are sets of generators that all intersect non-trivially. We characterize
the Erdős-Ko-Rado sets of generators of maximum size in all polar spaces,
except for H(4n+ 1, q2) with n ≥ 2.
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1. Introduction

Finding the largest sets of pairwise non-trivially intersecting elements is
one of the classical problems in extremal combinatorics. We first give the
original Erdős-Ko-Rado theorem, published in [7] in 1961.

Theorem 1. If S is a family of subsets of size k in a set Ω with |Ω| = n
and n ≥ 2k, such that the elements of S are pairwise not disjoint, then
|S| ≤

(
n−1
k−1

)
. If n ≥ 2k + 1, then equality holds if and only if S is the set of

all subsets of size k containing a fixed element of Ω.

Variants of this theorem in a wide variety of contexts have been given
later, one of which in projective geometry. The projective geometry PG(n−
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1, q) consists of the lattice of subspaces of the vector space V (n, q) of dimen-
sion n over Fq. The number of subspaces of dimension k in V (n, q), with
0 ≤ k ≤ n, is given by the Gaussian coefficient:[n

k

]
q

=
k∏
i=1

qn+1−i − 1

qi − 1
.

(If n < k or k < 0, then
[
n
k

]
q

is zero. Note that
[
n
k

]
q

=
[

n
n−k

]
q

and
[
n
1

]
q

=
qn−1
q−1

.)

In 1975, Hsieh proved this q-analog of Theorem 1 in [10].

Theorem 2. If S is a set of k-dimensional subspaces in V (n, q), with n ≥ 2k,
pairwise intersecting not trivially, then |S| ≤

[
n−1
k−1

]
q
. If n ≥ 2k + 1, then

equality holds if and only if S is the set of all subspaces with dimension k,
containing a fixed 1-dimensional subspace of V (n, q).

In this article, we will consider the analogous problem for generators in a
polar space. Classical finite polar spaces are incidence structures, consisting
of the subspaces of V := V (n, q) totally isotropic with respect to a certain
non-degenerate sesquilinear or quadratic form f . Incidence is the inclusion
relation. We will only consider classical finite polar spaces, and from now
on, polar spaces are implicitly assumed to be finite and classical. The rank
of the polar space is the algebraic dimension of the maximal totally isotropic
subspaces or generators. We explicitly list the different types of polar spaces
of rank N . For the sake of clarity, we give both the notation related to
Chevalley groups and the more geometric notation, based on the embedding
of the polar space in a projective space.

• the hyperbolic quadric DN(q) or Q+(2N−1, q), with V = V (2N, q) and
f a non-degenerate quadratic form of Witt index N , with parameters
(q, 1),

• the Hermitian variety 2A2N−1(q) or H(2N − 1, q2), with V = V (2N, q2)
and f a non-degenerate Hermitian form, with parameters (q2, q),

• the parabolic quadric BN(q) or Q(2N, q), with V = V (2N + 1, q) and
f a non-degenerate quadratic form, with parameters (q, q),

• the symplectic space CN(q) or W (2N − 1, q), with V = V (2N, q) and
f a non-degenerate symplectic form, with parameters (q, q),
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• the Hermitian variety 2A2N(q) or H(2N, q2), with V = V (2N + 1, q2)
and f a non-degenerate Hermitian form, with parameters (q2, q3),

• the elliptic quadric 2DN+1(q) or Q−(2N + 1, q), with V = V (2N +
2, q) and f a non-degenerate quadratic form of Witt index N , with
parameters (q, q2).

The parameters (q, qe) listed above are such that each totally isotropic
2-space (or line) is incident with exactly q + 1 totally isotropic 1-spaces (or
points), and every totally isotropic (N − 1)-space (or dual line) is incident
with exactly qe + 1 maximal totally isotropic subspaces (or generators). We
will also refer to totally isotropic 3-spaces as planes. The projective dimension
of a subspace is its dimension minus one. Polar spaces of rank two are also
known as classical generalized quadrangles.

Theorem 3 ([3], Lemma 9.4.1). Let P be a polar space of rank N with pa-
rameters (q, qe). The number of totally isotropic subspaces with dimension m
is given by

[
N
m

]
q

∏m−1
i=0 (qN−i−1+e+1). In particular, the number of generators

is (qe + 1) · · · (qN−1+e + 1).

If two totally isotropic subspaces in a polar space intersect trivially, or
hence if they have no point in common, then we say that they are disjoint. It
is our goal to study sets of generators in a polar space pairwise not disjoint.
We will refer to such sets as EKR sets of generators. We will say that such a
set is a maximal EKR set of generators if it is not a proper subset of another
EKR set of generators. A simple example of an EKR set of generators is the
point-pencil construction, consisting of all generators through a fixed point.
We will prove in this paper that in many polar spaces, these are the unique
EKR sets of generators of maximum size.

In the case of (classical) generalized quadrangles, the generators are lines.
It is a trivial observation that the maximal sets of lines pairwise intersecting
in a generalized quadrangle are the sets of lines through a point, so we will
only focus on polar spaces of rank at least three.

This article is structured as follows. We will give some preliminary ob-
servations on maximal EKR sets of generators in Section 2. In Section 3,
we will approach the problem in a graph-theoretic way and give bounds on
the size of EKR sets of generators already found by Stanton in [12]. We
will give an alternative proof in Section 4 for the characterization in those
polar spaces discussed by Tanaka in [13]. Sections 5, 6 and 7 are devoted to
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complete characterization in all but one remaining case. Finally, we prove in
Section 8 that in one particular type of Hermitian variety, the bound from
[12] cannot be reached, and we give a characterization for small rank.

An overview of our results is given in Section 9.

2. General observations on maximal EKR sets of generators

We will first obtain some results by use of purely geometric results, which
already hold for EKR sets of generators when only assuming maximality.

Lemma 4. Let πa, πb and πc be pairwise non-disjoint generators in a po-
lar space. The intersections πa ∩ πb and πa ∩ πc cannot be complementary
subspaces of πa.

Proof. Suppose πa ∩ πb and πa ∩ πc are complementary subspaces of πa. As
πb and πc are assumed to meet non-trivially, they must have a point p in
common, not in πa. This point would be collinear with all points in πa∩πb and
with all points in πa∩πc, and hence with all points in 〈πa∩πb, πa∩πc〉 = πa,
which would contradict the assumption that πa is a maximal totally isotropic
subspace.

Lemma 5. Let S be a maximal EKR set of generators. If a dual line is
incident with at least two elements of S, then all generators through it are in
S.

Proof. Let µ be a dual line, incident with two distinct elements πa and πb
of S. Suppose a third generator π′ through µ is not in S. As S is assumed
to be maximal, there must be a generator πc ∈ S disjoint from π′ and hence
also from µ, so it intersects πa in a point not on µ. The generators πa, πb
and πc contradict Lemma 4.

The previous lemma motivates us to introduce the following terminology.
We say that a dual line in a polar space is secant, tangent or external with
respect to a maximal EKR set of generators S if all, one or none of the
generators through it are in S, respectively.

Let S be an EKR set of generators in a polar space with π ∈ S. Consider
all secant dual lines with respect to S in π. We will refer to their intersection
as the nucleus of π (with respect to S), we will denote it by πs and s will be
the projective dimension of πs. The nuclei of the elements of S will play a
crucial role in our characterization of the EKR sets of generators of maximum
size. In the following lemma, we prove fundamental properties of the nuclei.
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Lemma 6. Let S be a maximal EKR set of generators in a polar space of
rank N and with parameters (q, qe). If πs is the nucleus of the generator
π ∈ S, then the secant dual lines in π are those through πs, and the tangent
dual lines in π are those not through πs. The number of elements of S that
intersect π ∈ S in a dual line is given by qe

[
N−s−1

1

]
q
.

Moreover, if a generator π′ ∈ S meets π in just a point, then this point must
be in πs.

Proof. Suppose π ∈ S has nucleus πs with projective dimension s. If π′

intersects π in a point p, then p must belong to every secant dual line µ by
Lemma 4, hence p ∈ πs.

Let µ be a dual line through πs. By Lemma 5, µ is either secant or
tangent. Suppose that µ is tangent, hence there exists a π1 through µ such
that π1 /∈ S. Since S is maximal, there must be a π2 ∈ S disjoint from π1,
but π2 must intersect π, so this intersection would be a point not in µ and
hence not in πs either, contradicting the above. So µ is secant.

The number of dual lines in π through πs is given by
[
N−s−1

1

]
q
, and

through each such dual line there are qe other elements of S, and hence there
are exactly qe

[
N−s−1

1

]
q

elements of S meeting π in a dual line.

3. Graph-theoretic approach to polar spaces

Theorems 1 and 2 can be interpreted as results regarding the Johnson
and Grassmann graphs, respectively (see for instance Sections 9.1 and 9.3 in
[3]). In this article, we have to consider the dual polar graph, the vertices of
which are the generators of a polar space. Two generators are neighbors in
the dual polar graph if they meet in a subspace of codimension one and when
we say that two generators are neighbors, we will mean with respect to this
relation, unless stated otherwise. First, we need some algebraic background.

For any finite set Ω, we can consider the real vector space RΩ, which has
an orthonormal basis corresponding to the elements of Ω. For every subset
S ⊆ Ω, we define the column vector χS ∈ RΩ as the characteristic vector of
S, with the entries of χS corresponding to an element of S equal to one, and
all other entries equal to zero.

Bose and Shimamoto [2] introduced the notion of a d-class association
scheme on a finite set Ω as a pair (Ω,R) with R a set of symmetric relations
{R0, R1, . . . , Rd} on Ω such that the following axioms hold:

(i) R0 is the identity relation,
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(ii) R is a partition of Ω2,

(iii) there are intersection numbers pkij such that for (x, y) ∈ Rk, the number
of elements z in Ω for which (x, z) ∈ Ri and (z, y) ∈ Rj equals pkij.

All the relations Ri are symmetric regular relations with valency p0
ii, and

hence define regular graphs on Ω.
With each relation Ri, we can associate the (|Ω|×|Ω|)-matrix Ai, the rows

and columns of which are indexed by the elements of Ω and with (Ai)xy = 1
if (x, y) ∈ Ri and (Ai)xy = 0 if not. The axioms for an association scheme
immediately imply that all Ai are symmetric, A0 is the identity matrix, the
sum of all Ai is the all-one matrix and AiAj =

∑d
k=0 p

k
ijAk. Hence it follows

that the vector space spanned by {A0, . . . , Ad} is closed under multiplication,
and we refer to it as the Bose-Mesner algebra. We also let ◦ denote entrywise
multiplication of matrices. Now Ai ◦ Aj = δijAi, and so the Bose-Mesner
algebra is closed under this multiplication as well.

It can be shown (see for instance [1]) that the real vector space RΩ has
a unique orthogonal decomposition into d + 1 subspaces Vj, all of them
eigenspaces (or subspaces of eigenspaces) for the relations Ri of the asso-
ciation scheme. These subspaces are the strata of the association scheme.
The (d+ 1)× (d+ 1)-matrix P , where Pji is the eigenvalue of the relation Ri

for the eigenspace Vj, is the matrix of eigenvalues of the association scheme.
The matrices Ej defining orthogonal projection onto the subspace Vj also
span the Bose-Mesner algebra and are known as the minimal idempotents.

Now let Γ be a connected graph with diameter d on a set of vertices
Ω. For every i in {0, . . . , d}, we let Γi denote the graph on the same set
Ω, with two vertices adjacent if and only if they are at distance i in Γ, and
we write Ri for the corresponding symmetric relation on V . The graph Γ
is said to be distance-regular if the set of relations {R0, R1, . . . , Rd} induces
an association scheme on Ω. It can be shown (see Chapter 4 in [3]) that
this is equivalent with the existence of parameters bi and ci, such that for
every (v, vi) ∈ Ri, there are ci neighbors vi−1 of vi with (v, vi−1) ∈ Ri−1, for
every i ∈ {1, . . . , d}, and bi neighbors vi+1 with (v, vi+1) ∈ Ri+1, for every
i ∈ {0, . . . , d− 1}. These parameters bi and ci are known as the intersection
numbers of the distance-regular graph Γ.

Theorem 7. ([3], Theorem 9.4.3) Let Γ be the dual polar graph of a polar
space of rank N with parameters (q, qe). This graph is distance-regular with
diameter N , and two vertices are at distance i if and only if they meet in a
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subspace of codimension i. The intersection numbers are given by:

bi = qi+e
[
N − i

1

]
q

,∀i ∈ {0, . . . , N − 1}, ci =

[
i

1

]
q

,∀i ∈ {1, . . . , N}.

The valency of Γi is given by
[
N
i

]
q
qi(i−1)/2qie.

The vector space RΩ orthogonally decomposes as V0 ⊥ V1 ⊥ . . . ⊥ VN ,
where Vj is an eigenspace of the dual polar graph for the distinct eigenvalues
qe
[
N−j

1

]
q
−
[
j
1

]
q
.

Note that V0 is, in this ordering, just the subspace spanned by the all-one
vector χΩ. This means that for every subset S, the characteristic vector χS
will have the component (χS)tχΩ

(χΩ)tχΩ
χΩ = |S|

|Ω|χΩ in this V0.
A subset S of vertices in a regular graph is a coclique if two vertices in S

are never adjacent. As EKR sets of generators are precisely the cocliques of
the disjointness relation, we are especially interested in the graph ΓN . The
N+1 subspaces Vj ⊆ RΩ from Theorem 7 are the strata of the induced d-class
association scheme, and hence eigenspaces for all the relations Γ0,Γ1, . . . ,ΓN .
Stanton [12] calculated the eigenvalues of the disjointness graph ΓN between
generators in a polar space of rank N with parameters (q, qe), and obtained
the eigenvalue

(−1)jqN(N+1)/2+j(j−N−1)+(e−1)(N−j)

for the subspace Vj.
We will use the following result on cocliques in regular graphs (see for

instance Theorem 3.1 in [8]).

Theorem 8. If S is a coclique of a regular graph Γ on a set Ω with valency
k and smallest eigenvalue λ < 0, then:

|S| ≤ |Ω|
1− k/λ

.

Moreover, if the bound is met, then χS can be written as a linear combination
|S|
|Ω|χΩ + v, with v an eigenvector for λ.

Stanton [12] used the inequality from Theorem 8 to obtain upper bounds
on the size of EKR sets of generators in polar spaces.
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Theorem 9. Let S be an EKR set of generators in a polar space P, and
consider the decomposition RΩ = V0 ⊥ . . . ⊥ Vd as in Theorem 7.

• If P = Q+(2N − 1, q), with N odd, then |S| is at most the number of
generators of one system of the hyperbolic quadric, and if this bound is
reached, then χS ∈ (V0 ⊥ VN). The generators of one system form an
example.

• If P = Q+(2N − 1, q), with N even, then |S| is at most the number
of generators through a fixed point, and if this bound is reached, then
χS ∈ (V0 ⊥ V1 ⊥ VN−1).

• If P = H(2N − 1, q2), with N odd, then |S| is at most the number of
generators in the polar space P divided by qN + 1, and if this bound is
reached, then χS ∈ (V0 ⊥ VN).

• If P = Q(2N, q) with N odd, or P = W (2N − 1, q), with N odd, then
|S| is at most the number of generators through a fixed point, and if
this bound is reached, then χS ∈ (V0 ⊥ V1 ⊥ VN).

For all other polar spaces, the size of S is at most the number of generators
through a fixed point, and if this bound is reached, then χS ∈ (V0 ⊥ V1).

Proof. This follows from Theorem 8 and the formula for the eigenvalue
(−1)jqN(N+1)/2+j(j−N−1)+(e−1)(N−j) of the disjointness graph for Vj. For j = 0,
one obtains the valency k. One must then consider the minimal eigenvalue
for each possible value of e: 0, 1/2, 1, 3/2 and 2. This minimal eigenvalue
is obtained only for j = 1, except in the following cases: if e = 0 (hence
if P = Q+(2N − 1, q)) and N is odd for j = N , if e = 0 (hence if P =
Q+(2N − 1, q)) and N is even for j = 1 and j = N − 1, if e = 1/2 (hence
if P = H(2N − 1, q2)) and N is odd for j = N , and if e = 1 (hence if
P = W (2N − 1, q) or P = Q(2N, q)) and N is odd for j = 1 and j = N .

The phenomenon observed in Theorem 9 also has important consequences
for the opposite problem: finding the maximum size of cliques of the disjoint-
ness relation. Sets of generators that are all mutually disjoint are known as
partial spreads of the polar spaces. In [16], this was used to obtain a tight
upper bound for partial spreads in H(2N − 1, q2) with N odd.

In light of the characterization of the characteristic vector from Theorem
8, we give the following lemma.
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Lemma 10. Suppose S is a set of vertices in a regular graph Γ with valency
k, with χS a sum of a multiple of the all-one vector and an eigenvector v of
some eigenvalue λ.

• If p ∈ S, then p has |S||Ω|(k − λ) + λ neighbors in S.

• If p /∈ S, then p has |S||Ω|(k − λ) neighbors in S.

Proof. Let A be the adjacency matrix of the graph Γ. The results follow
immediately from:

AχS = A
( |S|
|Ω|

χΩ+v
)

= k
|S|
|Ω|

χΩ+λv =
( |S|
|Ω|

(k−λ)+λ
)
χS+

|S|
|Ω|

(k−λ)(χΩ−χS),

recalling that χS = |S|
|Ω|χΩ + v.

4. Classification of the Erdős-Ko-Rado sets of maximum size in
most polar spaces

As we will often compare the cardinalities of sets of geometric objects,
we need some analytic tools.

Lemma 11. If n ≥ 1, q ≥ 2, e ≥ 1
2

and qe ≥ 2, then (1 + 1
qe ) · · · (1 + 1

qn+e ) <

2 + 1
qe , and in particular (1 + 1

3
) · · · (1 + 1

3n+1 ) < 2.

Proof. As 1 + 1
qe+i is at most exp( 1

qe+i ), the product (1 + 1
qe ) · · · (1 + 1

qn+e ) is

at most (1 + 1
qe ) exp( 1

qe
1
q−1

) ≤ (1 + 1
qe ) exp( 1

qe ).

As (1 + x) exp(x) < 2 + x,∀x with 0 ≤ x ≤ 1/2, this completes the proof
of the general statement.

After taking q = 3 and e = 1, one easily proves the last part as well by
verifying that 4

3
exp(1

3
) < 2.

Lemma 12. 1. For any n ≥ 0 and q ≥ 3, we have:

n∏
i=1

(qi + 1) < 2qn(n+1)/2.

2. If N ≥ 3, q ≥ 2, e ≥ 1
2

and qe ≥ 2, then:

(qe+1) · · · (qN+e−2+1)−
[
N − 1

1

]
q

q(N−2)(N−3)/2+(N−2)e < 2q(N−1)(N−2)/2+(N−1)e.

9



Proof. 1. The result is obvious if n = 0. Suppose n ≥ 1. When dividing
both sides by qn(n+1)/2, we obtain the equivalent inequality:

(1 +
1

q
) · · · (1 +

1

qn
) < 2.

As q ≥ 3, this is at most (1 + 1
3
) · · · (1 + 1

3n ), which is in turn less than
2 because of Lemma 11.

2. As
[
N−1

1

]
q
> qN−2, the left-hand side is at most

q(N−1)(N−2)/2+(N−1)e
(

(1 +
1

qe
) · · · (1 +

1

qN+e−2
)− 1

qe

)
.

We can now use Lemma 11 to complete the proof.

We also give the following general result on polar spaces (see for instance
Lemma 9.4.2 in [3]).

Theorem 13. Let P be a polar space of rank N with parameters (q, qe).
The number of generators meeting a fixed totally isotropic subspace πm with
dimension m in a subspace of codimension i in πm is given by:

qi(N−m+e+ i−1
2

)
[m
i

]
q

N−m−1∏
j=0

(qN−m−j−1+e + 1).

For any generator, there are q
i(i−1)

2
+ie generators intersecting it in a fixed

subspace of codimension i, and q
i(i−1)

2
+ie
[
N
i

]
q

generators intersecting it in

some subspace of codimension i.

We know from Theorem 9 that in most polar spaces, the maximum size of
an EKR set of generators is the number of generators through one point, and
that the characteristic vector of such a set also satisfies strong conditions.
We will now use this to obtain strong properties of such sets in these polar
spaces.

Lemma 14. Let P be a polar space of rank N ≥ 3, either H(2N, q2), H(2N−
1, q2) with N even, Q(2N, q) with N even, W (2N − 1, q) with N even or
Q−(2N + 1, q). If S is an EKR set of generators of P with |S| equal to the
number of generators through a fixed point, then for every element π ∈ S, the
number of elements of S meeting π in a subspace of codimension i is given
by ai =

[
N−1
i

]
q
qi(i−1)/2qie.
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Proof. Theorem 9 yields that in these polar spaces, S must have a charac-
teristic vector in V0 ⊥ V1. We know that V0 and V1 are not only eigenspaces
for ΓN , but for all Γi. For each Γi, let ki denote the valency and λi the eigen-
value for V1. Lemma 10 yields that the number of elements of S, meeting a
generator π in a subspace with codimension i, is |S||Ω|(ki − λi) + λi if π ∈ S.
Instead of explicitly calculating these eigenvalues, we will derive these num-
bers by considering the point-pencil construction, consisting of all generators
through some fixed point p. If a generator π is through p, then the number
of generators through p, meeting π in a subspace of codimension i, is the
same as the valency of the i-distance relation Γi in the residual polar space
of the same type and of rank N − 1. Theorem 7 now gives us the desired
values.

As an example, we consider the elliptic quadric Q−(7, q) with N = 3 and
e = 2. Here, the upper bound for EKR sets of generators is (q2 +1)(q3 +1). If
it is reached, the constants (a0, a1, a2, a3) will be given by (1, (q+ 1)q2, q5, 0).

We will now characterize the EKR sets of generators of maximum size in
almost all polar spaces. These polar spaces are also treated in Theorem 1 in
[13], but we will use an alternative, more local approach.

Theorem 15. Let P be a polar space as in Lemma 14. If S is an EKR set
of generators of P with |S| equal to the number of generators through a fixed
point, then S must be the set of generators through a fixed point.

Proof. Let us assume that the polar space has parameters (q, qe).
We know from Theorem 9 that in P , the assumption on S implies that

the characteristic vector χS is in V0 ⊥ V1 (with the eigenspaces Vi as defined
in Theorem 7). Hence, we can apply Lemma 14 to see that for any π ∈ S,
the number of elements of S meeting π in a subspace of codimension i is
given by qi(i−1)/2qie

[
N−1
i

]
q
. In particular, the number of neighbors of π in

S in the dual polar graph is qe
[
N−1

1

]
q
. Hence, Lemma 6 yields that for any

generator π, the nucleus is a point. The number of elements of S meeting π
in that point is aN−1 = q(N−1)(N−2)/2+(N−1)e.

Let π1 be an element of S with nucleus p. Suppose that there is an
element π′ ∈ S not through p. Every π′′ ∈ S that intersects π1 in just p has
the point p as nucleus as well, and hence π′ and π′′ meet in at least a line. The
generators through p that meet π′ in at least a line, correspond in the residual
geometry of p of rank N − 1 with those generators meeting a fixed generator
in a subspace of codimension different from N − 1 and N − 2. Their number
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is (qe+1) · · · (qN−2+e+1)−q(N−1)(N−2)/2+(N−1)e−q(N−2)(N−3)/2+(N−2)e
[
N−1

1

]
q

by Theorem 13, and hence we should have
(qe+1) · · · (qN−2+e+1)−q(N−1)(N−2)/2+(N−1)e−q(N−2)(N−3)/2+(N−2)e

[
N−1

1

]
q
≥

aN−1 = q(N−1)(N−2)/2+(N−1)e, but this is false by Lemma 12(2). This implies
that all elements of S are through p.

The next sections will be devoted to the remaining polar spaces.

5. Hyperbolic quadrics

In the case of the hyperbolic quadric Q+(2N−1, q), there are two systems
of generators of the same size. We will refer to them as the Latin and Greek
generators, and use the symbols Ω1 and Ω2 for these sets. They have the
property that the algebraic dimension of the intersection of two elements of
the same system has the same parity as N . Moreover, a totally isotropic
subspace of dimension N − 1 is contained in exactly two generators: one in
Ω1 and one in Ω2.

The collineation group of Q+(2N − 1, q) acts transitively on the gener-
ators, but the dual polar graph is bipartite with diameter N with the sets
of Latins and Greeks as the two bipartite classes (see for instance Theo-
rems 11.59 and 11.60 in [14]). Hence every collineation either stabilizes both
systems, or switches them.

For this particular dual polar graph, the eigenvalue for the subspace Vj
from Theorem 7, with 0 ≤ j ≤ N , is given by

[
N−j

1

]
q
−
[
j
1

]
q
. Note that

the eigenvalues for Vj and VN−j are opposite. The following relation holds
between eigenspaces:

VN−j = {v1 − v2|v1 ∈ RΩ1, v2 ∈ RΩ2, v1 + v2 ∈ Vj}.

In particular, V0 and VN are one-dimensional eigenspaces of this dual polar
graph, with V0 = 〈χΩ1 + χΩ2〉 and VN = 〈χΩ1 − χΩ2〉.

Let us first consider the case where N is odd. Here, two generators of the
same type cannot intersect trivially, so the set of all Latins and the set of all
Greeks are both EKR sets, and their sizes meet the eigenvalue bound from
Theorem 8. The following algebraic argument quickly establishes that this
is the only possibility.

Theorem 16. Let S be an EKR set of generators in Q+(2N − 1, q) with N
odd of size |Ω|/2, then S is one of the two systems of the hyperbolic quadric.
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Proof. Theorem 9 yields that |S| is at most |Ω|/2, and that this bound can
only be reached with χS ∈ V0 ⊥ VN . The eigenspace V0 is spanned by
χΩ1 + χΩ2 , while VN is spanned by χΩ1 − χΩ2 . Hence χS can only be χΩ1 or
χΩ2 .

Next, we consider the case where N is even. Here, two generators of two
different systems cannot intersect trivially, so if S1 is an EKR set contained
in Ω1 and S2 is an EKR set contained in Ω2, S1 ∪ S2 is still an EKR set for
the polar space. From now on, we will also denote the rank N by 2n + 2,
which will simplify some of our calculations. The upper bound from Theorem
9 for an EKR set of generators S in Q+(4n + 3, q) is 2(q + 1) · · · (q2n + 1).
This bound can be reached by taking all generators through a single point,
but one could for instance also take all Latins through one point, and all
Greeks through another point to obtain an EKR set of generators. If S1

is a set of Latins, no two of which disjoint, and σ is any automorphism of
Q+(4n+ 3, q) switching the Latins and Greeks, then S1 ∪ Sσ1 is an EKR set
and hence 2|S1| ≤ 2(q+ 1) · · · (q2n + 1). Hence the upper bound for an EKR
set of one given system is (q+ 1) · · · (q2n + 1). The two systems of generators
are projectively equivalent, so it is enough to classify the EKR sets of size
(q+1) · · · (q2n+1) of one system in Q+(4n+3, q). Therefore, we will consider
the half dual polar graph Γ′, the vertices of which are the generators of one
type, with two of them adjacent when meeting in a subspace of codimension
two. We refer to 9.4.C in [3] for a discussion of this graph.

We will use similar techniques as those applied by Tanaka for the dual
polar graph in [13]. Therefore, we will also need some more algebraic back-
ground. The association scheme induced by the dual polar graph has a
natural ordering for its relations, determined by the corresponding distance
from a given generator. One formulates this by saying it is P -polynomial. We
will now introduce the dual notion of Q-polynomiality, which gives a special
meaning to a certain ordering of the strata instead. Let (Ω, {R0, . . . , Rd})
be an association scheme with strata V0, . . . , Vd. Let Ej denote orthogonal
projection in RΩ onto Vj, and again let ◦ denote entrywise multiplication of
elements of the Bose-Mesner algebra. We say that the ordering V0, . . . , Vd
is Q-polynomial if E1 ◦ Ej is a linear combination of Ej−1, Ej and Ej+1 for
every j with 0 ≤ j ≤ d, where we let E−1 and Ed+1 simply be zero.

For the following properties of the half dual polar graph, we refer to
Theorem 9.4.8 and Corollary 8.4.2 in [3].
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Theorem 17. Let Γ′ be the half dual polar graph, with set of vertices Ω being
the set of the generators of one system in the hyperbolic quadric Q+(2N −
1, q). This graph is distance-regular with diameter d = bN

2
c, and two vertices

are at distance i if and only if they meet in a subspace of codimension 2i.
The valency of Γ′i is given by

[
N
2i

]
q
qi(2i−1), and the intersection numbers

by: bi = q4i+1
[
N−2i

2

]
q

(0 ≤ i ≤ d− 1) and ci =
[

2i
2

]
q

(1 ≤ i ≤ d).

The vector space RΩ orthogonally decomposes as W0 ⊥ W1 ⊥ . . . ⊥
Wd, where Wj is an eigenspace of the dual polar graph for the eigenvalue

q2j+1
[
N−2j

2

]
q
− q2j−1

q2−1
, and all d+ 1 eigenvalues are distinct. This ordering of

the spaces Wj is Q-polynomial.

If Γ′ is the half dual polar graph in Q+(2N − 1, q), then the eigenvalue
of Γ′i for the subspace Wj is the same as the eigenvalue of the 2i-distance
graph Γ2i of the original dual polar graph Γ for both the subspace Vj and
VN−j. Hence, the ratio 1 − k/λ from Theorem 8 remains the same, and
we find that an EKR set of generators of the same type has size at most
(q + 1) · · · (q2n + 1), and this bound can only be reached if the characteristic
vector is in W0 ⊥ W1.

It is our aim to show that an EKR set of generators of one system in the
hyperbolic quadric Q+(2N − 1, q), for even N ≥ 4, consists of all generators
of that system through one point.

A consequence of Theorem 2 from [4] and Proposition 2 from [13] yields
the following.

Theorem 18. Let Γ be a distance-regular graph with diameter d on a set Ω.
Suppose RΩ has an orthogonal decomposition V0 ⊥ . . . ⊥ Vd into strata which
are Q-polynomially ordered. For each subset S of Ω with χS ∈ V0 ⊥ V1, the
maximum distance between elements of S is at least d− 1, and if it is d− 1,
then the i-distance relations, with i ∈ {0, . . . , d − 1}, induce an association
scheme with one class less, when restricted to the subset S. The parameters
of this scheme are independent of the subset S.

This allows us to obtain a result regarding convexity of EKR sets of
generators in the half dual polar graph, just as in [13].

Corollary 19. Let S be a set of (q+1) · · · (q2n+1) generators of one system
in Q+(4n+ 3, q) pairwise not disjoint.

1. The i-distance relations of the half dual polar graph with 0 ≤ i ≤ n
induce an association scheme on S with the same parameters as the
scheme induced by the half dual polar graph of Q+(4n+ 1, q).
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2. Suppose that πa and πb are two elements of S at distance i in the
associated half dual polar graph. If π is a neighbor of πa in the dual
polar graph and at distance i− 1 from πb, then π must be in S as well.

Proof. We know that the assumptions imply that χS ∈ W0 ⊥ W1, with the
same notation as in Theorem 17. Theorem 18 yields that the i-distance
relations induce an association scheme on S.

Now let S ′ be the set of all generators of the same system through a fixed
point. This set satisfies the same assumptions. We know that the association
schemes induced on S and on S ′ have the same parameters, and the latter
is isomorphic to that on generators of one system in the hyperbolic quadric
Q+(4n+ 1, q).

Hence if two generators πa and πb in S are at distance i, the number of
generators at distance i− 1 from πa and at distance one from πb is given by:
ci =

[
2i
2

]
q

(see Theorem 17).

Moreover,
[

2i
2

]
q

is also the number of generators in the full half dual polar

graph, at distance i−1 from πa, and distance one from πb. Hence every such
generator in the half dual polar graph must belong to S.

The proof of the following lemma is similar to the proof of Theorem 1 in
[13].

Lemma 20. Let S be a set of (q + 1) . . . (q2n + 1) generators of one system
of Q+(4n + 3, q) pairwise intersecting. If π1 and π2 are elements of S that
meet in just a line `, all the elements of S cannot be disjoint from `.

Proof. Suppose π1 and π2 are elements of S meeting in just the line `. Sup-
pose π ∈ S intersects π1 in a subspace µ of codimension 2i in π1, skew
to `. Let m be any line in π, skew to l⊥ ∩ π. Consider the generator
π′ = 〈m,m⊥ ∩ π1〉. This generator meets π1 in a subspace of codimen-
sion two, skew to `, and is at distance i − 1 with respect to the dual polar
graph from π. Hence π′ is in S as well, because of Theorem 19, so π′ and
π2 must also meet non-trivially and the triple (π1, π2, π

′) would contradict
Lemma 4.

We now come to the main result concerning hyperbolic quadrics.

Theorem 21. Let S be a set of Latins in Q+(4n+ 3, q) pairwise intersecting
and n ≥ 2 of size (q + 1) · · · (q2n + 1), then S is the set of Latins through a
fixed point.
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Proof. Let π be in S. We know from Corollary 19 that the number of elements
of S meeting π in exactly a line is the same as the number of generators
in Q+(4n + 1, q) that meet a fixed generator in exactly a point, so it is[

2n+1
1

]
q
qn(2n−1) (Theorem 17). On the other hand, Theorem 13 yields that

there are exactly qn(2n−1) generators of Q+(4n+ 3, q), intersecting π in just a
line. Hence the set of lines A that are intersections of π with some element
of S has size at least

[
2n+1

1

]
q
, and we know from Lemma 20 that no two of

them can be disjoint. As n ≥ 2, we can now apply Theorem 2 to see that A
is precisely the set of

[
2n+1

1

]
q

lines through some fixed point p in π.

Now suppose π′ is an element of S not through p. This means that
µ = π ∩ π′ is a subspace of codimension at least two in π and not through p.
Let ` be a line in A skew to µ. Now ` is the intersection of two elements of
S, while π′ is disjoint from `, contradicting Lemma 20.

The hyperbolic quadricQ+(7, q) must be treated separately. Let P0 be the
set of (q+1)(q2+1)(q3+1) points inQ+(7, q), P1 the set of (q+1)(q2+1)(q3+1)
Latins, P2 the set of (q + 1)(q2 + 1)(q3 + 1) Greeks, and L the set of lines of
Q+(7, q). We can define an incidence relation between two elements belonging
to any couple of sets: a Greek and a Latin are incident if they intersect in
a plane, and in all the other cases it is just symmetrized inclusion. There is
always a triality (see for instance Section 2.4 in [15]): an incidence preserving
map τ of order three that maps P0 to P1, P1 to P2, P2 to P0, and L to L.

Theorem 22. If S is a set of Latin generators of Q+(7, q) pairwise inter-
secting and |S| = (q + 1)(q2 + 1), then S consists of all the Latins through
one point, or of all the Latins meeting a fixed Greek in a plane.

Proof. Let S be a set of pairwise intersecting Latins, and let τ be any triality.
Then Sτ

−1
is a set of mutually collinear points. It is well known that in every

polar space the largest set of pairwise collinear points is the set of points in
a generator (see for instance Lemma 9.2 in [6]). Hence, there is a generator
π containing all the (q + 1)(q2 + 1) points of Sτ

−1
.

If π is a Latin, then S itself consists of all Latins incident with the Greek
πτ , or hence of all Latins meeting πτ in a plane. If π is a Greek, then S itself
consists of all Latins through the point πτ .

6. The case Q(4n + 2, q) for all q, and W (4n + 1, q) for even q

We will now treat the problem in the parabolic quadrics of odd rank. The
bound from Theorem 9 is still reached by the point-pencil construction, but
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the properties of the characteristic vector are a bit weaker. We will make
use of its embedding in the hyperbolic quadric. We have seen in Section 5
that Q+(7, q) is a special case, and therefore Q(6, q) will also be exceptional.
If q is even, parabolic and symplectic spaces with the same parameters are
isomorphic (see for instance Chapter 11 in [14]), and hence we will also be
able to obtain the classification in those spaces.

Theorem 23. Let S be an EKR set of generators in Q(4n+2, q), with n ≥ 1
and |S| = (q + 1) · · · (q2n + 1), then one of the following cases must occur:

• S is the set of all generators through a fixed point,

• S is the set of all generators of one system of an embedded Q+(4n+1, q),

• n = 1 and S consists of one fixed generator and all generators meeting
it in a line.

Proof. Consider the embedding of Q(4n + 2, q) in Q+(4n + 3, q) as a non-
singular hyperplane section. Every generator of Q(4n+ 2, q) is contained in
a unique generator of a fixed system of Q+(4n + 3, q), so let S̄ be the set of
Latin generators in Q+(4n+3, q) through an element of S. The elements of S̄
cannot be disjoint either and |S̄| = |S| = (q+1) · · · (q2n+1). Theorem 5 then
yields that S̄ is either the set of all Latins through a point p in Q+(4n+3, q),
or S̄ is the set of all Latins meeting a fixed Greek γ in a plane with n = 1.
Suppose that we are in the first case. If p is in H, then S is simply the set of
all generators through p in Q(4n+ 2, q). If p is not in H, then p⊥ ∩H meets
the parabolic quadric in a non-singular hyperbolic quadric Q+(4n + 1, q).
Then S is one system of generators of that hyperbolic quadric. Finally, in
the second case we see that S consists of the plane γ∩H and the (q2 +q+1)q
planes of Q(6, q) meeting that plane in a line.

We now consider Q(4n + 2, q) and W (4n + 1, q) with q even. It is well
known (see for example Corollary 2 of Lemma 22.3.1 in [9]) that the pro-
jection from a point of PG(4n + 2, q), called the nucleus of the parabolic
quadric, on any non-singular hyperplane H gives an isomorphism between
the polar spaces Q(4n+ 2, q) and W (4n+ 1, q). In particular, if H is a non-
singular hyperplane intersecting the parabolic quadric in a hyperbolic quadric
Q+(4n+ 1, q), then the generators of Q(4n+ 2, q) in H will correspond with
those of an embedded Q+(4n+ 1, q) in W (4n+ 1, q).
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Theorem 24. Let S be an EKR set of generators in W (4n + 1, q), with q
even, n ≥ 1 and |S| = (q + 1) · · · (q2n + 1). One of the following must hold:

• S is the set of all generators through a fixed point,

• S is the set of all generators of one system of a hyperbolic quadric
Q+(4n+ 1, q) embedded in W (4n+ 1, q),

• n = 1 and S consists of one fixed generator and all generators meeting
it in a line.

Proof. This follows immediately from Theorem 23.

7. The case W (4n + 1, q) for odd q

In the polar space W (4n+ 1, q), Theorem 9 does not yield that the char-
acteristic vector χS of an EKR set of generators of maximum size is in the
span of the subspaces V0 and V1. This significantly weakens our control
over this set. We also don’t have an isomorphism between Q(4n + 2, q) and
W (4n+ 1, q) if q is odd, but the parameters and the eigenvalues of the asso-
ciation schemes on generators are still the same (see for instance Section 9.4
in [3])

With respect to the disjointness relation, we can still prove a strong prop-
erty.

Lemma 25. Let S be an EKR set of generators in Q(4n+ 2, q) and W (4n+
1, q) of size (q + 1) · · · (q2n + 1). Every generator π /∈ S is disjoint from
exactly qn(2n+1) elements of S.

Proof. It follows from Theorem 9 that if |S| = (q + 1) · · · (q2n + 1), then
χS ∈ V0 ⊥ V1 ⊥ VN , with Vj as defined in Theorem 7. Here, V1 ⊥ VN is an
eigenspace for the eigenvalue λ = −qn(2n+1) of the disjointness relation. We
can now use Lemma 10 with respect to the disjointness relation. Let k denote
the valency of the disjointness relation. We obtain that each generator not
in S is disjoint from exactly |S|

|Ω|(k − λ) = |Ω|
|Ω|(1−k/λ)

(k − λ) = −λ = qn(2n+1)

elements of S.

For any generator π and any subset S of generators in W (4n + 1, q), we
let (vπ,S)i denote the number of generators in S meeting π in a subspace
of codimension i. Note that (vπ,S)0 is 1 if π ∈ S. We now use algebraic
techniques to obtain information on these vectors vπ,S.

18



We first consider the two known constructions of EKR sets of maximum
size S in W (4n+ 1, q) (q even) or Q(4n+ 2, q), together with some element
π ∈ S:

• Point-pencil construction: vπ,S = v1 with (v1)i =
[

2n
i

]
q
qi(i+1)/2 (this

follows from Theorem 7).
For instance, in W (9, q) or Q(10, q):

v1 = (1,

[
4

1

]
q

q,

[
4

2

]
q

q3,

[
4

3

]
q

q6,

[
4

4

]
q

q10, 0).

• All Latins of an embedded Q+(4n + 1, q): vπ,S = v2 with (v2)i =[
2n+1
i

]
q
qi(i−1)/2 if i is even, 0 if i is odd (this follows from Theorem 7).

For instance, in W (9, q) (q even) or Q(10, q):

v2 = (1, 0,

[
5

2

]
q

q, 0,

[
5

4

]
q

q6, 0).

Theorem 26. Let S be an EKR set of generators in Q(4n+2, q) or W (4n+
1, q) of size |S| = (q + 1) · · · (q2n + 1). Then for every π ∈ S, there is a
parameter τ such that vπ,S = τv1 + (1− τ)v2.

Proof. We know that if |S| reaches the bound from Theorem 9, then χS ∈
V0 ⊥ V1 ⊥ VN , with N = 2n + 1 in this case. Let Ω be the full set of
generators, and let P be the matrix of eigenvalues of the association scheme.
Let Ej denote the orthogonal projection onto the space of eigenvectors Vj.
Lemma 2.5.1 (iii) from [3] implies that (vπ,SP

−1)j = (EjχS)π, where the
latter denotes the entry of the vector EjχS, corresponding to the generator
π. We note that E0 is just projection onto the all-one vector, so the first
entry (vπ,SP

−1)0 = (E0χS)π = ( |S||Ω|χΩ)π = |S|/|Ω|. On the other hand,
E0 + · · ·+EN is the identity matrix, which means that the sum of all entries
of (vπ,SP

−1)j is given by ((E0 + · · ·+EN)χS)π = (χS)π, which is 1 as π ∈ S.
Finally, as we know that EjχS = 0 unless j = 0, 1, or j = N(= 2n + 1), we
have that (vπ,SP

−1)j = 0 if j is not 0, 1 or 2n+ 1. Hence, we know that vπ,S
is given by (|S|/|Ω|, t, 0, . . . , 0, 1− t− |S|/|Ω|)P for some real number t.

As the parameters and the eigenvalues for generators in W (4n+1, q) and
Q(4n+ 2, q) are the same, the vectors v1 and v2 that were given are both of
that form. This means that (v1−v2)P−1 is of the form (0, a, 0, . . . , 0,−a) for
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some a 6= 0, and that (vπ,S − v2)P−1 is of the form (0, b, 0, . . . , 0,−b). Hence
(vπ,S − v2)P−1 is a scalar multiple of (v1− v2)P−1. This means vπ,S − v2 can
be written as τ(v1 − v2) for some τ ∈ R.

Theorem 27. Let S be an EKR set of generators in W (4n + 1, q) of size
(q + 1) · · · (q2n + 1), with n ≥ 1. Let π be any element of S with nucleus πs.

The number of elements of S meeting π in a subspace of codimension i,
is given by q2n−s−1

q2n−1

[
2n
i

]
q
qi(i+1)/2 if i is odd, and by[

2n
i

]
q
qi(i+1)/2 + q2n−s(qs−1)

q2n−1

[
2n
i−1

]
q
qi(i−1)/2 if i is even.

For every point of πs, there are exactly qn(2n+1)−s elements of S meeting
π in just that point.

Proof. We already know from Lemma 6 if an elements of S meets π in exactly
one point p, then p ∈ πs, and that (vπ,S)1, the number of elements of S
meeting π in a dual line, is exactly

[
2n−s

1

]
q
q.

Lemma 26 also yields that vπ,S can be written as τv1 + (1− τ)v2 for some
parameter τ . In particular, (vπ,S)1 gives us the following equation: τ

[
2n
1

]
q
q+

(1 − τ)0 =
[

2n−s
1

]
q
q, or hence: τ = q2n−s−1

q2n−1
. For an odd i in general, this

means that (vπ,S)i = q2n−s−1
q2n−1

[
2n
i

]
q
qi(i+1)/2 since the corresponding entry of

v2 is zero. If i is even, then (vπ,S)i = τ
[

2n
i

]
q
qi(i+1)/2 +(1−τ)

[
2n+1
i

]
q
qi(i−1)/2.

Using the identity
[

2n+1
i

]
q

=
[

2n
i

]
q
qi +

[
2n
i−1

]
q
, the latter can also be writ-

ten as:
[

2n
i

]
q
qi(i+1)/2 + q2n−s(qs−1)

q2n−1

[
2n
i−1

]
q
qi(i−1)/2. In particular, we find that

(vπ,S)2n, the number of elements of S meeting π in just a point, is exactly[
s+1

1

]
q
qn(2n+1)−s.

For any point p in πs, let f(p) denote the number of elements of S meet-
ing π in just p. Consider any hyperplane πs−1 of πs. We want to obtain∑

p∈πs−1
f(p). Consider any generator π′ meeting π in a dual line but meet-

ing πs in just πs−1. As π′ is not in S, Lemma 25 implies that π′ is disjoint
from exactly qn(2n+1) elements of S, all necessarily meeting π in just a point
in πs\πs−1. Conversely, any generator of S that meets π in just a point of
πs\πs−1 must be disjoint from π′ because of Lemma 4. Hence

∑
p∈πs−1

f(p),
the number of elements of S that meet π in just a point of πs−1, is given by[
s+1

1

]
q
qn(2n+1)−s − qn(2n+1) =

[
s
1

]
q
qn(2n+1)−s. Now let H denote the set of all

hyperplanes in πs, and consider any point p0 in πs. We obtain:
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∑
h∈H,p0 /∈h

(∑
p∈h

f(p)
)

= qs−1
( ∑
p∈πs\{p0}

f(p)
)

⇓

qs
([s

1

]
q
qn(2n+1)−s

)
= qs−1

( ∑
p∈πs\{p0}

f(p)
)
.

Hence f(p0) =
∑

p∈πs
f(p)−

∑
p∈πs\{p0} f(p) =

[
s+1

1

]
q
qn(2n+1)−s−

[
s
1

]
q
qn(2n+1)−s+1 =

qn(2n+1)−s.

We will characterize the EKR sets of generators in W (4n + 1, q) by ex-
cluding values for the dimension of the nucleus of an element of S. For that
purpose, we will also need parameters with respect to dual lines instead of
generators. Therefore, we require more properties of the strata of the asso-
ciation scheme induced by the dual polar graph.

Consider a general polar space of rank N with parameters (q, qe). We
define the incidence matrix C(N,N−1) as follows. The columns are indexed by
the generators and the rows by the dual lines. The entry (C(N,N−1))ij is 1 if
the corresponding dual line and generator are incident, and 0 otherwise.

We already know from Theorem 7 that the eigenvalues of the dual polar
graph are given by qe

[
N−j

1

]
q
−
[
j
1

]
q
, with 0 ≤ j ≤ N . We denote each corre-

sponding eigenspace by Vj. In particular, −
[
N
1

]
q

is an eigenvalue, obtained

when j = N . The following lemma characterizes the eigenvectors of this last
eigenvalue.

Lemma 28. The eigenspace VN of the eigenvalue −
[
N
1

]
q

of the dual polar

graph is the kernel of the incidence matrix CN,N−1.

Proof. Let A denote the adjacency matrix of the dual polar graph. We con-
sider the product (CN,N−1)tCN,N−1, which has the same kernel as CN,N−1. As
every generator contains

[
N
1

]
q

dual lines, while two distinct generators con-

tain either a unique common dual line (if they are adjacent in the dual polar
graph) or none (if they are not adjacent), we can write: (CN,N−1)tCN,N−1 =[
N
1

]
q

I +A. This means that VN = ker(A−(−
[
N
1

]
q
) I ) = ker((CN,N−1)tCN,N−1) =

ker(CN,N−1).

We now generalize our incidence matrix. For each i ∈ {0, . . . , N − 1}, we
let Ci

(N,N−1) denote the (0, 1)-matrix, the columns of which are indexed by the
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generators of the polar space, and the rows by the dual lines. An entry is 1 if
the corresponding generator and dual line meet in a subspace of codimension
i in the dual line, and zero otherwise. In particular: C0

(N,N−1) = C(N,N−1).

Note that the matrices Ci
(N,N−1) add up to the all-one matrix.

Lemma 29. Consider a polar space of rank N and an eigenspace Vj of the
dual polar graph. There exist scalars λij such that Ci

(N,N−1)v = λijC(N,N−1)v,∀v ∈
Vj. In particular: Ci

(N,N−1)v = 0,∀v ∈ VN .

Proof. We again let A denote the adjacency matrix of the dual polar graph.
For any i ∈ {0, . . . , N − 2}, consider the product Ci

(N,N−1)A. Consider
a generator π and a dual line πN−1. There can only be neighbors of π
meeting πN−1 in a subspace of codimension i, if π and πN−1 meet in a
subspace of codimension i − 1, i, i + 1. We denote the number of such
neighbors in these cases by xi, yi and zi, respectively (we let x0 be zero).
For every i ∈ {0, . . . , (N − 1) − 1}, we have zi 6= 0, and we can write
Ci

(N,N−1)A = xiC
i−1
(N,N−1) + yiC

i
(N,N−1) + ziC

i+1
(N,N−1), with C−1

(N,N−1) defined as
zero.

If v ∈ Vj, then v is an eigenvector of A for some eigenvalue λ of the dual
polar graph, and hence:

Ci+1
(N,N−1)v = (Ci

(N,N−1)(λv)− xiCi−1
(N,N−1)v − yiC

i
(N,N−1)v)/zi.

Induction on i now allows us to prove that there are scalars λij such that
Ci

(N,N−1)v = λijCN,N−1v,∀v ∈ Vj for every i ∈ {0, . . . , N − 1}. If j = N , then

it follows from Lemma 28 that Ci
(N,N−1)v = 0.

The scalars λij from Lemma 29 will play a role that is somewhat similar
to that of eigenvalues.

Now let S be a set of generators in a polar space, and let πN−1 be any dual
line in the polar space. We define the vector vπN−1,S as follows: (vπN−1,S)i =
|{π ∈ S| dim(π ∩ πN−1) = (N − 1)− i}|. Note that the entries of vπN−1,S add
up to |S|.

Theorem 30. Let S be a set of generators in a polar space of rank N , and
let λij be scalars as provided by Lemma 29. Suppose χS ∈ 〈Vj|j ∈ J〉 with
J ⊆ {0, . . . , N}. Then for every dual line πN−1, the vector vπN−1,S can be
written as a linear combination of the vectors of scalars (λ0

j , . . . , λ
N−1
j ), with

j ∈ J\{N}.
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Proof. We first note that (vπN−1,S)i can be expressed algebraically as
(χ{πN−1})

tCi
(N,N−1)χS. Now suppose χS has the following orthogonal decom-

position into eigenvectors of the dual polar graph: χS =
∑

j∈J vj with vj ∈ Vj.
Lemma 29 yields that we can write for every i ∈ {0, . . . , N − 1}:

Ci
(N,N−1)χS =

∑
j∈J

Ci
(N,N−1)vj =

∑
j∈J\{N}

λijC(N,N−1)vj =
∑

j∈J\{N}

λijwj,

with wj = C0
(N,N−1)vj = C(N,N−1)vj. This allows us to write:

(vπN−1,S)i = (χ{πN−1})
t(
∑

j∈J\{N}

λijwj) =
∑

j∈J\{N}

λij((χ{πN−1})
twj).

Theorem 31. Let S be an EKR set of generators of size (q+ 1) · · · (q2n + 1)
in W (4n+ 1, q). For each secant dual line πN−1, the entry (vπN−1,S)i is given
by
[

2n−1
i

]
q

(q + 1)qi(i+3)/2.

Proof. We know from Theorem 9 that χS ∈ V0 ⊥ V1 ⊥ VN , with N =
2n + 1. Applying Lemma 30, this means that for any dual line πN−1 the
vector vπN−1,S can be written as a linear combination of two certain vectors of
scalars (λ0

0, . . . , λ
2n
0 ) and (λ0

1, . . . , λ
2n
1 ). Instead of explicitly calculating these

scalars, we consider two particular vectors spanned by these two vectors. Let
S0 be the set of all generators through a fixed point p0. This is certainly
an EKR set of generators of the maximum size. Let v1 denote the vector
vπN−1,S for some dual line through p0, and let v2 denote that vector for some
dual line not through p0 and not spanning a generator with p0 either. In
the first case, the dual line is secant, and in the second case it is external,
so (v1)0 = q + 1 and (v2)0 = 0. Hence the vectors v1 and v2 are certainly
different. So for any EKR set of generators S of the maximum size, and for
any dual line πN−1 we can write: vπN−1,S = τv1 + τ ′v2 for some parameters
τ and τ ′. We know that the entries of vπN−1,S, v1 and v2 must all add up to
|S|, and hence τ ′ = 1− τ . If the dual line πN−1 is assumed to be secant, then
(vπN−1,S)0 = q + 1, and hence τ = 1 and so vπN−1,S = v1.

Now we explicitly calculate (v1)i. This is the number of generators
through a point p, meeting a fixed dual line through p in a subspace of codi-
mension i in the dual line. Considering the residual geometry of p, which is
isomorphic to W (4n− 1, q), we can obtain this using Theorem 13.
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We will also need the following lemma on projective geometries.

Lemma 32. ([3], Lemma 9.3.2 (ii)) If W is a subspace of dimension m in
V (n, q), then the number of subspaces of dimension n−m meeting W trivially
is qm(n−m).

The following result is a first step towards our characterization of EKR
sets of maximum size of generators in W (4n+ 1, q), q odd. We prove that if
S is an EKR set of maximum size and π ∈ S, then not all the neighbors of
π are in S, except in the smallest case W (5, q). In other words, if πs is the
nucleus of π, then s 6= −1, unless n = 1.

Lemma 33. Let S be an EKR set of generators of size (q+1) · · · (q2n+1) in
W (4n+ 1, q), with n ≥ 2. There is no element π ∈ S such that all neighbors
of π are also in S.

Proof. Let π ∈ S and let πs be the nucleus of π. If all neighbors of π are also
in S, then s = −1 because of Lemma 6. Theorem 27 yields that no element
of S meets π in just a point, exactly qn(2n−1)

[
2n+1

1

]
q

meet π in a line, and

exactly q3
[

2n
2

]
q
− q2n+1 meet π in a subspace of codimension two. We know

from Theorem 13 that there are qn(2n−1) generators meeting π in a fixed line,
and hence the set of lines A in π appearing as such an intersection has size at
least

[
2n+1

1

]
q
. Now consider any subspace ρ with codimension 2 in π. There

are exactly q3 generators meeting π in just ρ. This implies that B, the set of
all subspaces with codimension two in π arising from the intersection with
an element of S, has cardinality at least

[
2n
2

]
q
− q2n−2. Lemma 4 also yields

that every element of A meets every element of B.
As there are only

[
2n
1

]
q

lines through a point in PG(2n, q), no point can

be on all lines in A. If a point p is not on a line ` ∈ A, then it follows from
Lemma 32 that there are precisely

[
2n
2

]
q
− q4n−4 subspaces with codimension

two in π through p that meet `, which is less than |B| as n ≥ 2. Hence we
can conclude that no point on π is on all elements of B. Since all elements
of A must meet every element of B, there can be at most

[
2n−1

1

]
q

elements

of A through each point of π.
Now let µ be any hyperplane of π. Let X denote the subset of elements of

B contained in µ. We know from Theorem 31 that exactly
[

2n−1
1

]
q

(q + 1)q2

elements of S meet µ in a hyperplane of µ. These elements of S either meet
π in some element of X, or meet π in some hyperplane, different from µ.
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Hence, we have:[
2n− 1

1

]
q

(q + 1)q2 ≤ |X|q3 +
([2n+ 1

1

]
q

− 1
)
q,

yielding: |X| ≥
[

2n−2
1

]
q
.

Next, consider two distinct lines `1 and `2 in A and a hyperplane µ of π,
meeting these lines in the points p1 and p2 respectively. We know from the
above that µ contains at least

[
2n−2

1

]
q

elements of B. These elements must

hence contain the points p1 and p2, and hence they are precisely the
[

2n−2
1

]
q

hyperplanes of µ through the line 〈p1, p2〉. Let ρ be a fixed hyperplane of µ
not through the line 〈p1, p2〉. As ρ /∈ B, there is certainly a generator π′ with
ρ = π ∩ π′ and π′ /∈ S. Lemma 25 implies that there are exactly qn(2n+1)

elements of S that are disjoint from π′. These elements must meet π in a
line, disjoint from ρ. Hence we obtain at least qn(2n+1)/qn(2n−1) = q2n lines of
A in π that meet µ in just a point. As these lines must meet all elements of
B, and hence certainly all hyperplanes of µ through 〈p1, p2〉, they must meet
µ in a point of that line, not on ρ. But through each of those q points on
〈p1, p2〉, there are at most

[
2n−1

1

]
q

elements of A. This yields q2n ≤ q
[

2n−1
1

]
q
,

which is clearly a contradiction.

Even though W (4n+1, q) and Q(4n+2, q) are isomorphic if and only if q
is even, the parameters of the corresponding association scheme are the same,
regardless of the parity of q. However, we want to prove that the construction
using an embedded Q+(4n+1, q) in Q(4n+2, q), which appeared in Theorem
23 has no analog for W (4n + 1, q) if q is odd. We will need the following
fundamental result on the associated classical generalized quadrangle W (3, q)
(see 1.3.6, 3.2.1 and 3.3.1 in [11]).

Theorem 34. If three lines are pairwise skew in W (3, q), then the number
of lines of W (3, q) meeting all three is 0 or 2 if q is odd, and 1 or q + 1 if q
is even.

This can be used to prove the following lemma.

Lemma 35. Suppose S is an EKR set of generators in W (4n+ 1, q) of size
|S| = (q + 1) · · · (q2n + 1), with n ≥ 1 and q odd. Then there are at least two
elements of S intersecting in a space of codimension one.
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Proof. Suppose that the elements of S never intersect in a subspace of codi-
mension one. Lemma 6 yields that in this case each element of S is its own
nucleus. Hence Theorem 27 implies that for each π ∈ S, the vector vπ,S is v2.
In particular, the elements of S cannot meet in a subspace with odd codi-
mension. Let π be any element in S. We know that exactly (v2)2 =

[
2n+1

2

]
q
q

elements of S meet π in exactly a subspace of codimension two. As there are
only

[
2n+1

2

]
q

subspaces with codimension two in π, there must certainly be a

subspace µ of codimension two in π, such that at least q ≥ 3 elements of S
meet π in just µ. Let π1 and π2 be two such elements. Note that they cannot
meet in more than just µ, because their intersection cannot be a dual line as
they are both in S. Hence the three generators π, π1 and π2 correspond with
three mutually skew lines `, `1 and `2, respectively, in the residual geometry
W (3, q) of µ.

Now let S0 denote the subset of generators in S, meeting π in just a point,
not in µ. Such a generator must meet both π1 and π2 in a subspace of even
codimension and skew to µ, thus in just a point not in µ. For every π0 ∈ S0,
the generator 〈µ, µ⊥ ∩ π0〉 through µ corresponds with a line meeting `, `1

and `2 in W (3, q). As q is odd, there are at most two such lines, by Theorem
34. Hence, there are at most two possibilities for the generator 〈µ, µ⊥ ∩ π0〉.
As π0 is skew to µ, it must meet 〈µ, µ⊥ ∩ π0〉 in a line. There are precisely
q4n−2 lines in a PG(2n, q), skew to a given subspace with codimension two
(Lemma 32). Finally, we consider the generators of S0 that can go through
that line. Since the elements of S pairwise meet in a subspace with even
codimension, all these generators must meet in at least a plane, and hence in
the residue of that line, which is isomorphic to W (4n− 3, q), we obtain a set
of generators, all meeting in at least a point. This implies that we can apply
the upper bound from Theorem 9 for EKR sets of generators in W (4n−3, q),

and see that there are at most
2n−2∏
i=1

(qi + 1) elements of S0 through each such

line. Hence, we see that |S0| ≤ 2q4n−2

2n−2∏
i=1

(qi + 1).

Let us now explicitly calculate |S0|. Theorem 27 yields that through
each point of π, not in µ, there are precisely qn(2n+1)−2n elements of S that

meet π in just that point. Hence, |S0| =
([

2n+1
1

]
q
−
[

2n−1
1

]
q

)
q2n2−n =

(q2n + q2n−1)q2n2−n, and thus we obtain the inequality: (q2n + q2n−1)q2n2−n ≤
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2q4n−2

2n−2∏
i=1

(qi + 1), which is equivalent to q+1
2
q2n2−3n+1 ≤

2n−2∏
i=1

(qi + 1). As

2 ≤ q+1
2

, this contradicts Lemma 12(1).

We now prove a result on the nuclei of two neighbors of an EKR set of
generators in the dual polar graph.

Lemma 36. Let S be an EKR set of generators in W (4n + 1, q) of size
(q+ 1) · · · (q2n + 1), with n ≥ 1. If π1 and π2 ∈ S are neighbors and both are
elements of S with a non-trivial nucleus, then they have the same nucleus.

Proof. Let π1 and π2 have nuclei πs and πt with projective dimensions s ≥ 0
and t ≥ 0, respectively. It follows from the definition of nuclei that πs and
πt are both in π1 ∩ π2. If πs is not contained in πt, then |πs\πt| ≥ qs. We
know from Theorem 27 that for every p ∈ πs\πt there are qn(2n+1)−s elements
of S meeting π1 in just p, and these elements cannot meet π2 in just p. As
π1 ∩ π2 is a hyperplane in π2, we see that these elements meet π2 in exactly
a line. We also know from Theorem 27 that there are exactly q2n−t−1

q−1
qn(2n−1)

elements of S meeting π2 in a line, and hence:

qsqn(2n+1)−s ≤ q2n−t − 1

q − 1
qn(2n−1),

which yields: q2n ≤ q2n−t−1
q−1

, and that is a contradiction as t ≥ 0. Hence
πs ⊆ πt, and in a completely similar way we can show that πt ⊆ πs.

Theorem 37. Let S be an EKR set of generators in W (4n+ 1, q), q odd, of
size (q + 1) · · · (q2n + 1). Suppose that there is a π ∈ S with a point p := π0

as nucleus. Then S is the set of generators through p.

Proof. By Theorem 27, there are qn(2n+1) elements of S meeting π exactly in
p. Suppose that there exists a generator through p not in S, then by Lemma
25, there are qn(2n+1) elements of S disjoint from π′ that cannot be through
p. So there are qn(2n+1) elements in S not through p and qn(2n+1) through p,
hence |S| ≥ 2qn(2n+1) > (q+ 1) · · · (q2n + 1) for q ≥ 3 by Lemma 12, which is
a contradiction.

Lemma 38. Let S be an EKR set of generators in W (4n + 1, q), q odd, of
size (q + 1) . . . (q2n + 1), with n ≥ 1. If π ∈ S has nucleus πs with projective
dimension s, then s ∈ {−1, 0, 1, 2n}, and if s = 1, then for every dual line
µ with πs ⊆ µ ⊂ π, an element of S meets π in just a point if and only if it
meets µ in just a point.
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Proof. Suppose s < 2n. Then πs 6= π, and consider any dual line µ with
πs ⊆ µ ⊂ π. Lemma 6 implies that µ is secant. We know from Theorem
27 that

[
s+1

1

]
q
qn(2n+1)−s elements of S meet π in exactly a point of πs, and

hence must meet µ in exactly a point as well. Theorem 31 also yields that
exactly (q + 1)q(2n−1)(n+1) elements of S meet µ in just a point. Hence we
obtain:

qs+1 − 1

q − 1
qn(2n+1)−s ≤ (q + 1)q(2n−1)(n+1),

which is equivalent with s ≤ 1. If s = 1, then the two sizes are equal,
and hence generators in S meeting µ in just a point must be precisely those
meeting π in just a point.

We can now finally complete the classification of EKR sets of generators
in W (4n+ 1, q) with q odd.

Theorem 39. Let S be an EKR set of generators in W (4n + 1, q) of size
(q+1) · · · (q2n+1), with q odd and n ≥ 2. Then S is the set of all generators
through some point.

Proof. Let π ∈ S and let πs be the nucleus of π. By Lemmas 33 and 38,
s ∈ {0, 1, 2n}. If s = 0, then by Theorem 37, S consists of all the generators
through a point. Hence, from now on we can assume that s ∈ {1, 2n} for
every π ∈ S. First suppose some π ∈ S has nucleus πs with s = 1. Now
consider any dual line µ with πs ⊆ µ ⊂ π. Theorem 27 yields that there is
certainly an element π′ ∈ S meeting π in just a point of πs. Consider the
generator π′′ = 〈µ, µ⊥ ∩ π′〉, which meets π′ in a line. As π′′ is through the
secant dual line µ, it is also in S. Since we assume that π′′ has a non-trivial
nucleus, Lemma 36 yields that π′′ also has πs as nucleus. But this contradicts
Lemma 38, as we now have the generator π′ ∈ S meeting µ in just a point,
while it meets π′′ ∈ S in a line.

Hence the dimension of the nucleus is 2n for every element of S, which
contradicts Lemma 35 as q is odd.

Just as for Q(6, q), there is an extra construction for EKR sets of gener-
ators of the maximum size for W (5, q), and hence this case must be treated
separately.

Theorem 40. Suppose S is an EKR set of (q+ 1)(q2 + 1) planes in W (5, q),
q odd. Then the elements of S are either all generators through a fixed point,
or S consists of the plane π and all the planes meeting it in a line.
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Proof. By Lemma 35, there are at least two generators π and π1 intersecting
in a subspace of codimension one, hence the nucleus πs of π is at most a
line. Lemma 6 yields that if an element of S meets π in a point p, then
p ∈ πs, and that the elements of S meeting π in a line, are precisely those
meeting π in a line through πs. Obviously, s ∈ {−1, 0, 1}. If s = −1, then
all q(q2 + q + 1) = |S| − 1 planes meeting π in a line, are in S, and hence S
consists of these planes and π itself. If s = 0, then πs is a point contained in
all elements of S, and hence we are done again. Finally, suppose s = 1. Let a
and b be distinct points on the line πs. Theorem 27 yields that through both
points, there are precisely q2 elements of S, meeting π in just that point.
Suppose πa, πb ∈ S with πa∩π = {a} and πb∩π = {b}. As πa and πb cannot
be disjoint, they must meet in precisely one point c, necessarily outside of π.
The points a, b and c span a plane of W (5, q). If π′ ∈ S meets π in a line,
then that line should be πs and hence π′ meets 〈a, b, c〉 in at least a line as
well. If π′ ∈ S meets π in just a point p, then that point should be on πs.
Suppose p 6= a. Then the points of πa, collinear with p, are precisely those
on the line 〈a, c〉, and hence π′ should also contain a point of that line, and
therefore meet 〈a, b, c〉 in a line. Similarly, if p = a, then p 6= b and one can
use a similar argument to prove that π′ should meet 〈a, b, c〉 in a line. We
can conclude that all planes of S meet 〈a, b, c〉 in at least a line, and as there
are only (q+ 1)(q2 + 1) such planes, S consists precisely of those planes.

8. The case H(4n + 1, q2)

In H(4n+1, q2), the set of generators Ω is of size (q+1)(q3+1) · · · (q4n+1+
1). The number of generators through one point is |Ω|/(q4n+1 + 1), but the
eigenvalue bound from Theorem 9 is |Ω|/(q2n+1 + 1) in this case, which is
much larger.

In H(5, q2), there are (q+1)(q3 +1)(q5 +1) generators, and (q+1)(q3 +1)
generators through one point. The upper bound arising from eigenvalue
techniques in this case is (q + 1)(q5 + 1). The following example shows
that the point-pencil construction is in this case indeed not of maximum
size. Let π be a plane in H(5, q2). Let S consist of π, together with all
planes meeting π in a line. Now |S| = q(q4 + q2 + 1) + 1, and in particular:
(q + 1)(q3 + 1) < |S| < (q + 1)(q5 + 1).

It is possible that there is no simple answer for H(4n+ 1, q2) in general.
However, we can already exclude the possibility of reaching the upper bound
from Theorem 9.
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Delsarte developed a very general theory of semiregular lattices in [5],
which gives a special meaning to the eigenspaces of the dual polar graph.
We now give a short proof for a very specific case.

Theorem 41. Let Ω be the set of generators of a polar space of rank N
with parameters (q, qe), and consider the orthogonal decomposition of RΩ
into eigenspaces of the dual polar graph:

RΩ = V0 ⊥ V1 ⊥ . . . ⊥ VN ,

with the same ordering of the eigenspaces Vj as in Theorem 7. If the char-
acteristic vector of a set of generators S satisfies χS ∈ V0 ⊥ VN , then every
dual line is in exactly |S||Ω|(q

e + 1) elements of S.

Proof. We know from Lemma 28 that VN is the kernel of the incidence matrix
CN,N−1. If ΩN−1 denotes the full set of dual lines, and χS decomposes as
|S|
|Ω|χΩ + vN with vN ∈ VN , then:

CN,N−1χS = CN,N−1

( |S|
|Ω|

χΩ + vN

)
=
|S|
|Ω|

(qe + 1)χΩN−1
.

This means that every dual line is in exactly |S|
|Ω|(q

e + 1) elements of S.

Theorem 42. Let Ω be the set of generators in H(2N − 1, q2) with N ≥ 3
odd. Let S be a set of generators, all meeting in at least a point. Then
|S| < |Ω|/(qN + 1).

Proof. We already know from Theorem 9 that |S| ≤ |Ω|/(qN + 1), with
equality if and only if χS ∈ V0 ⊥ VN . Suppose equality holds. In that case,
every dual line would be incident with exactly q+1

qN +1
elements of S, because

of Theorem 41. As N ≥ 3, this yields a contradiction as this number is not
an integer.

Nevertheless, we can determine the maximum size of an EKR set of planes
in H(5, q2). We first state a general theorem on generalized quadrangles (see
for instance 1.2.4 in [11]).

Theorem 43. Let a, b and c be three mutually non-collinear points in a gen-
eralized quadrangle with parameters (s, s2). The number of points collinear
with a, b and c is exactly s+ 1.
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Dualizing, this yields the following result for the generalized quadrangle
H(3, q2) with parameters (q2, q).

Corollary 44. If `1, `2 and `3 are three mutually skew lines in H(3, q2), then
there are precisely q + 1 lines of H(3, q2) meeting all of them.

Theorem 45. Let S be an EKR set of planes in H(5, q2). Then |S| ≤
q5 + q3 + q+ 1, and this bound can only be reached if S consists of a plane π
and all planes meeting π in a line.

Proof. Assume that S is a maximal EKR set of generators.
Suppose that π ∈ S meets some element of S in a line. Lemma 6 yields

that there is a nucleus πs in π with projective dimension s < 2, such that a
plane meeting π in a line is in S if and only if that line contains πs, and if a
plane in S meets π in a point, then the point is in πs.

If s = −1, then S contains all q(q4 + q2 + 1) + 1 planes that are equal
to or meeting π in a line, while there are no planes in S meeting π in just a
point.

If s = 0, then all elements of S must go through the point πs, and hence
|S| ≤ (q + 1)(q3 + 1), which is less than q5 + q3 + q + 1.

Now suppose s = 1. If no element of S meets π in a point, then all
other elements of S meet π in the line π1 and hence |S| ≤ q + 1. Similarly,
if all elements of S either contain π1 or meet π in the same point p, then
again |S| ≤ (q + 1)(q3 + 1). Finally, suppose that π′ and π′′ are elements of
S, meeting π in different points p′ and p′′ of the nucleus of S, respectively.
Lemma 4 yields that π′ and π′′ meet in just a point, say p. Consider the
plane 〈p′, p′′, p〉. If a plane in S meets π in a point r of π1, different from p′′,
then it must also contain a point of 〈p′′, p〉, as these are the only points of π′′

collinear to r. The same holds when switching p′ and p′′, and hence we can
conclude that all elements of S must meet 〈p′, p′′, p〉 in a line or be equal to
it, and hence we are done again in this case.

In the remainder of this proof, we can suppose that all elements of S
meet in just a point. We will also assume that |S| is at least the desired
bound q5 + q3 + q + 1, and prove that this leads to a contradiction. Suppose
π ∈ S and let p be a point on π. In the residual geometry of p, isomorphic
to H(3, q2), the elements of S through p correspond with different mutually
skew lines `1, . . . , `t, with t ≤ q3 + 1. Hence there are at least q5 + q elements
of S not through p. The elements of S not through p are projected onto lines
in the residual geometry H(3, q2), and onto every line at most q4 of them
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are projected, so we have at least q + 1 lines, namely mj, j = 1, . . . , q + 1.
Since the elements of S pairwise intersect only in one point, an element of S
through p cannot be projected onto any of the mj, so `i 6= mj, ∀i, j. As the
elements of S cannot be pairwise disjoint, the lines li and mj must intersect
in the residual geometry H(3, q2). If mj ∩ mk is a point, then a line `i in
H(3, q2) intersecting both of them must pass through their intersection point.
As the lines `i are pairwise skew, t is thus 1 and so through p there can be
at most one element of S. If all these lines mj are pairwise skew, then there
are at most q + 1 lines meeting all of them because of Corollary 44, so there
are in this case at most q + 1 elements of S through p. Hence through every
point of π there are at most q + 1 elements of S, but |S| ≥ q5 + q3 + q + 1
implies that through every point of π there are exactly q + 1 elements of S
and |S| = q5 + q3 + q+ 1. So now we can consider a point p ∈ π ∈ S and two
other elements of π1, π2 ∈ S through p, such that π, π1 and π2 correspond
with three skew lines `, `1 and `2, respectively, in the residual geometry of p.
In this geometry, only q+ 1 points of `, corresponding to the plane π, are on
a line meeting `, `1 and `2, and hence only the points on the corresponding
q+ 1 lines through p in π can be on a plane meeting the planes π, π1 and π2.
This contradicts the assumption that there are q + 1 elements of S through
each point in the plane π.

9. Summary

In the following table, we will write p.-p. to denote the point-pencil con-
struction of an EKR set of generators consisting of all generators through
a fixed point. We also let Ω denote the full set of generators and for the
hyperbolic space of even rank we will focus only on one system of generators,
namely the Latins. Finally, base will refer to the construction in a polar
space of rank three, consisting of one base plane and all those meeting it in
a line.
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Polar space Maximum size Classification
Q−(2n + 1, q) (q2 + 1) · · · (qn + 1) p.-p., Th.15
Q(4n, q) (q + 1) · · · (q2n−1 + 1) p.-p., Th.15
Q(4n + 2, q), n ≥ 2 (q + 1) · · · (q2n + 1) p.-p., Latins Q+(4n + 1, q),

Th.23
Q(6, q) (q + 1)(q2 + 1) p.-p., Latins Q+(5, q),

base, Th.23
Q+(4n + 1, q) (q + 1) · · · (q2n + 1) all Latins, Th.16
Latins Q+(4n + 3, q), (q + 1) · · · (q2n + 1) p.-p., Th.21
n ≥ 2
Latins Q+(7, q) (q + 1)(q2 + 1) p.-p.,

meeting Greek in plane,
Th.22

W (4n + 1, q), n ≥ 2, (q + 1) · · · (q2n + 1) p.-p., Th.39
q odd
W (4n + 1, q), n ≥ 2, (q + 1) · · · (q2n + 1) p.-p., Latins Q+(4n + 1, q),
q even Th.24
W (5, q), q odd (q + 1)(q2 + 1) p.-p., base,

Th.40
W (5, q), q even (q + 1)(q2 + 1) p.-p., base,

Latins Q+(5, q),Th.24
W (4n + 3, q) (q + 1) · · · (q2n+1 + 1) p.-p., Th.15
H(2n, q2) (q3 + 1)(q5 + 1) · · · (q2n−1 + 1) p.-p., Th.15
H(4n + 3, q2) (q + 1)(q3 + 1) · · · (q4n+1 + 1) p.-p., Th.15
H(4n + 1, q2), n ≥ 2 < |Ω|/(q2n+1 + 1) ?,Th.42
H(5, q2) q(q4 + q2 + 1) + 1 base, Th.45
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Zürich, second edition, 2009.
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