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Abstract

In [2], a characterization theorem for Veronesean caps in PG(N, K), with K a skewfield,
is provided. This result extends the theorem for the finite case proved in [7]. Although the
statement of this theorem is correct, the proof given in [2] is incomplete, as some lemmas
from [7] are proved using counting arguments and hence require a different approach in the
infinite case. In this paper we use the Veblen-Young theorem [9] to fill these gaps. Moreover,
we then use this classification of Veronesean caps to provide a further general geometric
characterization.

1 Introduction

Veronesean varieties are fundamental objects in geometry, be it classical algebraic geometry or
modern finite geometry. In the past decades, several characterization results were proved for
both quadric Veroneseans and Hermitian Veroneseans in the finite case, many of them purely
combinatorial, but some of them rather geometric in nature. Two examples of the latter are (1)
the characterization as unions of ovals or ovoids with an additional assumption on the tangent
lines or planes, see [1], [5] and [6]; these characterizations also hold for certain projections of the
varieties, (2) the characterization as representation of a projective space in another projective
space where lines of the former are ovals or ovoids in the latter, see [7] and [8].

Since the formulation of the assumptions of the above characterizations are independent of
the finiteness, one can wonder whether these also hold in the general (infinite) case. A first
attempt towards this was recently made by Ferrara Dentice and Marino [2] who considered the
characterization of type (1) for quadric Veroneseans. However, their proof contains two serious
gaps, as firstly they neglected to prove that the tangent lines at a fixed point x to the ovals
containing x and meeting a fixed oval not through x fill up a plane. In the finite case, this just
follows by the numbers, but it is crucial in showing that the cap endowed with the structure
of ovals is a projective space. Secondly, in the case of an infinite field, one needs to show that
this projective space is necessarily finite-dimensional (this is trivial in the finite case). Once this
proved, it is a routine exercise to reformulate the proof in [6] count-free.
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In the present paper, we fill these gaps by directly showing that the cap endowed with the
structure of ovals is a finite-dimensional projective space using Veblen’s axiom. Then we go on
proving a type (2) characterization for quadric Veronesean varieties (valid in the general infinite
case, but at the same time providing an alternative proof for the finite case).

The paper is organized as follows. In Section 2, we introduce the necessary notions: we review
the Veblen-Young theorem, which is crucial in our arguments, define quadric Veroneseans, and
state our main results.

2 Notation and main results

2.1 Axiomatization of projective spaces

A good exposition on the foundations of projective and polar spaces can be found on Peter
Cameron’s website, and the paragraph below is based on these lecture notes. At the end of the
19th century a lot of work was done on the axiomatization of projective spaces, starting with
Pasch. This work culminated in 1910 when Veblen and Young provided a beautiful characteri-
zation of projective spaces [9] based on the following axiom.

Veblen’s axiom

If a line intersects two sides of a triangle but does not contain their intersection then it also
intersects the third side.

Theorem 2.1 (Veblen-Young theorem) Let (X,L) be a thick linear space satisfying Ve-
blen’s axiom. Then one of the following holds:

(1) X = L = ∅.

(2) |X| = 1, L = ∅.

(3) L = {X}, |X| ≥ 3.

(4) (X,L) is a projective plane.

(5) (X,L) is a projective space over a skew field, not necessarily of finite dimension.

2.2 Quadric Veronesean caps

An oval C in a projective plane π is a set of points of π such that no line of π intersects C in
at least 3 points, and for every point x ∈ C, there is a unique line L through x intersecting C
in only x. The line L is called the tangent line at x to C and denoted Tx(C).
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Let X be a spanning point set of PG(N, K), with K any skew field, and let Π be a collection of
planes of PG(N, K) such that, for any π ∈ Π, the intersection π ∩X is an oval X(π) in π (and
then, for x ∈ X(π), we sometimes denote Tx(X(π)) simply by Tx(π)). We call X a Veronesean
cap if the following properties hold :

(V1) Any two points x and y lie in a unique element of Π, denoted by [x, y].

(V2) If π1, π2 ∈ Π, with π1 6= π2, then π1 ∩ π2 ⊂ X.

(V3) If x ∈ X and π ∈ Π, with x /∈ π, then each of the lines Tx([x, y]), y ∈ π ∩X, is contained
in a fixed plane of PG(N, K), denoted by T (x, π).

In [7], it is proved that the following are examples of Quadric Veronesean caps.

Quadric Veroneseans

Let K be a (commutative) field and n a natural number greater than or equal to 1. The quadric
Veronesean Vn of index n is the set of points of the projective space PG(n(n + 3)/2, K) with
generic element

(x2
0, x

2
1, . . . , x

2
n, x0x1, x0x2, . . . , x0xn, x1x2, . . . , x1xn, . . . , xn−1xn),

where (x0, x1, . . . , xn) is a point of PG(n, K). Equivalently, if we consider a point of PG(n(n +
3)/2, K) with projective coordinates

(y00, y11, . . . , ynn, y01, y02, . . . , y0n, y12, . . . , y1n, . . . , yn−1,n),

then it belongs to Vn if and only if rank(yij) = 1, with yij = yji if i > j.

The following theorem is our first main result and is the generalization of the finite case, proved
in [7].

Theorem 2.2 Let X be a Veronesean cap in PG(N, K) Then K is a field and there exists
a natural number n ≥ 2 (called the index of X), a projective space Π′ := PG(n(n + 3)/2, K)
containing Π, a subspace R of Π′ skew to Π, and a quadric Veronesean Vn of index n in Π′,
with R∩Vn = ∅, such that X is the (bijective) projection of Vn from R onto Π. The subspace R
can be empty, in which case X is projectively equivalent to Vn.

The above statement appeared already in [2], but the argument there contains a gap. To be more
precise, let V = (X, Π) be a Veronesean cap of index n, where X is a set of points in PG(N, K),
for some skew field K, and Π its collection of ovals. Associated with V we can consider the
geometry P having point set X and as line set L the set Π, endowed with the natural incidence.
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Then the authors proved the above theorem under the extra assumption that (X,L) is a finite-
dimensional projective space (in fact, they derived that (X,L) is a projective space from the
unproved and unreferenced fact that, in (V3), the tangent lines are not only contained in a fixed
plane, but they cover the whole plane). In Section 3 we will prove that (X,L) is a projective
space using the Veblen-Young theorem. Moreover, we show that (X,L) is finite-dimensional.
The proof of Theorem 2.2 is then finished by applying Theorem 3.1 and Theorem 3.2 of [2].

As an application, we will show the following characterization, which basically replaces Condition
(V2) with a dimension restriction, and (V3) with the condition that the geometry of points and
ovals is a projective space.

Theorem 2.3 Let X be a set of points in the projective space PG(d, K), with K any skew field
of order at least 3. Suppose that

(V1*) for any pair of points x, y ∈ X, there is a unique plane denoted [x, y] such that [x, y] ∩X
is an oval, denoted X([x, y]);

(V2*) the set X endowed with all subsets X([x, y]), has the structure of the point-line geometry
of a projective space PG(n, F), for some skew field F, n ≥ 3, or of any projective plane Π
(and we put n = 2 in this case);

(V3*) d ≥ 1
2n(n + 3).

Then d = 1
2n(n + 3) and X is the point set of a quadric Veronesean of index n. In particular,

F ≡ K if n ≥ 3, and Π is isomorphic to PG(2, K) if n = 2.

3 Proof of the Main Result

Let V = (X, Π) be a Veronesean cap, where X is a set of points in PG(N, K), for some skew
field K, and Π its collection of ovals.

Associated with V we can consider the geometry P having point set X and line set the set Π,
endowed with the natural incidence.

Theorem 3.1 P is a projective space.

Proof We denote by [x, y] the oval through x, y ∈ X.

Let x12, x23 and x13 be three points of X and denote C1 = [x12, x13], C2 = [x12, x23] and
C3 = [x13, x23]. Let C4 be an oval intersecting C1 in a point x14 and C2 in a point x24, both
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different from x12. Our purpose is to show that Veblen’s axiom holds, which means that we
have to show that C4 intersects C3. Of course, we may assume that C3 6= C4 and that C4 does
not contain x13 nor x23. First we claim that V := 〈C1, C2, C3〉 contains C4 and may be assumed
to be of dimension 5.

Indeed, let us first show that V contains C4. Since both Tx13(C3) and Tx13(C1) belong to
〈C1, C3〉 ⊆ V , it follows by Condition (V3) applied to the point x13 and the oval C2 that also
Tx13([x13, x24]) does, and hence 〈[x13, x24]〉 = 〈Tx13([x13, x24]), x24〉 is contained in V . Likewise,
applying (V3) to x24 and C1 and reasoning as above it follows that C4 is contained in V .

Now, if V were 4-dimensional, then C4 and C3 would meet, and the Veblen’s axiom would follow
automatically.

Now we project V \ 〈C2〉 from C2 onto a plane π of V disjoint from 〈C2〉. The conics C3 and C4

together with their tangents at their intersection point with C2 are mapped onto two full lines
of π, say L3 and L4, respectively. Let x be the intersection of L3 and L4. There are basically
four different possibilities.

(1) There is a point xi of Ci \ C2 projected onto x from 〈C2〉, for i ∈ {3, 4}, and x3 6= x4.

In this case, since the space 〈x3, x4, C2〉 = 〈x,C2〉 is 3-dimensional, the line 〈x3, x4〉 meets
the plane 〈C2〉 in a point y. This implies that the plane of the oval [x3, x4] intersects 〈C2〉
in y, implying y ∈ X by (V2), contradicting [x3, x4] being an oval.

(2) There is a point x3 of C3\C2 projected onto x from 〈C2〉, and the tangent line Tx24(C4) :=
L4 to C4 at x24 projects onto x from 〈C2〉.
In this case, clearly L4 is contained in 〈C2, x3〉, which also contains Tx24(C2). Hence, by
our axioms, the 3-space 〈C2, x3〉 also contains Tx24([x13, x24]) (since the ovals C2, C4 and
[x13, x24] all intersect C1). Similarly, since the ovals [x13, x24], C2 and [x3, x24] all meet the
conic C3, the line Tx24([x3, x24]) belongs to 〈C2, x3〉, which implies that [x3, x24] belongs
to the 3-space 〈C2, x3〉 and so 〈[x3, x24]〉 meets 〈C2〉 in a line, contradicting our axioms.

(3) The tangent lines Tx2i(Ci) =: Li to Ci at x2i project onto x from 〈C2〉, for all i ∈ {3, 4}.
In this case, as above, the 3-space 〈C2, x〉 contains Tx24([x13, x24]). It follows that the
4-space U := 〈C2, x, x13〉 contains [x13, x24], C2 and C3. But, as above, one easily deduces
that U also contains C1, and so U coincides with V , a contradiction.

(4) The only remaining possibility is that there is a point z of (C3 ∩C4) \C2 projected onto x
from 〈C2〉. But then C3 ∩ C4 is nonempty, and that is exactly what we had to prove.

Hence we have shown that Veblen’s axiom holds. �

Remark At this point it is not yet clear why P is finite-dimensional.
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To finish the proof of Theorem 2.2 for n = 2 we project from a projective line intersecting
X in two points x and y onto a 3-dimensional space Σ skew from this line. Considering the
projections of all ovals through x or y, except for [x, y] itself, we obtain two sets of affine
lines spanning Σ and such that each affine line of one set meets every affine line of the other
set. It follows easily that the corresponding (projective) lines form the two generator sets of
a hyperbolic quadric Q, from which two generators are removed, one of each class. But the
missing generators contain the projections of the tangents Tx([x, z]) and Ty([y, z]), for z ranging
through the points of X \X([x, y]). Hence the subspace Σy generated by y and the tangents at x
of all ovals containing x is 3-dimensional. So the images of the planes through these points yield
two opposite reguli. Hence K is a field. The general case follows as in [7]. Finally to exclude
the possibility of P being infinite-dimensional the above argument with the two opposite reguli
shows

Lemma 3.2 If x ∈ X and π ∈ P with x /∈ π, then T (x, π)\{x} is the disjoint union of
Tx([x, y])\{x}, with y ranging over X ∩ π.

This is Lemma 2.1 from [6]. Similarly as in that article it now follows that the tangent space
T (x) of a Veronesean cap of index n has dimension n. Hence, it follows immediately that P is
finite-dimensional.

4 An application of quadric Veronesean caps

Using the classification of Veronesean caps, we can now show Theorem 2.3. In order to do so,
we show (V2) and (V3). But, as in the finite case (see Section 3 of [7]), one shows that, if n ≥ 3,
the space spanned by the points of X corresponding to a plane of PG(n, F) has dimension 5.
Hence it suffices to consider the case n = 2.

For ease of notation, we will call oval any oval of the form [x, x′], with x, x′ ∈ X.

Proof of Theorem 2.3

Take two points x, y ∈ X. Let C1, C2 be two distinct ovals through x not containing y. Denote
H := 〈C1, C2, y〉. Let C be an arbitrary oval through y, but not through x. Then C meets
C1 ∪ C2 in two distinct points and hence X(C) contains three noncollinear points of H and is
thus contained in H. It follows easily that X ⊆ H and so H coincides with PG(5, K). This
firstly shows (V2) and secondly implies that the projections of C1 \ {x} and C2 \ {x} from the
line 〈x, y〉 onto a solid Σ skew to 〈x, y〉 are two non-planar affine lines A1 and A2, respectively
(an affine line is just the point set of a line with one point removed). As in the argument above
the subspace Σy generated by y and the tangents at x of all ovals containing x is 3-dimensional.
Replacing y by any other point y′ of X distinct from x and such that y′ /∈ [x, y], we see that all
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mentioned tangents together with y′ are also contained in a solid Σy′ . If Σy = Σy′ , then it would
contain two ovals. Renaming them as C1, C2 and picking a point not on these, we obtain a
contradiction to the above result that H is 5-dimensional. Hence all tangents at x are contained
in the plane Σy ∩ Σy′ and the theorem is proved. �
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