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Abstract

In [2], Baker, Ebert and Penttila show, via algebraic methods, that a
regular hyperbolic fibration of PG(3, q) with constant back half gives rise
to a flock of a quadratic cone in PG(3, q), and conversely. In this paper a
geometric construction for q even of the flock from the hyperbolic fibration,
and conversely, will be described. A proof will be given that this geometric
construction indeed corresponds to the known algebraic one.

1 Introduction and definitions

The essence of this paper is a geometric construction, for q even, of the connection
between regular hyperbolic fibrations with constant back half and flocks of a
quadratic cone in PG(3, q). The first section will be concerned with the essential
definitions and the algebraic description of the connection between the considered
hyperbolic fibrations and flocks. Section 2 provides some lemmas that will be
useful in Section 3, which describes the geometric construction itself. In Section 4
it will be explained that the given geometric construction indeed yields the same
connection as the known algebraic one.

As first defined in [1], a hyperbolic fibration of PG(3, q) is a collection of q− 1
hyperbolic quadrics and two lines in PG(3, q) that partition the points of PG(3, q).
Hyperbolic fibrations are studied because they yield many spreads of PG(3, q):
by selecting one of the ruling families of each quadric in the fibration, a spread of
PG(3, q) is obtained. These spreads in turn give rise to translation planes, which
explains the interest for hyperbolic fibrations of PG(3, q), see [1], [3], [2].

An easy example of a hyperbolic fibration is the so-called hyperbolic pencil or
H-pencil, which is a pencil of quadrics of the appropriate types. Other examples
of hyperbolic fibrations can be found in [1] and in [3], but up to now all known
hyperbolic fibrations are regular with a constant back half. This means the
following. A hyperbolic fibration is called regular if the two lines in the fibration
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form a conjugate (skew) pair with respect to each of the polarities associated with
the q − 1 hyperbolic quadrics of the fibration. Denote the two skew lines of the
fibration by L0 and L∞, respectively, and suppose without loss of generality that
coordinates are chosen such that L0 : X2 = X3 = 0 and L∞ : X0 = X1 = 0. It is
an easy exercise to show that every quadric in a regular hyperbolic fibration will
then have an equation of the form aX2

0 + bX0X1 + cX2
1 +dX2

2 + eX2X3 + fX2
3 =

0, for some a, b, c, d, e, f ∈ GF(q) with the property that both aX2 + bX + c
and dX2 + eX + f are irreducible over GF(q). Any hyperbolic quadric with an
equation of this form will be abbreviated by V [a, b, c, d, e, f ]. The triple (a, b, c)
is sometimes called the front half of the quadric V [a, b, c, d, e, f ] and likewise
(d, e, f) is called its back half. In all known hyperbolic fibrations, one can fix
either the front half or the back half for the six-tuples representing the hyperbolic
quadrics of the fibration. Such a hyperbolic fibration is said to have constant
front half, respectively constant back half. In this paper, we will simply say that
such a hyperbolic fibration has a constant half. Note that the notion of having a
constant half is only meaningful for regular hyperbolic fibrations.

Geometrically, having a constant half implies that all quadrics of the fibration
intersect either L0 (constant front half) or L∞ (constant back half) in the same
pair of conjugate points with respect to the extension GF(q2) of GF(q). From
now on we will say that a hyperbolic fibration agrees on L0, respectively agrees
on L∞, precisely when all quadrics of the fibration intersect L0, respectively
L∞, in the same pair of conjugate points with respect to GF(q2). This notion
is independent of the choice of the coordinate system and also meaningful for
non-regular hyperbolic fibrations.

The H-pencil may be represented as

{V [0, 0, 0, a, b, c]} ∪ {V [a, b, c, at, bt, ct] | t ∈ GF(q)},

with aX2+bX+c irreducible over GF(q). Note that the variety V [0, 0, 0, a, b, c] is
nothing but L0 and similarly V [a, b, c, 0, 0, 0] corresponds to L∞. One sees that
the H-pencil agrees on both L0 and L∞.

Consider a regular hyperbolic fibration H that agrees on L∞. Then H may
be represented by

H = {V [d, e, f, 0, 0, 0], V [0, 0, 0, d, e, f ]}
∪ {V [ai, bi, ci, d, e, f ] | i = 1, . . . , q − 1}, (1)

with dX2 + eX + f irreducible over GF(q). Note that also aiX
2 + biX + ci

and (ai − aj)X2 + (bi − bj)X + (ci − cj) must be irreducible over GF(q) for all
i, j ∈ {1, 2, . . . , q − 1}, i 6= j.

A flock (see for instance [4]) of a quadratic cone K with vertex p in PG(3, q)
is a partition of the points of K \ {p} into q disjoint irreducible conics. It is
customary to work with the set F of q planes whose intersections with K yield
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the flock. If K has equation X0X2 = X2
1 , then the planes of F have equations

of the form aX0 + bX1 + cX2 + X3 = 0. Any such plane will be represented by
π[a, b, c, 1]. In [2], the following connection between regular hyperbolic fibrations
with a constant back half and flocks of a quadratic cone was first observed.

Theorem 1.1 (Baker, Ebert, Penttila [2]) With the above notation (1), H
is a hyperbolic fibration of PG(3, q) if and only if F := {π[ai, bi, ci, 1] | i =
1, 2, . . . , q− 1} ∪ {π[0, 0, 0, 1]} is a flock of the quadratic cone K in PG(3, q) with
equation X0X2 = X2

1 .

Flocks of a quadratic cone are not only related to hyperbolic fibrations, but
also to a plethora of other interesting objects, like ovoids of Q+(5, q), spreads of
PG(3, q) and translation planes (Walker [10] and Thas independently), general-
ized quadrangles (Knarr [7], Thas [8], [9]), q-clans and herds of ovals if q is even
(see Johnson and Payne [6] for an overview). Of these connections, only the one
between flocks and hyperbolic fibrations has so far been described algebraically
but not geometrically. It is our aim to fill this gap for q even by providing a
geometric explanation of Theorem 1.1.

Note that the flock corresponding to a hyperbolic fibration as in Theorem 1.1
always contains the plane π0 := π[0, 0, 0, 1] with equation X3 = 0. Hence to
a given flock there might correspond inequivalent regular hyperbolic fibrations,
according to which plane is chosen as π0. This matter was sorted out in [2], as
follows.

Theorem 1.2 (Baker, Ebert, Penttila [2]) The number of mutually inequiv-
alent regular hyperbolic fibrations with constant back half obtained from a given
flock F of a quadratic cone is the number of orbits of Aut(F) on its conics
(planes).

2 Preliminary results

From now on we assume that q is even. In this section, two easy preliminary
lemmas are given that will be of use in the construction of Section 3.

Lemma 2.1 For q even, there exists a unique irreducible conic in PG(2, q) with
a given nucleus and containing three distinct given points.

Proof.
First of all, it is assumed that the three given points and the nucleus form a set
of 4 points, no three of which are collinear, for otherwise there cannot exist an
irreducible conic satisfying the conditions of the lemma. The group PGL(3, q) of
all projectivities of PG(2, q) acts sharply transitively on the skeletons ([5, p. 32]),
so that we may assume without loss of generality that the given nucleus is the
point n = (0, 1, 0), while the other three points are (1, 0, 0), (0, 0, 1) and (1, 1, 1).
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Now there exists a unique irreducible conic C with nucleus n and containing these
three points, namely C : X0X2 = X2

1 . This proves the lemma. 2

Lemma 2.2 Let C be an irreducible conic in some plane π of PG(3, q), q even,
with nucleus n in π, and let L0 be a line of π, disjoint from C. Consider a
line L∞ of PG(3, q) containing n but not contained in π, and a pair of conjugate
points {p, p} with respect to GF(q2) on L∞. Then there exists a unique hyperbolic
quadric Q+(3, q) containing C, having L0 and L∞ as conjugate lines with respect
to its polarity and such that its extension Q+(3, q2) to GF(q2) meets L∞ in the
points p and p.

Proof.
First note that any hyperbolic quadric Q+(3, q) having L0 and L∞ as conjugate
lines with respect to its polarity and such that Q+(3, q2) meets L∞ in p and p,
intersects π in some conic C′ which is disjoint from L0 and has nucleus n = L∞∩π.

One can count that the number of hyperbolic quadrics Q+(3, q) having L0

and L∞ as a conjugate pair equals 1
4q2(q−1)3. Each one of them contains a pair

of conjugate points (with respect to GF(q2)) of L∞, and conversely each such
pair is contained in the same number of hyperbolic quadrics (having L0 and L∞
as conjugate pair). As there are 1

2q(q − 1) pairs of conjugate points on L∞, this
yields 1

2q(q − 1)2 hyperbolic quadrics which in addition meet L∞ in p and p, if
considered over GF(q2).

On the other hand, one similarly counts the number of irreducible conics
in π having nucleus n and disjoint from the line L0: this number also equals
1
2q(q − 1)2. Hence the lemma follows. 2

3 The construction geometrically

Let K be a quadratic cone in PG(3, q), q even, and consider a flock F = {π0, π1,
. . . , πq−1} of K. Denote the conic which is the intersection of πi with K by Ci. As
q is even by assumption, the cone K has a nucleus line N through the vertex v of
K. This nucleus line intersects πi in the nucleus ni of Ci, for all i = 0, 1, . . . , q−1,
and these nuclei are all distinct.

Set n0 := n. Since n is a point of the nucleus line of K, every line of PG(3, q)
through n is tangent to K. Consider a plane π of PG(3, q) through v but not
containing n. We will project the conics of the flock F from n onto π. As n is a
point of the plane π0, the q + 1 points of C0 are projected onto the q + 1 points
of some line L0 of π. On the other hand, n is not contained in any of the planes
πi, i = 1, 2, . . . , q−1, so that each conic Ci, i = 1, 2, . . . , q−1, is projected onto a
conic C′i of π. The vertex v of K is projected onto itself. We thus obtain a set of
q − 1 conics C′i, i = 1, 2, . . . , q − 1, one line L0 and a point v in π which together
partition the points of π. Moreover, the point v is the nucleus of each conic C′i,
since vn = N is the nucleus line of K. Hence every plane of PG(3, q) through N
meets K in a generator of K containing exactly one point of each element of the
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flock F . After projection onto π, this means that every line of π through v is
tangent to every conic C′i.

It is our aim to construct from F a regular hyperbolic fibration of PG(3, q)
which agrees on one of its two lines. Hence we set L∞ := N , and the fibra-
tion we will construct will agree on L∞. Choose an arbitrary pair {p, p} of
conjugate points of L∞ with respect to GF(q2). Next, we denote by Q+

i (3, q),
i = 1, 2, . . . , q − 1, the unique (non-degenerate) hyperbolic quadric of PG(3, q)
determined by

– L⊥0 = L∞ with respect to the polarity of Q+
i (3, q);

– π ∩Q+
i (3, q) = C′i; and

– the extension Q+
i (3, q2) of Q+

i (3, q) meets L∞ in the conjugate pair {p, p}.

By Lemma 2.2, the hyperbolic quadric Q+
i (3, q) exists and is unique. We will

now show that the q − 1 quadrics Q+
i (3, q), i = 1, 2, . . . , q − 1, together with L0

and L∞, form a regular hyperbolic fibration in PG(3, q) which agrees on L∞.

Theorem 3.1 With the above notation, H := {Q+
i (3, q) | i = 1, 2, . . . , q − 1} ∪

{L0, L∞} is a regular hyperbolic fibration of PG(3, q) which agrees on L∞.

Proof.
By construction, L⊥0 = L∞ with respect to the polarity of Q+

i (3, q), for all
i = 1, 2, . . . , q − 1, and the extenstion Q+

i (3, q2) of each Q+
i (3, q) meets L∞ in

the conjugate pair {p, p}. So if H is a hyperbolic fibration, it will be a regular
one that agrees on L∞.

Since every C′i is disjoint from L0 and every Q+
i (3, q) is disjoint from L∞ by

construction, we must show that Q+
i (3, q) and Q+

j (3, q) have no common points
for all i 6= j, in order to obtain a partition of the points of PG(3, q). So suppose
that Q+

i (3, q) and Q+
j (3, q) have a point x in common. Denote the plane 〈x, L∞〉

by π′. Then Q+
i (3, q) ∩ π′ is a conic C̃i and similarly Q+

j (3, q) ∩ π′ is a conic C̃j .
The conics C̃i and C̃j share the point x. By the fact that L⊥0 = L∞ with respect
to the polarity of each Q+

k (3, q) ∈ H, the above two conics have the same nucleus
v′ := L0∩π′ and their extensions to GF(q2) intersect the line L∞ in the same pair
{p, p} of conjugate points with respect to GF(q2). By Lemma 2.1, the extensions
to GF(q2) of C̃i and C̃j , and hence also the conics C̃i and C̃j , must coincide. In
particular, every line of π′ through the nucleus v′ of C̃i = C̃j contains a common
point of Q+

i (3, q) and Q+
j (3, q) and this also holds for the line π ∩ π′. But then

the conics C′i and C′j must also have a point in common, which is a contradiction.
It follows that the hyperbolic quadrics Q+

i (3, q), i = 1, 2, . . . , q − 1, together
with the lines L0 and L∞, partition the points of PG(3, q) and thus they form a
hyperbolic fibration. This completes the proof. 2

Conversely, let H := {Q+
i (3, q) | i = 1, 2, . . . , q − 1} ∪ {L0, L∞} be a regular

hyperbolic fibration of PG(3, q) which agrees on one of its lines, say L∞. Let
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π be an arbitrary plane of PG(3, q) through the line L0 and set L∞ ∩ π := v.
Every hyperbolic quadric Q+

i (3, q) intersects π in a conic C′i and these conics are
pairwise disjoint on the one hand and disjoint from L0 on the other hand. So
together with v, these q − 1 conics and L0 partition the points of π. Moreover,
as H is regular by assumption, the point v is the nucleus of each conic C′i.

Next, let n be any point of L∞ \ {v} and consider the plane π0 := 〈n, L0〉. In
π0, consider a non-degenerate conic C0 with nucleus n and let K be the quadratic
cone of PG(3, q) with vertex v and base conic C0. Then vn is the nucleus line of
K. For i = 1, 2, . . . , q − 1, we also consider the quadratic cone Ki with vertex n
and base conic C′i. These cones Ki have a common vertex, but apart from that
they are disjoint, because the conics C′i, i = 1, 2, . . . , q − 1, are pairwise disjoint.
Now we have a look at the intersection of K with Ki, for i = 1, 2, . . . , q−1. Every
line through the nucleus n of C0, so in particular also every generator of Ki, meets
K in a unique point. As a consequence, the cones K and Ki have exactly q + 1
points in common.

Lemma 3.2 For each i ∈ {1, 2, . . . , q − 1}, the q + 1 common points of K and
Ki lie in a plane πi.

Proof.
Consider three distinct points x, y and z of K ∩ Ki. Then 〈x, y, z〉 is a plane
intersecting K in some conic C̃ and Ki in a conic C̃i. By construction of the cones
K and Ki, the line vn is the nucleus line of both of them and hence vn∩ 〈x, y, z〉
is the nucleus of both C̃ and C̃i. Now Lemma 2.1 implies that C̃ and C̃i must
coincide, so that the q + 1 common points of K and Ki must be exactly those of
C̃ = C̃i. This proves the lemma, with πi = 〈x, y, z〉 = 〈C̃i〉. 2

Lemma 3.3 For each i ∈ {1, 2, . . . , q − 1}, it holds that πi ∩ π0 ∩ K = ∅.

Proof.
With the same notation as in the previous lemma, πi∩K = C̃i, i = 1, 2, . . . , q−1.
Now πi ∩ π0 ∩ K is non-empty if and only if C̃i and C0 have a point in common.
But this implies that their projections from n onto π also share a point. This is
obviously not the case, since v, L0 and the q− 1 conics Ci partition the points of
π. 2

As Ki and Kj , i 6= j, share no points except for their common vertex, one
concludes by the two previous lemmas that {πi | i = 0, 1, . . . , q − 1} is a flock
of K. Hence we have constructed a flock from a hyperbolic fibration of PG(3, q)
which is regular and agrees on one of its lines. If a regular hyperbolic fibration
agrees on one of its lines, coordinates can be chosen such that it is of the form (1),
which implies that it has a constant (back) half.

Note that for constructing the flock from the hyperbolic fibration, one does
not need to start from a fibration that agrees on one of its lines. With the above
construction, flocks can be obtained from all regular hyperbolic fibrations. If
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the regular hyperbolic fibration in addition agrees on one of its lines, it can be
seen, by adding coordinates as in the next section, that all choices of the plane
π containing the line L0 yield the same flock. If the fibration does not agree on
any of its lines, different choices of π may lead to non-isomorphic flocks. So far,
however, there are no examples known of such hyperbolic fibrations.

4 The construction algebraically

In this section we add coordinates to the construction of the previous section to
show that it is indeed the geometric translation of the algebraic correspondence
between a regular hyperbolic fibration with constant back half and a flock of
a quadratic cone containing a fixed plane, as described by Baker, Ebert and
Penttila in [2], see Theorem 1.1.

Consider a hyperbolic fibrationH consisting of the two lines L0 : X2 = X3 = 0
and L∞ : X0 = X1 = 0 and q−1 hyperbolic quadrics Q+

i (3, q), i = 1, 2, . . . , q−1,
given by

Q+
i (3, q) : aiX

2
0 + biX0X1 + ciX

2
1 + dX2

2 + eX2X3 + fX2
3 = 0,

where dX2 + eX + f , aiX
2 + biX + ci and (ai − aj)X2 + (bi − bj)X + (ci − cj)

are irreducible over GF(q), for all i, j ∈ {1, 2, . . . , q − 1}, i 6= j. This hyperbolic
fibration is regular and agrees on L∞. Let π be the plane X2 = 0. The hyperbolic
quadric Q+

i (3, q), i ∈ {1, 2, . . . , q − 1}, then intersects π in the conic C′i with
equation

C′i :
{

X2 = 0
aiX

2
0 + biX0X1 + ciX

2
1 + fX2

3 = 0.

The conics C′i, i = 1, 2, . . . , q − 1, are pairwise disjoint and disjoint from L0, and
they all have nucleus v := (0, 0, 0, 1), which is the point L∞ ∩ π. Let n be the
point (0, 0, 1, 0) on L∞ \ {v} and set π0 := 〈n, L0〉, so that π0 : X3 = 0. In π0 we
choose a conic C0 with nucleus n as follows:

C0 :
{

X3 = 0
X0X1 = X2

2 .

With these choices, the cone K′ with vertex v and base conic C0 has equation
X0X1 = X2

2 , and for i = 1, 2, . . . , q−1 we consider the cone Ki with vertex n and
base conic C′i, having equation aiX

2
0 + biX0X1 + ciX

2
1 + fX2

3 = 0. By some basic
calculations, one can check that the intersection K ∩ Ki is the following conic:

C̃i :
{ √

aiX0 +
√

ciX1 +
√

biX2 +
√

fX3 = 0√
ciX

2
1 +

√
biX1X2 +

√
aiX

2
2 +

√
fX1X3 = 0.

This is in fact the intersection of K′ with the plane π′i :
√

aiX0+
√

ciX1+
√

biX2+√
fX3 = 0. Applying the collineation Y0 = X0, Y1 = X2, Y2 = X1, Y3 =

√
fX3,

followed by the automorphic collineation induced by the field automorphism
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x 7→ x2, the plane π′i is mapped to the plane πi : aiY0 + biY1 + ciY2 + Y3 = 0,
while K′ is transformed into the cone K : Y0Y2 = Y 2

1 . Hence we have obtained
the same flock as the one given in Theorem 1.1.
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