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Abstract The inequality of Higman for generalized quadrangles of order (s, t) with

s > 1 states that t ≤ s2. We will generalize this by proving that the intersection

number ci of a regular near 2d-gon of order (s, t) with s > 1 satisfies the tight bound

ci ≤ (s2i − 1)/(s2 − 1), and we give properties in case of equality. It is known that

hemisystems in generalized quadrangles meeting the Higman bound induce strongly

regular subgraphs. We will also generalize this by proving that a similar subconstituent

in regular near 2d-gons meeting the bounds would induce a distance-regular graph with

classical parameters (d, b, α, β) = (d,−q,−(q + 1)/2,−((−q)d + 1)/2) with q an odd

prime power.

Keywords Distance-regular graphs · Regular near polygons · Dual polar graphs ·
Hemisystems · Classical parameters

1 Introduction

We refer the reader to Section 2 for the definitions of for instance (finite) generalized

polygons, near polygons and polar spaces.

Feit and Higman [16] showed that (finite) generalized n-gons of order (s, t) 6= (1, 1)

with n ≥ 3 can only exist if n ∈ {3, 4, 6, 8, 12}; if n = 12 then s = 1 or t = 1. If s > 1,

then the following inequalities must hold: if n = 4 then t ≤ s2 ([18]), if n = 6 then

t ≤ s3 ([17]), and if n = 8 then t ≤ s2 ([18]). Bose and Shrikhande [4] also proved

that if n = 4 and t = s2, then for any triple of non-adjacent vertices the number of

vertices adjacent to all three is independent of the chosen triple, namely s + 1. This

property actually characterizes generalized quadrangles of order (s, s2) with s > 1 (see

also Section 1.2 in [25]).

Near polygons were introduced by Shult and Yanushka in [27] and include the

generalized polygons. Restrictions on the parameters of regular near polygons were
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obtained in for instance [6], [23], [21], [20] and [19]. In particular, Hiraki and Koolen

proved in [20] that if Γ is a regular near 2d-gon of order (s, t) with s > 1, then

t < s4d/r−1 for a certain integer r ≥ 1.

We will generalize the inequality on the parameters of generalized quadrangles to

regular near 2d-gons, and give a similar property in case of equality. The necessary

tools will be introduced in Section 3 and our main result will be given in Theorems 1

and 2 in Section 4.

Segre proved in [26] for the unique classical generalized quadrangle of order (q, q2)

with q a prime power, that if each singular line meets a non-trivial subset of points

S in exactly m points, then m = (q + 1)/2. Such sets of points in any generalized

quadrangle of order (s, s2) are known as hemisystems. We will generalize this result in

Section 5.

It was also proved in [32] (in the classical case) and in [8] (for all generalized

quadrangles of order (s, s2)) that hemisystems induce a strongly regular subgraph. We

will generalize this result in Section 6 by proving that a similar subset of points in the

regular near 2d-gon arising from the polar space H(2d−1, q2) would induce a distance-

regular subgraph of diameter d with classical parameters (d, b, α, β) = (d,−q,−(q +

1)/2,−((−q)d+1)/2). The existence of such graphs remains an open problem for d ≥ 3.

2 Preliminaries

2.1 Distance-regular graphs

All graphs will be assumed to be finite, undirected, connected and without loops or

multiple edges. In any graph Γ , we will write d(x, y) for the distance between any two

vertices x and y, and Γi(x) will denote the set of vertices at distance i from a given

vertex x. The diameter of Γ is the maximum distance between its vertices. A clique

in a graph is a set of mutually adjacent vertices, and a clique is maximal if it is not a

proper subset of another clique. A triangle is a clique of size three. A subset of vertices

with no two elements adjacent is a coclique. A graph is regular with valency k if every

vertex has exactly k neighbours.

A graph Γ is distance-regular if there are natural numbers bi with i ∈ {0, . . . , d−1}
and ci with i ∈ {1, . . . , d}, known as intersection numbers, such that |Γi−1(x)∩Γ1(y)| =
ci for any two vertices x and y at distance i ∈ {1, . . . , d}, and |Γi+1(x) ∩ Γ1(y)| = bi
for any two vertices x and y at distance i ∈ {0, . . . , d− 1}. A distance-regular graph of

diameter d has classical parameters (d, b, α, β) if:
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= (bi−1)/(b−1) if b 6= 1 (see [5] for more information).

We say a graph is strongly regular and write srg(v, k, λ, µ) if it is regular with

valency k and every two distinct vertices have exactly λ or µ neighbours in common,

depending on whether or not these two vertices are adjacent. The strongly regular

graphs srg(v, k, λ, µ) with k < v − 1 and µ > 0 are precisely the distance-regular

graphs of diameter two.
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2.2 Near polygons in general

We will only introduce near n-gons for even n. A more general discussion can be found

in [5] or [12].

A graph Γ of diameter d ≥ 2 is a near 2d-gon if the following two axioms are

satisfied:

1. a vertex not in a triangle C and adjacent to two vertices in C is adjacent to the

third as well,

2. for every vertex x and every maximal clique ` with x /∈ `, there is a unique vertex

in ` at minimal distance from x.

Note that the first axiom implies that through any two adjacent vertices, there is a

unique maximal clique, and we will refer to them as the singular lines. We will also

refer to the vertices of a near 2d-gon as points.

A regular near 2d-gon is a distance-regular near 2d-gon. The intersection numbers

bi and ci of such a regular near 2d-gon with valency k satisfy k = bi + sci for every

i ∈ {1, . . . , d−1}, and k = scd, for a certain fixed parameter s (see for instance Theorem

6.4.1 in [5]). Every singular line has size s + 1 in this case, and every point is on cd
singular lines. A regular near 2d-gon is said to be of order (s, t) if the singular line size

is s+ 1 and every point is on t+ 1 singular lines. If x and y are two points at distance

i with i ∈ {1, . . . , d}, then there are precisely ci singular lines through y at distance

i− 1 from x. Similarly, if x and y are two points at distance i with i ∈ {0, . . . , d− 1},
then there are exactly bi/s singular lines through y at distance i from x. We will also

let ti denote ci − 1 for every i ∈ {1, . . . , d}.
The ordinary 2d-gons are precisely the regular near 2d-gons of order (1, 1). In the

following subsections, we will discuss two important families of (regular) near polygons:

generalized polygons and dual polar graphs.

2.3 Generalized polygons

Generalized 2d-gons were introduced by Tits in [33] and are near 2d-gons with |Γ1(x)∩
Γi−1(y)| = 1 for any two points x and y at distance i with 1 ≤ i ≤ d− 1. Note that we

consider generalized 2d-gons as collinearity graphs, instead of as point-line geometries.

A generalized 2d-gon has order (s, t) if it is a regular near 2d-gon of order (s, t). Some

of the known conditions on its parameters were already given in Section 1.

The generalized 4-gons or generalized quadrangles are precisely the near 4-gons.

The dual polar graphs of diameter d = 2 from the next subsection will all be examples

of generalized quadrangles.

Generalized 6-gons or generalized hexagons of order (1, q), (q, 1), (q, q), (q3, q) and

(q, q3) exist for every prime power q. Generalized 8-gons or generalized octagons of

order (q, q2) and (q2, q) exist with q any odd power of 2, and of order (1, q) or (q, 1)

for any prime power q. Finally, generalized 12-gons or generalized dodecagons of order

(1, q) and (q, 1) exist for any prime power q. In all three cases, no examples of other

orders (s, t) 6= (1, 1) are known (see 6.5 in [5] for more information).

The graph with the singular lines of a generalized 2d-gon of order (s, t) as vertices,

with two adjacent when having exactly one point in common, is a generalized 2d-gon

of order (t, s), and is referred to as the dual.
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2.4 Dual polar graphs

A classical finite polar space is an incidence structure, consisting of the totally isotropic

subspaces of a finite-dimensional vector space V over a finite field, with respect to a

certain non-denegerate sesquilinear or quadratic form f . The rank of the polar space

is the dimension d of the maximal totally isotropic subspaces or simply maximals.

Two totally isotropic subspaces of different dimension are said to be incident if one is

included in the other. We now list all classical finite polar spaces of rank d:

– the hyperbolic quadric Q+(2d − 1, q), with V = V (2d, q) and f a nondegenerate

quadratic form of maximal Witt index d,

– the Hermitian variety H(2d − 1, q2), with V = V (2d, q2) and f a nondegenerate

Hermitian form,

– the parabolic quadric Q(2d, q), with V = V (2d + 1, q) and f a nondegenerate

quadratic form,

– the symplectic space W (2d − 1, q), with V = V (2d, q) and f a nondegenerate

alternating form,

– the Hermitian variety H(2d, q2), with V = V (2d + 1, q2) and f a nondegenerate

Hermitian form,

– the elliptic quadric Q−(2d + 1, q), with V = V (2d + 2, q) and f a nondegenerate

quadratic form of Witt index d.

The dual polar graph corresponding with a classical polar space is the graph Γ on its

maximals, with two vertices adjacent if they intersect in a subspace of codimension

one. This graph is a regular near 2d-gon, and two vertices are at distance i if and only

if they intersect in a subspace of codimension i (see Section 9.4 in [5]). In particular,

they are at maximum distance d if and only if their intersection is a trivial subspace.

Table 1 provides the singular line size s+ 1 and the parameter t2 = c2− 1 for the dual

polar graph corresponding with all classical finite polar spaces of rank d. (The notation

for the dual polar graph in the first column is based on the embedding in a projective

space, the notation in the second is the one related to Chevalley groups.)

(s, t2)

Q+(2d− 1, q) Dd(q) (1, q)
H(2d− 1, q2) 2A2d−1(q) (q, q2)
Q(2d, q) Bd(q) (q, q)
W (2d− 1, q) Cd(q) (q, q)
H(2d, q2) 2A2d(q) (q3, q2)
Q−(2d + 1, q) 2Dd+1(q) (q2, q)

Table 1 The dual polar graphs from classical finite polar spaces

The parameter ci is then equal to (ti2 − 1)/(t2 − 1) if 1 ≤ i ≤ d. In particular, the

number of singular lines through each vertex is given by cd = t+ 1 = (td2 − 1)/(t2 − 1).

The number of vertices is
Qd
i=1(s ti−1

2 + 1).

The dual polar graphs from W (3, q) and Q(4, q) are dual to each other, and so are

those from H(3, q2) and Q−(5, q) (see for instance 3.2.1 and 3.2.3 in [25]).
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3 Algebraic techniques

3.1 Association schemes and Bose-Mesner algebras

As each distance-regular graph induces an association scheme, we first describe these

combinatorial structures. Bose and Shimamoto [3] introduced the notion of a d-class

association scheme on a finite set Ω as a pair (Ω,R) with R = {R0, R1, . . . , Rd} a set

of symmetric (non-empty) relations on Ω, such that the following axioms hold: (i) R0

is the identity relation, (ii) R is a partition of Ω2, (iii) there are constants pkij , known

as intersection numbers, such that for (x, y) ∈ Rk, the number of elements z in Ω for

which (x, z) ∈ Ri and (z, y) ∈ Rj equals pkij . An immediate consequence is that each

relation Ri is regular, and we will denote its valency by ki.

If Γ is a graph with vertex set Ω and diameter d, and if we denote the i-distance

relation by Ri, then (Ω, {R0, . . . , Rd}) is an association scheme if and only if Γ is

distance-regular (see for instance 4.1.A in [5]).

If (Ω, {R0, . . . , Rd}) is an association scheme we will always write Ai for the sym-

metric (0, 1)-matrix, the rows and columns of which are indexed by the elements of

Ω, with (Ai)x,y = 1 if (x, y) ∈ Ri and (Ai)x,y = 0 if (x, y) /∈ Ri. Axiom (iii) can be

algebraically expressed as AiAj =
Pd
k=0 p

k
ijAk, and hence the vector space spanned

by {A0, . . . , Ad} is a commutative (d+ 1)-dimensional algebra of symmetric matrices,

known as the Bose-Mesner algebra. It can be shown (see for instance 2.2 in [5]) that

the Bose-Mesner algebra has a unique basis of minimal idempotents {E0, . . . , Ed}, with

EiEj = δijEi, E0 + . . .+Ed = I and E0 = J/|Ω| where J denotes the all-one matrix.

As these minimal idempotents are symmetric, they define orthogonal projections and

hence they are positive semidefinite.

If Γ is a distance-regular graph with diameter d, then the corresponding adjacency

matrix A1 has exactly d+ 1 distinct eigenvalues. Every minimal idempotent Ej corre-

sponds with such an eigenvalue λj such that A1Ej = λjEj , and the column span of Ej
is precisely the (right) eigenspace of A1 for λj . Conversely, if any non-zero element C

of the Bose-Mesner algebra satisfies A1C = λC, then λ must be one of the eigenvalues

λj of A1 and C must be a scalar multiple of Ej . We refer to 4.1.B and 4.1.C in [5] for

proofs and much more information. Every non-zero vector in the column span of any

minimal idempotent is also an eigenvector for all Ai. If for some minimal idempotent

E the corresponding eigenvalue of Ai is given by λi, then E can also be written, up to

a positive scalar, as:

dX
i=0

λi
ki
Ai.

The latter follows from the orthogonality relations between the eigenvalues of an asso-

ciation scheme (see for instance Lemma 2.2.1(iv) in [5]).

For any set Ω, we will denote by RΩ the real vector space with an orthonormal

basis indexed by the elements of Ω. Note that the elements of the Bose-Mesner algebra

of any association scheme on Ω define endomorphisms of RΩ.

For any subset S ⊆ Ω, the characteristic vector of S is the column vector χS with

entry 1 in the positions corresponding with elements of S, and zero in all others. For

any two subsets S1 and S2, the product (χS1)TχS2 is equal to |S1∩S2|. More generally,

if (Ω, {R0, . . . , Rd}) is an association scheme, then for any two subsets S1, S2 ⊆ Ω, the

number (χS1)TAiχS2 = (χS2)TAiχS1 is equal to |(S1 × S2) ∩Ri|.
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3.2 A particular minimal idempotent for regular near 2d-gons

We will now consider a specific minimal idempotent. The following result is in fact

already implicitly given in many proofs. We will follow that of Theorem 3.1.4 in [12].

Lemma 1 Let Γ be a regular near 2d-gon of order (s, t). The element M =
Pd
i=0 1/(−s)iAi

of the Bose-Mesner algebra is a minimal idempotent up to a positive scalar, and its col-

umn space is precisely the eigenspace of the eigenvalue −(t+1) of A1. The corresponding

eigenvalue λi of Ai is given by ki/(−s)i.

Proof Let bi and ci be the intersection numbers of Γ and set b−1 = bd = c0 = cd+1 = 0.

We also define A−1 and Ad+1 as zero matrices. This allows us to algebraically express

the property of intersection numbers:

A1Ai = bi−1Ai−1 + (k − bi − ci)Ai + ci+1Ai+1, ∀i ∈ {0, . . . , d}.

We can now write:

A1M = A1

 
dX
i=0

(−1)i

si
Ai

!

=

dX
i=0

(−1)i

si
(A1Ai)

=

dX
i=0

(−1)i

si
(bi−1Ai−1 + (k − bi − ci)Ai + ci+1Ai+1)

=

dX
i=0

(−1)i+1

si+1
(biAi) +

dX
i=0

(−1)i

si
((k − bi − ci)Ai) +

dX
i=0

(−1)i−1

si−1
(ciAi)

=

dX
i=0

(−1)i

si

 
− bi
s

+ (k − bi − ci) + (−sci)

!
Ai

=

dX
i=0

(−1)i

si

 
−k
s

!
Ai

= −(t+ 1)M.

where we used the identities bi = k − sci and k = s(t + 1) in the last two steps.

Hence −(t + 1) must be an eigenvalue of A1 and M must be a scalar multiple of the

corresponding minimal idempotent E. As both trace(M) = trace(A0) and trace(E)

are positive, this scalar must be positive.

Finally, as E can also be written as
Pd
i=0(λi/ki)Ai up to a positive scalar and

λ0 = k0 = 1, this proves the last part of the lemma. ut

From now on, we will always let M denote the element M =
Pd
i=0(− 1

s )iAi of the

Bose-Mesner algebra, corresponding with a regular near 2d-gon of order (s, t).

4 Upper bound on the intersection number cj

We now come to the main result of this paper. It was inspired by and generalizes

Lemma 5.1 in [2]. The proof will make implicit use of Delsarte’s linear programming

bound (see for instance formula 4.3 in [15]).
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Theorem 1 Let Γ be a regular near 2d-gon of order (s, t) with s > 1. Consider two

vertices a and b at distance j with 1 ≤ j ≤ d. Define v = αχ{a} + βχ{b} + γχT with

α, β, γ ∈ R and T = Γ1(a) ∩ Γj−1(b). Then:

cj ≤
s2j − 1

s2 − 1
.

Moreover, Mv = 0 if and only if both cj = (s2j − 1)/(s2 − 1) and (α, β, γ) is a scalar

multiple of  
s
s2j−2 − 1

s2 − 1
, (−1)jsj−1, 1

!
.

Proof Given a and b at distance j with 1 ≤ j ≤ d, there are exactly cj points on a

common singular line with a and at distance j− 1 from b. Hence T has size cj , and no

two points in T are on the same such singular line.

We will now consider vTAiv for every i ∈ {0, . . . , d}. Note that for any two subsets

of points S1 and S2, the value of (χS1)TAiχS2 = (χS2)TAiχS1 is given by the number

of ordered pairs (ω1, ω2) ∈ (S1×S2) with d(ω1, ω2) = i. Our assumptions immediately

yield:

(χ{a})
TA0χ{a} = (χ{b})

TA0χ{b} = 1, (χ{a})
TAiχ{a} = (χ{b})

TAiχ{b} = 0 if 1 ≤
i ≤ d,

(χ{a})
TAiχ{b} = 0 if i 6= j, and (χ{a})

TAjχ{b} = 1,

(χ{a})
TAiχT = 0 if i 6= 1, and (χ{a})

TA1χT = |T | = cj ,

(χ{b})
TAiχT = 0 if i 6= j − 1, and (χ{b})

TAj−1χT = |T | = cj .

Finally, as every two distinct points in T are on distinct singular lines through a,

they cannot be collinear, and hence they are at distance two. This yields: (χT )TA0χT =

|T | = cj , (χT )TA2χT = |T |(|T | − 1) = cj(cj − 1) and (χT )TAiχT = 0 if i /∈ {0, 2}.
We will now work out the following:

sj(vTMv) =

dX
i=0

(−1)isj−i(vTAiv) =

dX
i=0

(−1)isj−i(αχ{a}+βχ{b}+γχT )TAi(αχ{a}+βχ{b}+γχT ).

For any j ≥ 1 this is equal to

sj(α2 +β2 +γ2cj)−sj−1(2αγ)cj +sj−2γ2cj(cj−1)+(−1)j−1s(2βγ)cj +(−1)j(2αβ).

We can rewrite this as (α, β, γ)F (α, β, γ)T with:

F =

0@ sj (−1)j −sj−1cj
(−1)j sj (−1)j−1scj
−sj−1cj (−1)j−1scj cjs

j−2(s2 + cj − 1)

1A .

We compute the determinant of F :

Det(F ) = (−1)jcjDet

0@ sj (−1)j −sj−1cj
1 (−1)jsj −scj
−sj−1 (−1)j−1s sj−2(s2 + cj − 1)

1A
= (−1)jcjDet

0@ 0 −(−1)j(s2j − 1) cjs
j−1(s2 − 1)

1 (−1)jsj −scj
0 (−1)js(s2j−2 − 1) −(cj − 1)sj−2(s2 − 1)

1A
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= −cjsj−2(s2 − 1)Det

„
−(s2j − 1) cjs

s(s2j−2 − 1) −(cj − 1)

«
= cjs

j−2(s2 − 1)((s2j − 1)− cj(s2 − 1)).

We know from Lemma 1 that M is a minimal idempotent up to a positive scalar

and thus positive semidefinite. Hence vTMv ≥ 0 for all α, β, γ ∈ R. Thus F is positive

semidefinite, and hence its determinant must be non-negative, and it is positive definite

if and only if this determinant is positive. We find that cj ≤ s2j−1
s2−1

since s > 1. We

can also write:

Mv = 0⇐⇒ vTMv = 0⇐⇒ (α, β, γ)F (α, β, γ)T = 0.

As F is positive semidefinite, the latter will hold if and only if both F is not positive

definite and F (α, β, γ)T = 0. This is possible if and only if both cj = s2j−1
s2−1

and

(α, β, γ) is a scalar multiple of (s s
2j−2−1
s2−1

, (−1)jsj−1, 1). ut

We now give a property of those regular near 2d-gons attaining one of the bounds from

the previous theorem. It is in fact based on properties of outer distributions of subsets

in association schemes (see Theorem 3.3 in [13]).

Theorem 2 Let Γ be a regular near 2d-gon of order (s, t) with s > 1. Suppose

cj = (s2j − 1)/(s2 − 1) for some j ∈ {1, . . . , d}, and consider three vertices a, b, c

with d(a, b) = j, d(a, c) = d, d(b, c) = k. The set Γ1(a) ∩ Γj−1(b) ∩ Γd−1(c) has size:

s2j−1 + (−1)j+k+dsd−k+j − (−1)j+k+dsd−k+j−1 − 1

s2 − 1
.

Proof Let T be Γ1(a) ∩ Γj−1(b). We know from Theorem 1 that v = s s
2j−2−1
s2−1

χ{a} +

(−1)jsj−1χ{b} + χT satisfies Mv = 0. Hence we have in particular:

0 = (χ{c})
TMv = (χ{c})

T

 
dX
i=0

(−1)i

si
Ai

! 
s
s2j−2 − 1

s2 − 1
χ{a} + (−1)jsj−1χ{b} + χT

!
.

As d(a, c) = d all elements of T are at distance at least d−1 from c. Hence if x denotes

|T ∩ Γd−1(c)|, then |T ∩ Γd(c)| = |T | − x = cj − x. The assumptions now imply:

(χ{c})
TAdχ{a} = (χ{c})

TAkχ{b} = 1, (χ{c})
TAiχ{a} = 0 if i 6= d, (χ{c})

TAiχ{b} = 0

if i 6= k, (χ{c})
TAd−1χT = x, (χ{c})

TAdχT = cj − x and (χ{c})
TAiχT = 0 if

i /∈ {d− 1, d}. Hence we obtain:

(−1)d

sd
s
s2j−2 − 1

s2 − 1
+

(−1)k

sk
(−1)jsj−1 +

(−1)d−1

sd−1
x+

(−1)d

sd
(cj − x) = 0.

Since we assume cj = s2j−1
s2−1

, we can rewrite:

s
s2j−2 − 1

s2 − 1
+ (−1)d+k+jsd−k+j−1 +

s2j − 1

s2 − 1
= (s+ 1)x.

This yields |(Γ1(a) ∩ Γj−1(b)) ∩ Γd−1(c)| = |T ∩ Γd−1(c)| = x =

s2j−1 + (−1)j+k+dsd−k+j − (−1)j+k+dsd−k+j−1 − 1

s2 − 1
.

ut
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The following corollary generalizes the Higman inequality between the parameters (s, t)

of generalized quadrangles, and also gives a property in case of equality.

Corollary 1 Let Γ be a regular near 2d-gon of order (s, t) with s > 1. Then:

t+ 1 ≤ s2d − 1

s2 − 1
,

and if equality holds, then for any triple of points a, b and c mutually at distance d, the

set Γ1(a) ∩ Γd−1(b) ∩ Γd−1(c) has size:

(sd − (−1)d)(sd−1 + (−1)d)

s2 − 1
.

Proof This follows immediately from Theorems 1 and 2 with j = d and k = d. ut

Suppose the regular near 2d-gon is the dual polar graph arising from a classical

finite polar space of rank d. Then for any two vertices a and c at distance d, there is a

bijective correspondence between the one-dimensional subspaces or 1-spaces of c and

the elements of Γ1(a) ∩ Γd−1(c), as each such 1-space p in c is in a unique neighbour

ω of a in the dual polar graph, which will intersect c in precisely p.

For dual polar graphs from classical finite polar spaces of diameter d and order (s, t)

with s > 1, the bound from Corollary 1 is attained if and only if t2 = s2. It follows from

Table 1 that this is the case if and only if Γ is the dual polar graph on the maximals

of H(2d − 1, q2), when Γ is of order (s, t) = (q, (q2d − 1)/(q2 − 1) − 1). Corollary 1

then yields that for any three maximals a, b and c mutually at maximum distance d,

the size of Γ1(a)∩Γd−1(b)∩Γd−1(c) is given by (qd − (−1)d)(qd−1 + (−1)d)/(q2 − 1).

As these vertices are all in Γ1(a) ∩ Γd−1(c), they correspond with a set of 1-spaces in

c. Thas already described this set of 1-spaces (instead of just determining its size) for

this particular graph in [31]. For the sake of completeness, we mention the result in a

somewhat different from.

Lemma 2 Let a, b and c be maximals in the polar space H(2d − 1, q2), pairwise in-

tersecting trivially. The set of 1-dimensional subspaces p of c, such that the unique

neighbour in the corresponding dual polar graph of a through p also intersects b in a

1-space, is precisely the set of (qd − (−1)d)(qd−1 + (−1)d)/(q2 − 1) isotropic 1-spaces

of an induced polar space H(d− 1, q2) in c.

Finally, we would like to remark that the property from Corollary 1 does not

characterize the regular near 2d-gons of order (s, t) meeting the bound on t. The dual

polar graph arising from the polar space W (2d−1, q), which is of order (s, t) = (q, (qd−
1)/(q − 1)− 1), provides a counterexample if d is odd, as was worked out in Theorem

21 of [22], although t2 = s 6= s2 in this case. We again state the result in an adapted

form.

Lemma 3 Let a, b and c be maximals in the polar space W (2d − 1, q) with d odd,

pairwise intersecting trivially. The set of 1-dimensional subspaces p of c, such that the

unique neighbour in the corresponding dual polar graph of a through p also intersects b

in a 1-space, is precisely the set of (qd−1−1)/(q−1) isotropic 1-spaces of a hyperplane

(if q is even) or of an induced polar space Q(d− 1, q) (if q is odd) in c.
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5 On m-ovoids in regular near 2d-gons meeting the bound

An ovoid of a regular near 2d-gon Γ is a set S of points, such that each singular line

contains a unique point of S. If Γ is of order (s, t) with set of vertices Ω, then the

ovoids are precisely the cocliques of size |Ω|/(s+ 1).

More generally, we will say that a subset of points S in a regular near 2d-gon is

an m-ovoid if every singular line contains exactly m points of S. Thas introduced this

concept for generalized quadrangles in [30]. We first prove a fundamental algebraic

property of m-ovoids.

Lemma 4 If S is an m-ovoid of a regular near 2d-gon Γ of order (s, t) with set of

vertices Ω, then its characteristic vector χS can be written as (m/(s + 1))χΩ + Mw

for some vector w.

Proof Let Ω and L denote the sets of points and of singular lines, respectively. Let

C be the incidence matrix between points and singular lines, the columns of which

are indexed by the points of Γ , and the rows by the singular lines, with C`,a = 1 if

a ∈ ` and C`,a = 0 if a /∈ `. As each singular line contains s+ 1 points and exactly m

elements of S, we can write CχΩ = (s + 1)χL and CχS = mχL. We also know that

two points can only be in a common singular line if they are either equal (when they

are on t + 1 common singular lines) or at distance one (when they are on a unique

common singular line). This can be expressed algebraically as: CTC = A1 + (t+ 1)A0,

which implies:

(A1+(t+1)A0)(χS−
m

s+ 1
χΩ) = (CTC)(χS−

m

s+ 1
χΩ) = CT

 
(mχL)− m

s+ 1
((s+1)χL)

!
= 0.

Hence χS − m
s+1χΩ is an eigenvector with eigenvalue −(t+ 1) of A1, and so it follows

from Lemma 1 that it is in the column span of M , which is the corresponding minimal

idempotent up to a positive scalar. ut

Lemma 5 If S is an m-ovoid in a regular near 2d-gon Γ of order (s, t), then for every

point a ∈ S and every i ∈ {0, . . . , d}:

|Γi(a) ∩ S| = ki

 
m

s+ 1
+

 
−1

s

!i 
1− m

s+ 1

!!
.

Proof We know from Lemma 4 that χS can be written as (m/(s+ 1))χΩ +Mw. Note

that AiχΩ = kiχΩ and Ai(Mw) = λi(Mw), where λi denotes the eigenvalue of Ai
corresponding with the column span of M (see Lemma 1). We can now write:

|Γi(a) ∩ S| = (χ{a})
TAiχS

= (χ{a})
TAi

 
m

s+ 1
χΩ +Mw

!
=

m

s+ 1
ki((χ{a})

TχΩ) + (χ{a})
Tλi(Mw)

=
m

s+ 1
ki + λi(χ{a})

T

 
χS −

m

s+ 1
χΩ

!

=
m

s+ 1
ki + λi

 
1− m

s+ 1

!
.
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Applying the formula λi/ki = (−1)i/si from Lemma 1 now completes the proof. ut

The technique used in the following proof is based on the concept of design-orthogonal

pairs of vectors (see for instance Theorem 6.7 in [15]).

Lemma 6 If S is an m-ovoid in a regular near 2d-gon of order (s, t) with s > 1 and

with cj = (s2j − 1)/(s2 − 1) for some j ∈ {1, . . . , d}, and a and b are two elements of

S at distance j in Γ , then

|S ∩Γ1(a)∩Γj−1(b)| = m
(sj − (−1)j)(sj−1 + (−1)j)

s2 − 1
− s (sj − (−1)j)(sj−2 + (−1)j)

s2 − 1
.

Proof Let T denote the subset Γ1(a) ∩ Γj−1(b) and take α = s s
2j−2−1
s2−1

and β =

(−1)jsj−1. We know from Theorem 1 that v = αχ{a} + βχ{b} + χT satisfies Mv = 0.

We now consider (χS)T v:

(χS)T v = (χS)T (αχ{a} + βχ{b} + χT ) = α+ β + |S ∩ T |.

On the other hand, Lemma 4 implies that χS can be written as (m/(s+ 1))χΩ +Mw.

Hence:

(χS)T v =

 
m

s+ 1
χΩ +Mw

!T
v

=
m

s+ 1
(χΩ)T v + wt(Mv)

=
m

s+ 1
(χΩ)T (αχ{a} + βχ{b} + χT )

=
m

s+ 1
(α+ β + |T |) =

m

s+ 1
(α+ β + cj).

Hence we obtain:

|S ∩ (Γ1(a) ∩ Γj−1(b))| = |S ∩ T | = m

s+ 1
(α+ β + cj)− (α+ β),

which yields the desired result after substituting for α, β and cj . ut

We can now severely restrict the size of m-ovoids in a regular near 2d-gon if at least

one of the non-trivial bounds from Theorem 1 is met.

Theorem 3 If Γ is a regular near 2d-gon of order (s, t) with s > 1 and

cj = (s2j − 1)/(s2 − 1) for some j ∈ {2, . . . , d}, then m-ovoids with 0 < m < s+ 1 can

only exist for m = (s+ 1)/2.

Proof Suppose S is an m-ovoid with 0 < m < s+1. Consider any point b in S. We will

count the number N of pairs (p, a) of adjacent points in (Γj−1(b)∩S)× (Γj(b)∩S) in

two ways. The size of Γj−1(b)∩S is given by Lemma 5. For each point p in Γj−1(b)∩S,

there are bj−1/s singular lines through p such that the distance from b to this line is

d(p, b) = j− 1. The other points on those singular lines are precisely the neighbours of

p at distance j from b. Each such singular line contains exactly m− 1 points in S\{p},
all at distance j from b. Hence:

N = kj−1

 
m

s+ 1
+

 
1− m

s+ 1

! 
−1

s

!j−1!
bj−1

s
(m− 1).
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We also know the size of Γj(b)∩S from Lemma 5, and for each point a in that subset,

the number of its neighbours in S at distance j − 1 from b is given by Lemma 6. We

find:

N = kj

 
m

s+ 1
+

 
1− m

s+ 1

! 
−1

s

!j!
× 

m
(sj − (−1)j)(sj−1 + (−1)j)

s2 − 1
− s (sj − (−1)j)(sj−2 + (−1)j)

s2 − 1

!
.

When setting m = x(s+1) and using the identity kj−1bj−1 = kjcj and the assumption

cj = (s2j − 1)/(s2 − 1), we see that x must be a root of the following polynomial in x: 
x+ (1− x)

 
−1

s

!j−1!
s2j − 1

s(s2 − 1)
(x(s+ 1)− 1)−

 
x+(1−x)

 
−1

s

!j! 
x

(sj − (−1)j)(sj−1 + (−1)j)

s− 1
−s (sj − (−1)j)(sj−2 + (−1)j)

s2 − 1

!
,

which can be rewritten as:

(−1)j(sj − (−1)j)(sj−1 + (−1)j)

sj(s− 1)
(x− 1)(2x− 1).

Since we assumed that j ≥ 2 and 0 < m < s+ 1, we see that m/(s+ 1) = x = 1/2. ut

The ((s+1)/2)-ovoids of generalized quadrangles of order (s, s2) (or thus with c2 =

(s4 − 1)/(s2 − 1)) are known as hemisystems. For the dual polar graph Γ arising from

the polar space H(3, q2), which is a generalized quadrangle of order (q, q2), Theorem 3

was already obtained for odd q by Segre in [26] and for even q by Bruen and Hirschfeld

in [7]. Segre also proved that there is a unique hemisystem (up to equivalence) if

q = 3. A construction for hemisystems in the dual polar graph from H(3, q2) for

every odd prime power q was given in [10]. The restriction on m was obtained for

all generalized quadrangles of order (s, s2) in [30]. A hemisystem in a non-classical

generalized quadrangle of order (5, 52) was constructed in [1]. Very recently, it was

proved in [2] that hemisystems exist in all flock generalized quadrangles (see [29] for

more information on the latter).

6 Construction of an induced distance-regular graph

In the regular near 2d-gons where every intersection number cj meets the bound from

Theorem 1, we can construct another distance-regular graph by use of a (non-trivial)

m-ovoid.

In general, a hemisystem in any generalized quadrangle of order (s, s2) induces a

strongly regular graph with parameters srg((s + 1)(s3 + 1)/2, (s − 1)(s2 + 1)/2, (s −
3)/2, (s− 1)2/2) (this was proved in [8]). For the dual polar graph from H(3, q2), this

result was already obtained by Thas in [32]; for q = 3 the induced graph on the unique

hemisystem is isomorphic to the Gewirtz graph. The following lemma generalizes these

facts to regular near 2d-gons meeting the bounds from Theorem 1. It only requires

assumptions on the parameters, but we we will later see that for d ≥ 3 they actually

force the near polygon to be the dual polar graph from H(2d− 1, q2).
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Lemma 7 Let Γ be a regular near 2d-gon of order (s, t) with s > 1 and cj = (s2j −
1)/(s2 − 1) for every j ∈ {1, . . . , d}. Suppose S is an ((s + 1)/2)-ovoid. Let Γ ′ be the

induced subgraph of Γ on S. The distance between any two vertices in Γ ′ is the same

as in Γ , and Γ ′ is distance-regular with diameter d and intersection numbers:

b′j =
s2d − s2j

2(s+ 1)
,∀j ∈ {0, . . . , d− 1}; c′j =

(sj − (−1)j)(sj−1 − (−1)j)

2(s+ 1)
, ∀j ∈ {1, . . . , d}.

Proof Consider any elements a, b ∈ S at distance j in Γ with j ∈ {1, . . . , d}. Lemma 6

yields, after substituting (s+ 1)/2 for m, that:

|S ∩ (Γ1(a) ∩ Γj−1(b))| = (sj − (−1)j)(sj−1 − (−1)j)

2(s+ 1)
,

which is in particular at least one. Induction on j now yields that the distance between

a and b in the induced subgraph is also j.

Now consider any two elements a and b of S at distance j in Γ with 0 ≤ j ≤ d− 1.

There are precisely bj/s singular lines through a at distance j from b. Only on these

singular lines through a can points at distance j+1 from b and adjacent to a be found,

and each such singular line contains exactly (s− 1)/2 points of S\{a}. Hence:

|S ∩ (Γ1(a) ∩ Γj+1(b))| =
bj
s

s− 1

2
=
k − scj

s

s− 1

2
= (cd − cj)

s− 1

2
=
s2d − s2j

2(s+ 1)
,

where we let c0 be zero. Note also that the last value is non-zero if 0 ≤ j ≤ d − 1 so

the diameter of Γ ′ is precisely d. ut

If Γ is the dual polar graph arising from H(2d − 1, q2), then it is a regular near

2d-gon of order (s, t) = (q, (q2d−1)/(q2−1)−1) with parameters cj = (q2j −1)/(q2−
1) for every j ∈ {1, . . . , d} and hence meeting the requirements of Lemma 7. The

following lemma characterizes these graphs as the only regular near 2d-gons meeting

the requirements of Lemma 7 for any d ≥ 3.

Lemma 8 Suppose Γ is a regular near 2d-gon of order (s, t) with d ≥ 3 and s > 1. If

cj = (s2j − 1)/(s2 − 1) for all j ∈ {1, . . . , d}, then s is a prime power q and Γ is the

dual polar graph arising from the polar space H(2d− 1, q2).

Proof The assumptions imply that bj = s(s2d − s2j)/(s2 − 1) for every j ∈ {0, . . . , d−
1}. Hence Γ has classical parameters (d, b, α, β) = (d, s2, 0, s). Theorem 9.4.4 in [5]

characterizes the regular near 2d-gons of order (s, t) with s > 1, d ≥ 3 and with classical

parameters (d, b, 0, β) as either a dual polar graph arising from a classical finite polar

space or a Hamming graph. However, since Hamming graphs have intersection numbers

cj = j < (s2j − 1)/(s2 − 1) (see for instance Theorem 9.2.1 in [5]) we can exclude the

last possibility. The condition t2 = c2 − 1 = s2 and Table 1 now yield that Γ can only

be the dual polar graph arising from H(2d− 1, q2) with q = s. ut

Because of Lemma 8 the result from Lemma 7 comes down to the following if the

diameter is at least three.

Theorem 4 Let S be a ((q+ 1)/2)-ovoid in the dual polar graph Γ from H(2d−1, q2)

with q odd. The induced subgraph Γ ′ on S is distance-regular with classical parameters:

(d, b, α, β) =

 
d,−q,−

 
q + 1

2

!
,−

 
(−q)d + 1

2

!!
.

The distance between any two vertices in Γ ′ is the same as in Γ .
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Proof This follows immediately from Lemma 7 and the definition of classical parame-

ters in Subsection 2.1. ut

Let Γ be the dual polar graph from H(2d− 1, q2) with q an odd prime power. We

first observe that any ((q+ 1)/2)-ovoid in Γ would also yield a ((q+ 1)/2)-ovoid in the

residual graph induced on the set of vertices through a fixed 1-dimensional isotropic

subspace of the polar space, which is isomorphic to the dual polar graph arising from

H(2(d − 1) − 1, q2). The case d = 2 was already discussed at the end of Section 5,

but even for d = 3 no constructions are known to the author. Theorem 4 here yields

that if S is a set of (q + 1)(q3 + 1)(q5 + 1)/2 maximals in H(5, q2) such that every

isotropic 2-space is in exactly (q + 1)/2 elements of S, the induced graph Γ ′ on S is

distance-regular with diameter three and intersection array {b′0, b′1, b′2; c′1, c
′
2, c
′
3}:

{(q3−1)(q2−q+1)/2, q2(q−1)(q2+1)/2, q4(q−1)/2; 1, (q−1)2/2, (q2−q+1)(q2+1)/2}.

In general, no distance-regular graphs with the classical parameters found in Theorem

4 of diameter at least three seem to be known. Weng [35] proved that distance-regular

graphs with classical parameters (d, b, α, β) with b < −1, d ≥ 4, c2 > 1 and with trian-

gles must either be in one of two known families, or satisfy (d, b, α, β) = (d,−q,−(q +

1)/2,−((−q)d + 1)/2) for some odd prime power q. For q = 3 the induced graph on a

2-ovoid in the dual polar graph from H(2d − 1, q2) would be a triangle-free distance-

regular graph with classical parameters (d, b, α, β) = (d,−3,−2,−((−3)d + 1)/2), the

non-existence of which was conjectured for d ≥ 3 in Conjecture 4.11 in [24].

In a classical finite polar space of rank d, t-designs are defined as subsets of max-

imals, such that each isotropic t-space of the polar space is included in exactly m

elements of S for some m. Hence m-ovoids in dual polar graphs are precisely the

(d− 1)-designs. Algebraic characterizations for t-designs in this context (as well as in

many other association schemes) are given in [28], based on Delsarte’s theory of reg-

ular semilattices from [14]. Moreover, 1-designs in the dual polar graph arising from

H(5, q2) with size exactly half the number of all maximals were constructed for every

odd prime power q in [11]. Any partial spread in the polar space H(2d− 1, q2) with d

odd, i.e. a subset of pairwise trivially intersecting maximals, of (maximum) size qd + 1

should also intersect any ((q + 1)/2)-ovoid in exactly half its elements (see Corollary

4.4 in [34]).

Finally, it is worth noting that in any dual polar graph, an m-ovoid S1 and its

complement S2 yield a regular or equitable partition {S1, S2}: for each point p, the

number of neighbours in both parts only depends on whether p ∈ S1 or p ∈ S2.

Regular partitions of dual polar spaces were discussed in detail with many examples

in [9].
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