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Abstract

We introduce generator blocking sets of finite classical polar spaces.
These sets are a generalisation of maximal partial spreads. We prove
a characterization of these minimal sets of the polar spaces Q(2n, q),
Q−(2n + 1, q) and H(2n, q2), in terms of cones with vertex a subspace
contained in the polar space and with base a generator blocking set in a
polar space of rank 2.
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1 Introduction and definitions

Consider the projective space PG(3, q). It is well known that a line of PG(3, q)
is the smallest blocking set with relation to the planes of PG(3, q). It is also
well known that any blocking set B with relation to the planes, such that |B| <
q +

√
q + 1, contains a line ([2]).

Consider now any symplectic polarity ϕ of PG(3, q). The points of PG(3, q),
together with the totally isotropic lines with relation to ϕ, constitute the gen-
eralized quadrangle W(3, q). If B is a blocking set with relation to the planes of
PG(3, q), then B is a set of points of W(3, q) such that on any point of W(3, q)
there is at least one line of W(3, q) meeting B in at least one point. Dualizing
to the generalized quadrangle Q(4, q), we find a set L of lines of Q(4, q) such
that every line of Q(4, q) meets at least one line of L. Together with the known
bounds on blocking sets of PG(2, q), we observe the following proposition.

Proposition 1.1. Suppose that L is a set of lines of Q(4, q) with the property
that every line of Q(4, q) meets at least one line of L. If |L| is smaller than the
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size of a non-trivial blocking set of PG(2, q), then L contains a pencil of q + 1
lines through a point of Q(4, q) or L contains a regulus contained in Q(4, q).

This proposition motivates the study of small sets of generators of three
particular finite classical polar spaces, meeting every generator. In this section,
we define generalized quadrangles and describe briefly the finite classical polar
spaces, and we state the main theorems to be proved in the paper.

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P ,G, I)
in which P and G are disjoint non-empty sets of objects called points and lines
(respectively), and for which I⊆ (P × G) ∪ (G × P) is a symmetric point-line
incidence relation satisfying the following axioms:
(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are

incident with at most one line.
(ii) Each line is incident with 1 + s points (s ≥ 1) and two distinct lines are

incident with at most one point.
(iii) If X is a point and l is a line not incident with x, then there is a unique

pair (Y,m) ∈ P × G for which X I m I Y I l.
The integers s and t are the parameters of the GQ and S is said to have order
(s, t). If S = (P ,G, I) is a GQ of order (s, t), we say that S ′ = (P ′,G′, I′) is a
subquadrangle of order (s′, t′) if and only if P ′ ⊆ P , G′ ⊆ G, and S ′ = (P ′,G′, I′)
is a generalized quadrangle with I′ the restriction of I to P ′ × G′.

The finite classical polar spaces are the geometries consisting of the totally
isotropic, respectively, totally singular, subspaces of non-degenerate sesquilin-
ear, respectively, non-degenerate quadratic forms on a projective space PG(n, q).
So these geometries are the non-singular symplectic polar spaces W(2n+ 1, q),
the non-singular parabolic quadrics Q(2n, q), n ≥ 2, the non-singular elliptic
and hyperbolic quadrics Q−(2n + 1, q), n ≥ 2, and Q+(2n + 1, q), n ≥ 1, re-
spectively, and the non-singular hermitian varieties H(d, q2), d ≥ 3. For q even,
the parabolic polar space Q(2n, q) is isomorphic to the symplectic polar space
W(2n− 1, q). For our purposes, it is sufficient to recall that every non-singular
parabolic quadric in PG(2n, q) can, up to a coordinate transformation be de-
scribed as the set of projective points satisfying the equation X2

0 + X1X2 +
. . . +X2n−1X2n = 0. Every non-singular elliptic quadric of PG(2n + 1, q) can
up to a coordinate transformation be described as the set of projective points
satisfying the equation g(X0, X1) +X2X3 + . . .+X2nX2n+1 = 0, g(X0, X1) an
irreducible homogeneous quadratic polynomial over GF(q). Finally, the hermi-
tian variety H(n, q2) can up to a coordinate transformation be described as the
set of projective points satisfying the equation Xq+1

0 +Xq+1

1 + . . .+Xq+1
n = 0.

The generators of a classical polar space are the projective subspaces of
maximal dimension completely contained in this polar space. If the generators
are of dimension r − 1, then the polar space is said to be of rank r.

Finite classical polar spaces of rank 2 are examples of generalized quadran-
gles, and are called finite classical generalized quadrangles. These are the non-
singular parabolic quadrics Q(4, q), the non-singular elliptic quadrics Q−(5, q),
the non-singular hyperbolic quadrics Q+(3, q), the non-singular hermitian vari-
eties H(3, q2) and H(4, q2), and the symplectic generalized quadrangles W(3, q)
in PG(3, q). The GQs Q(4, q) and W(3, q) are dual to each other, and have both
order (q, q). The GQs Q(4, q) and W(3, q) are self-dual if and only if q is even.
Finally, the GQs H(3, q2) and Q−(5, q) are also dual to each other, and have
respective order (q2, q) and (q, q2). The GQ H(4, q2) has order (q2, q3), and the

2



GQ Q+(3, q) has order (q, 1). By taking hyperplane sections in the ambient
projective space, it is clear that Q+(3, q) is a subquadrangle of Q(4, q), that
Q(4, q) is a subquadrangle of Q−(5, q), and that H(3, q2) is a subquadrangle of
H(4, q2). These well known facts can be found in e.g. [9].

Consider a finite classical polar space S of rank r ≥ 2. A set L of generators
of S is called a generator blocking set if it has the property that every generator
of S meets at least one element of L non-trivially. We generalize this definition
to non-classical GQs, and we say that L is a generator blocking set of a GQ S if
L has the property that every line of S meets at least one element of L. Clearly,
for finite classical generalized quadrangles, both definitions coincide. Suppose
that L is a generator blocking set of a finite classical polar space, respectively a
GQ. We call an element π of L essential if and only if there exists a generator,
respectively line, of S not in L, meeting no element of L \ {π}. We call L
minimal if and only if all of its elements are essential.

A spread of a finite classical polar space is a set of generators partitioning
the point set. A cover is a set C of generators such that every point is contained
in at least one element of C. From the definitions, it follows that spreads and
covers are particular examples of generator blocking sets.

In this paper, we will study small generator blocking sets of the polar spaces
Q(2n, q), Q−(2n + 1, q) and H(2n, q2), n ≥ 2, all of rank n. The following
theorems, inspired by Proposition 1.1, will be proved in Section 2.

Theorem 1.2. Let L be a generator blocking set of a finite generalized quad-
rangle of order (s, t), with |L| = t+1. Then L consists of a pencil of t+1 lines
through a point, or t ≥ s and L is a spread of a subquadrangle of order (s, t/s).

Theorem 1.3. (a) Let L be a generator blocking set of Q−(5, q), with |L| =
q2+ δ+1. If δ ≤ 1

2
(3q−

√

5q2 + 2q + 1), then L contains a pencil of q2 +1
generators through a point or L contains a cover of Q(4, q) embedded as a
hyperplane section in Q−(5, q).

(b) Let L be a generator blocking set of H(4, q2), with |L| = q3 + δ + 1. If
δ < q − 3, then L contains a pencil of q3 + 1 generators through a point.

Section 3 is devoted to a generalization of Proposition 1.1 and Theorem 1.3
to finite classical polar spaces of any rank.

2 Generalized quadrangles

In this section, we study minimal generator blocking sets L of GQs of order
(s, t). After general observations and the proof of Theorem 1.2, we devote
two subsections to the particular cases S = Q−(5, q) and S = H(4, q2). We
remind that for a GQ S = (P ,G, I) of order (s, t), |P| = (st + 1)(s + 1) and
|G| = (st + 1)(t + 1), see e.g. [9]. Suppose that P is a point of S, then we
denote by P⊥ the set of all points of S collinear with P . By definition, P ∈ P⊥.
For a classical GQ S with point set P , the set P⊥ = π ∩ P , with π the tangent
hyperplane to S in the ambient projective space at the point P [5, 9]. Therefore,
when P is a point of a classical GQ S, we also use the notation P⊥ for the
tangent hyperplane π. From the context, it will always be clear whether P⊥

refers to the point set or to the tangent hyperplane.
We denote by M the set of points of P covered by the lines of L. Since a

GQ does not contain triangles, different lines on a point not in M meet different
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lines of L. As every point lies on t + 1 lines, this implies that |L| = t + 1 + δ
with δ ≥ 0. For each point P ∈ M, we define w(P ) as the number of lines of L
on P . Also, we define

W :=
∑

P∈M

(w(P ) − 1),

then clearly |M| = |L|(s+ 1)−W .
We denote by bi the number of lines of G \ L that meet exactly i lines of

L, 0 ≤ i. Derived from this notation, we denote by bi(P ) the number of lines
on P 6∈ M that meet exactly i lines of L, 1 ≤ i. Remark that there is no a
priori upper bound on the number of lines of L that meet a line of G \ L. In
the next lemmas however, we will search for completely covered lines not in L,
and therefore we denote by b̃i the number of lines of G \ L that contain exactly
i covered points, 0 ≤ i ≤ s+ 1, and we denote by b̃i(P ) the number of lines on
P 6∈ M containing exactly i covered points, 0 ≤ i ≤ s+ 1.

Lemma 2.1. Suppose that δ < s− 1.
(a) Let the point X ∈ P \M. Then

∑

i bi(X)(i− 1) = δ and

∑

P∈X⊥∩M

(w(P ) − 1) ≤ δ.

(b) A line not contained in M can meet at most δ+1 lines of L. In particular,
b̃i = bi = 0 for i = 0 and for δ + 1 < i < s+ 1.

(c)
δ+1
∑

i=2

b̃i(i− 1) ≤
δ+1
∑

i=2

bi(i− 1).

(d) If P0 is a point of M that lies on a line l meeting M only in P0, then

∑

P∈M\P⊥

0

(w(P ) − 1) ≤ δs.

(e)

(s− δ)

δ+1
∑

i=1

bi(i− 1) ≤ (st− t− δ)(s+ 1)δ +Wδ.

(f) If not all lines on a point P belong to L, then at most δ+1 lines on P belong
to L, and less than t

s + 1 lines on P not in L are completely contained in
M.

Proof. (a) Consider a point X ∈ P \M. Each of the t+ 1 lines on X meets a
line of L, and every line of L meets exactly one of these t+ 1 lines. Hence

|X⊥ ∩M| ≥ t+ 1 =
∑

i

bi(X) .

Furthermore,

∑

P∈X⊥∩M

w(P ) =
∑

i

bi(X)i = |L| = t+ 1 + δ .

Both assertions follow immediately.
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(b) Since every line of S meets a line of L, it follows that b̃0 = b0 = 0. Consider
any line l 6∈ L containing a point P 6∈ M. The t lines different from l on P
are blocked by at least t lines of L not meeting l. So at most |L|− t = δ+1
lines of L can meet l.

(c) Consider a line l containing i covered points with 0 < i ≤ δ + 1. Then l
must meet at least i lines of L, and, by (b), at most δ + 1 lines of L. On
the left hand side, this line is counted exactly i− 1 times, on the right hand
side this line is counted at least i− 1 times. This gives the inequality.

(d) Each point P , with P 6∈ P⊥
0 , is collinear to exactly one point X 6= P0 of l.

For X ∈ l, X 6= P0, the inequality of (a) gives
∑

P∈X⊥∩M(w(P ) − 1) ≤ δ.
Summing over the s points on l different from P0 gives the expression.

(e) It follows from (b) that every line with a point not in M has at least s− δ
points not in M. Taking the sum over all points P not in M and using the
equality of (a), one finds

δ+1
∑

i=1

bi(s− δ)(i − 1) ≤
∑

P 6∈M

δ+1
∑

i=1

bi(P )(i − 1) = (|P| − |M|)δ.

As |M| = |L|(s+ 1)−W , the assertion follows.
(f) Suppose that the point P lies on exactly x ≥ 1 lines that are not elements

of L. It is not possible that all these x lines are contained in M, since this
would require xs lines of L that are not on P , and then |L| ≥ t+1−x+xs ≥
t+ s, a contradiction with δ < s− 1. Thus we find a point P0 ∈ P⊥ \M.
Then the t lines on P0, different from 〈P, P0〉 must be blocked by a line of
L not on P , hence at most δ + 1 lines of L can contain P .
If y lines on P do not belong to L, but are completely contained in M,
then at least 1 + ys lines contained in L meet the union of these y lines, so
1 + ys ≤ |L| = t+ 1 + δ, so y < t

s + 1 as δ < s.
�

Lemma 2.2. Suppose that δ = 0. If two lines of L meet, then L is a pencil of
t+ 1 lines through a point P .

Proof. The lemma follows immediately from Lemma 2.1 (f). �

Lemma 2.3. Suppose that δ = 0. If L is not a pencil, then t ≥ s and L is a
spread of a subquadrangle of order (s, t/s).

Proof. We may suppose that L is not a pencil, so that the lines of L are pairwise
skew by Lemma 2.2. Consider the set G′ of all lines completely contained in M.
The set G′ contains at least all the elements of L, so G′ is not empty. If l ∈ G′

and P ∈ M not on l, then there is a unique line g ∈ G on P meeting l. As
this line contains already two points of M, it is contained in M by Lemma 2.1
(b), that is g ∈ G′. This shows that (M,G′) is a GQ of some order (s, t′) and
hence it has (t′s+ 1)(s+ 1) points. As |M| = (t+ 1)(s+ 1), then t′s = t, that
is t′ = t/s and hence t ≥ s. �

This lemma proves Theorem 1.2.
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2.1 The case S = Q−(5, q)

In this subsection, S = Q−(5, q), so (s, t) = (q, q2), and |L| = q2 + 1 + δ. We
suppose that L contains no pencil and we will show for small δ that L contains
a cover of a parabolic quadric Q(4, q) ⊆ S.

The setM of covered points blocks all the lines of Q−(5, q). An easy counting
argument shows that |M| ≥ q3+1 (in fact, it follows from [8] that |M| ≥ q3+q,
but we will not use this stronger lower bound). Thus W = |L|(q + 1)− |M| ≤
(q + 1)(q + δ).

Lemma 2.4. If δ ≤ q−1

2
, then W ≤ δ(q + 2).

Proof. Denote by B the set of all lines not in L, meeting exactly i lines of L for
some i, with 2 ≤ i ≤ δ + 1. We count the number of pairs (l,m), l ∈ L, m ∈ B,
l meets m. The number of these pairs is

∑δ+1

i=2
bii.

It follows from Lemma 2.1 (e), W ≤ (q + 1)(q + δ), and δ ≤ q−1

2
, that

δ+1
∑

i=2

bii ≤ 2

δ+1
∑

i=1

bi(i − 1) ≤ 2 · (q
3 − q2 − δ)(q + 1)δ +Wδ

q − δ

≤ 2
(q + 1)δ(q3 − q2 + q)

q − δ
≤ 2(q − 1)(q3 − q2 + q) =: c

Hence, some line l of L meets at most ⌊c/|L|⌋ lines of B. Denote by B1 the
set of lines not in L that meet exactly one line of L. If a point P does not lie on
a line of B1, then it lies on at least q2 − q − δ lines of B (by Lemma 2.1 (f) and
since L contains no pencil). As δ ≤ q−1

2
, then c/|L| < 2(q2 − q − δ), so at most

one point of l can have this property. Thus l has x ≥ q points P0 that lie on a
line of B1, so l is the only line of L meeting such a line. Apply Lemma 2.1 (d)
on these x points. As every point not on l is collinear with at most one of these
x points, it follows that

∑

P∈M\l

(w(P ) − 1) ≤ xδq

x− 1
≤ δq2

q − 1
< δ(q + 1) + 1 .

All but at most one point of l lie on a line of B1, so l is the only line of L
on these points. One point of l can be contained in more than one line of L,
but then it is contained in at most δ + 1 lines of L by Lemma 2.1 (f). Hence
∑

P∈l(w(P ) − 1) ≤ δ, and therefore W ≤ δ(q + 2). �

Lemma 2.5. If δ ≤ q−1

2
, then

b̃q+1 ≥ q3 + q − δ − (q3 + q2 − qδ − q + 1)δ

q − δ
.

Proof. We count the number of incident pairs (P, l), P ∈ M and l a line of
Q−(5, q), to see

|M|(q2 + 1) = |L|(q + 1) +

q+1
∑

i=1

b̃ii .
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As Q−(5, q) has (q2 + 1)(q3 + 1) = |L|+∑q+1

i=1
b̃i lines, then

|L|q +
q+1
∑

i=1

b̃i(i− 1) = |L|(q + 1) +

q+1
∑

i=1

b̃ii− (q2 + 1)(q3 + 1)

= |M|(q2 + 1)− (q2 + 1)(q3 + 1)

= (q2 + 1)(q + 1)(q + δ)−W (q2 + 1).

≥ (q2 + 1)(q + 1)q − δ(q2 + 1),

where we used W ≤ δ(q + 2) from Lemma 2.4. From Lemmas 2.1 (c) and (e)
and W ≤ δ(q + 2), we have

(q − δ)
δ+1
∑

i=2

b̃i(i − 1) ≤ (q − δ)
δ+1
∑

i=2

bi(i− 1) ≤ (q3 − q2)(q + 1)δ + δ2.

Together this gives

(|L|+ b̃q+1)q ≥ (q2 + 1)(q + 1)q − δ(q2 + 1)− (q3 − q2)(q + 1)δ + δ2

q − δ
.

Using |L| = q2 + 1 + δ, the assertion follows. �

Lemma 2.6. If δ ≤ 1

2
(3q −

√

5q2 + 2q + 1), then |L|(|L| − 1)δ < b̃q+1(q + 1)q.

Proof. First note that the upper bound on δ implies that δ ≤ 1

2
(q − 1). Using

the lower bound for b̃q+1 from the previous lemma we find

2(q − δ)
(

b̃q+1(q + 1)q − |L|(|L| − 1)δ
)

≥ 2q4 · g(δ) + (q − 1− 2δ)(−2δ2q2 + δ2q + 3q4 + 3q3 + 2q2 + q)

+ 2δ4 + 2δ3 + qδ2 + 3q2δ2 + q + q2 + 3q3 +
5

2
q4 ,

with

g(δ) := (q2 − 1

2
q − 1

4
− 3qδ + δ2).

The smaller zero of g is δ1 = 1

2
(3q −

√

5q2 + 2q + 1). Hence, if δ ≤ δ1, then

δ ≤ 1

2
(q − 1) and g(δ) ≥ 0, and therefore |L|(|L| − 1)δ < b̃q+1(q + 1)q. �

Lemma 2.7. If δ ≤ 1

2
(3q −

√

5q2 + 2q + 1), then there exists a hyperbolic

quadric Q+(3, q) contained in M.

Proof. Count triples (l1, l2, g), where l1, l2 are skew lines of L and g 6∈ L is a
line meeting l1 and l2 and being completely contained in M. Then

|L|(|L| − 1)z ≥ b̃q+1(q + 1)q ,

where z is the average number of transversals contained in M and not contained
in L, of two skew lines of L. By Lemma 2.6, we find that z > δ. Hence, we
find two skew lines l1, l2 ∈ L such that δ + 1 of their transversals are contained
in M. The lines l1 and l2 generate a hyperbolic quadric Q+(3, q) contained in
Q−(5, q), denoted by Q+. If some point P of Q+ is not contained in M, then
the line on it meeting l1, l2 has at least two points in M and the second line of
Q+ on it has at least δ + 1 points in M. This is not possible (cf. Lemma 2.1
(a)). Hence Q+ is contained in M. �
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Lemma 2.8. If δ ≤ 1

2
(3q−

√

5q2 + 2q + 1), then M contains a parabolic quadric
Q(4, q).

Proof. Lemma 2.7 shows that M contains a hyperbolic quadric Q+(3, q), which
will be denoted by Q+. We also know that |M| = |L|(q + 1)−W ≥ q3 + q2 +
q + 1 − δ by Lemma 2.4. There are q + 1 hyperplanes through Q+, necessarily
intersecting Q−(5, q) in parabolic quadrics Q(4, q).

Hence there exists a parabolic quadric Q(4, q), denoted by Q, containing Q+

such that

c := |(Q \ Q+) ∩M| ≥ |M| − (q + 1)2

q + 1
> q2 − q − 1 .

Hence, c ≥ q2 − q. From now on we mean in this proof by a hole of Q a point
of Q that is not in M. Each of the q3 − q − c holes of Q can be perpendicular
to at most δ points of (Q\Q+)∩M (cf. Lemma 2.1 (a)). Thus we find a point
P ∈ (Q \ Q+) ∩M that is perpendicular to at most

(q3 − q − c)δ

c
≤ qδ

holes of Q. The point P lies on q+1 lines of Q and if such a line is not contained
in M, then it contains at least q − δ holes of Q (cf. Lemma 2.1 (b)). Thus the
number of lines of Q on P that are not contained in M is at most qδ/(q − δ).
The hypothesis on δ guarantees that this number is less than q + 1− δ. Thus,
P lies on at least r ≥ δ + 1 lines of the set Q that are contained in M. These
meet Q+ in r points of the conic C := P⊥ ∩Q+. Denote this set of r points by
C′.

Assume that Q\P⊥ contains a hole R. For X ∈ C′, the hole R has a unique
neighbor Y on the line PX ; if this is not the point X , then the line RY has at
least two points in M, namely Y and the point RY ∩Q+. So if |R⊥ ∩C′| = ∅,
then there are at least r ≥ δ+1 lines on the hole R with at least two points in M.
This contradicts Lemma 2.1 (a). Therefore |R⊥∩C′| ≥ r−δ ≥ 1. As every point
of C′ lies on q+1 lines of Q, two of which are in Q+ and one other is contained
in M, then every point of C′ has at most (q−2)q neighbors in Q that are holes.
Counting pairs (X,Y ) of perpendicular points X ∈ C′ and holes R ∈ Q \ P⊥,
it follows that Q \ P⊥ contains at most r(q − 2)q/(r − δ) ≤ (δ + 1)q(q − 2)
holes. Since P⊥ ∩ Q contains at most qδ holes, we see that Q has at most
qδ+(δ+1)q(q− 2) holes. As δ ≤ (q− 1)/2, this number is less than 1

2
q(q2 − 1).

Hence, c > |Q|−|Q+|− 1

2
q(q2−1) = 1

2
q(q2−1). It follows that P is perpendicular

to at most
(q3 − q − c)δ

c
< δ

holes of Q. This implies that all q+1 lines of Q on P are contained in M. Then
every hole of Q must be connected to at least q + 1 − δ and thus all points of
the conic C. Apart from P , there is only one such point in Q, so Q has at most
one hole. Then Lemma 2.1 (a) shows that Q has no hole. �

Lemma 2.9. If M contains a parabolic quadric Q(4, q), denoted by Q, and
|L| ≤ q2 + q, then L contains a cover of Q.
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Proof. Consider a point P ∈ Q. As |P⊥ ∩Q| = q2 + q+ 1, some line of L must
contain two points of P⊥ ∩ Q. Then this line is contained in Q and contains
P . �

In this subsection we assumed that L contains no pencil. The assumption
that δ ≤ 1

2
(3q −

√

5q2 + 2q + 1) then implies that L contains a cover of a

Q(4, q) ⊆ Q−(5, q). Hence, we may conclude the following theorem.

Theorem 2.10. If L is a generator blocking set of Q−(5, q), |L| = q2 + 1 + δ,

δ ≤ 1

2
(3q −

√

5q2 + 2q + 1), then L contains a pencil of q2 + 1 lines through a

point or L contains a cover of an embedded Q(4, q) ⊂ Q−(5, q).

2.2 The case S = H(4, q2)

In this subsection, S = H(4, q2), so (s, t) = (q2, q3). We suppose that L contains
no pencil and that |L| = q3+1+δ, and we show that this implies that δ ≥ q−3.
The set M of covered points must block all the lines of H(4, q2). It follows from
[3] that |M| ≥ q5 + q2, and hence W = |L|(q2 + 1)− |M| ≤ (q2 + 1)(q + δ).

Lemma 2.11. If δ < q − 1, then W ≤ δ(q2 + 3).

Proof. Denote by B the set of all lines not in L, meeting exactly i lines of L for
some i, with 2 ≤ i ≤ δ + 1. We count the number of pairs (l,m), l ∈ L, m ∈ B,
l meets m. The number of these pairs is

∑δ+1

i=2
bii.

It follows from Lemma 2.1 (e), W ≤ (q2 + 1)(q + δ), and δ < q − 1, that

δ+1
∑

i=2

bii ≤ 2

δ+1
∑

i=1

bi(i − 1) ≤ 2(q5 − q3 − δ)(q2 + 1)δ + 2Wδ

q2 − δ

≤ 2(q2 + 1)δ(q5 − q3 + q)

q2 − δ
≤ 2(q6 + 1) =: c

Hence, some line l of L meets at most ⌊c/|L|⌋ lines of B. Denote by B1 the
set of lines not in L that meet exactly one line of L. If a point P does not lie
on a line of B1, then it lies on at least q3 − q − δ lines of B (by Lemma 2.1 (f)
and since L contains no pencil). As δ < q − 1, then c/|L| < 3(q3 − q − δ), so
at most two points of l can have this property. Thus l has x ≥ q2 − 1 points
P0 that lie on a line of B1, so l is the only line of L meeting such a line. Apply
Lemma 2.1 (d) on these x points. As every point not on l is collinear with at
most one of these x points, it follows that

∑

P /∈l

(w(P ) − 1) ≤ xδq2

x− 1
≤ δ(q2 + 1) +

2δ

q2 − 2
< δ(q2 + 1) + 1.

Hence,
∑

P /∈l(w(P ) − 1) ≤ δ(q2 + 1).
All but at most two points of l lie on a line of B1, so l is the only line of L on

these at least q2 − 1 points. At most two points of l can be contained in more
than one line of L, but each such point is contained in at most δ+1 lines of L by
Lemma 2.1 (f). Hence

∑

P∈l(w(P )− 1) ≤ 2δ, and therefore W ≤ δ(q2 +3). �

Lemma 2.12. If δ ≤ q − 2, then

b̃q2+1 ≥ q4 + q − δ − (q5 + 2q3 − 2qδ − q + 2)δ

q2 − δ
.
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Proof. We count the number of incident pairs (P, l), P ∈ M and l a line of
H(4, q2), to see

|M|(q3 + 1) = |L|(q2 + 1) +

q2+1
∑

i=1

b̃ii .

As H(4, q2) has (q3 + 1)(q5 + 1) = |L|+∑q2+1

i=1
b̃i lines, then

|L|q2 +
q2+1
∑

i=1

b̃i(i− 1) = |L|(q2 + 1) +

q2+1
∑

i=1

b̃ii− (q3 + 1)(q5 + 1)

= |M|(q3 + 1)− (q5 + 1)(q3 + 1)

= (q3 + 1)(q3 + q2 + δ(q2 + 1))−W (q3 + 1)

≥ (q3 + 1)(q + 1)q2 − 2δ(q3 + 1).

From Lemmas 2.1 (c) and (e) and Lemma 2.11, we have

(q2 − δ)

δ+1
∑

i=2

b̃i(i− 1) ≤ (q2 − δ)

δ+1
∑

i=2

bi(i− 1) ≤ (q5 − q3)(q2 + 1)δ + 2δ2.

Together this gives

(|L|+ b̃q2+1)q
2 ≥ (q3 + 1)(q + 1)q2 − 2δ(q3 + 1)− (q5 − q3)(q2 + 1)δ + 2δ2

q2 − δ
.

Using |L| = q3 + 1 + δ, the assertion follows. �

Lemma 2.13. If δ ≤ q − 4, then |L|(|L| − 1)3q < b̃q2+1(q
2 + 1)q2.

Proof. First note that by the assumption on δ, we may use the lower bound for
b̃q2+1 from the previous lemma, and so we find

(q2 − δ)
(

b̃q2+1(q
2 + 1)q2 − |L|(|L| − 1)3q

)

≥ (q − 4− δ)(q6 − δ)(q3 + q2 + 5q + 5δ + 21) + r(q, δ) ,

with

r(q, δ) = (81 + 33δ + 5δ2)q6 + (1− 2δ + 2δ2)q5 + (δ + 7δ2)q4

+ (−2δ2 − 6δ)q3 − δq2 + (δ + 3δ2 + 3δ3)q − 84δ − 41δ2 − 5δ3

Since r(q, δ) ≥ 0 if δ ≤ q − 4, the lemma follows. �

Lemma 2.14. If L contains no pencil, then δ ≥ q − 3.

Proof. Assume that δ < q − 3. Consider a hermitian variety H(3, q2), denoted
by H, contained in H(4, q2). A cover of H contains at least q3+ q lines by [8], so
H contains at least one hole P . Of all lines through P in H(4, q2), q3− q are not
contained in H. They must all meet a line of L, so at most q+1+δ lines of L can
be contained in H. Hence, at most |L|+(q+1+δ)q2 = 2q3+q2+1+δ(q2+1) <
(q2 + 1)(2q + δ + 1) points of H are covered.
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Now count triples (l1, l2, g), where l1, l2 are skew lines of L and g 6∈ L is a
line meeting l1 and l2 and being completely contained in M. Then

|L|(|L| − 1)z ≥ b̃q2+1(q
2 + 1)q2 ,

where z is the average number of transversals, contained inM but not belonging
to L, of two skew lines of L. By Lemma 2.13, we find that z > 3q. So there
exist skew lines l1 and l2 in L such that at least z transversals to both lines are
contained in M. These transversals are pairwise skew, so the H(3, q2) induced
in the 3-space generated by l1 and l2 contains at least z(q2 + 1) ≥ 3q(q2 + 1) >
(q2 + 1)(2q + δ + 1) points of M. This is a contradiction. �

We have shown that δ ≥ q− 3 if L contains no pencil. Note that we have no
result for q ∈ {2, 3}. Hence, we have proved the following result.

Theorem 2.15. If L is a generator blocking set of H(4, q2), q > 3, |L| =
q3 + 1 + δ, δ < q − 3, then L contains a pencil of q3 + 1 lines through a point.

3 Polar spaces of higher rank

Consider two point sets V and B in a projective space, V ∩ B = ∅. The cone
with vertex V and base B, denoted by V B, is the set of points that lie on a line
connecting a point of V with a point of B. If B is empty, then the cone is just
the set V .

In this section, we denote a polar space of rank r by Sr. The parameters
(s, t) refer in this section always to (q, q), (q, q2), (q2, q3) respectively, for the
polar spaces Q(2n, q), Q−(2n+1, q), H(2n, q2). The term polar space refers from
now on always to a finite classical polar space. Consider a point P in a polar
space S. If S is determined by a polarity φ of the ambient projective space,
which is true for all polar spaces except for Q(2n, q), q even, then P⊥ denotes
the hyperplane Pφ. The set P⊥ ∩ S is exactly the set of points of S collinear
with P , including P . For any point set A of the ambient projective space, we
define A⊥ := 〈A〉φ.

For S = Q(2n, q), q even, P a point of S, P⊥ denotes the tangent hyperplane
to S at P . For any point set A containing at least one point of S, we define the
notation A⊥ as

A⊥ :=
⋂

X∈A∩S

X⊥ .

Using this notation, we can formulate the following property. Consider any
polar space Sn of rank n, and any subspace π of dimension l ≤ n−1, completely
contained in Sn. Then it holds that π⊥ ∩ Sn = πSn−l−1, a cone with vertex π
and base Sn−l−1 a polar space of the same type of rank n− l − 1 [5, 6].

A minimal generator blocking set of Sn, n ≥ 3, can be constructed in a cone
as follows. Consider an (n − 3)-dimensional subspace completely contained in
Sn, hence π

⊥
n−3∩Sn = πn−3S2. Suppose that L is a minimal generator blocking

set of S2, then L consists of lines. Each element of L spans together with πn−3

a generator of Sn, and these |L| generators of Sn constitute a minimal generator
blocking set of Sn of size |L|.

Using the smallest generators blocking sets of the mentioned polar spaces of
rank 2, we obtain examples of the same size in general rank, listed in Table 1.
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The notation πi refers to an i-dimensional subspace. When the cone is πiB, the
example consists of the generators through the vertex πi, contained in the cone
πiB, meeting the base of the cone in the elements of the base set, and the size
of the example equals the size of the base set. We will call πi the vertex of the
generator blocking set.

polar space (s, t) cone base set dimension
Q(2n, q) (q, q) πn−2Q(2, q) Q(2, q) n+ 1

πn−3Q
+(3, q) a spread of Q+(3, q) n+ 1

Q−(2n+ 1, q) (q, q2) πn−2Q
−(3, q) Q−(3, q) n+ 2

πn−3Q(4, q) a cover of Q(4, q) n+ 2
H(2n, q2) (q2, q3) πn−2H(2, q

2) H(2, q2) n+ 1

Table 1: small examples in rank n

The natural question is whether these examples are the smallest ones. The
answer is yes, and the following theorem, proved by induction on n, gives slightly
more information.

Theorem 3.1. (a) Let L be a generator blocking set of Q(2n, q), with |L| =
q + 1 + δ. Let ǫ be such that q + 1+ ǫ is the size of the smallest non-trivial
blocking set in PG(2, q). If δ < min{ q−1

2
, ǫ}, then L contains one of the two

examples listed in Table 1 for Q(2n, q).
(b) Let L be a generator blocking set of Q−(2n+1, q), with |L| = q2 +1+ δ. If

δ ≤ 1

2
(3q −

√

5q2 + 2q + 1), then L contains one of the two examples listed

in Table 1 for Q−(2n+ 1, q).
(c) Let L be a generator blocking set of H(2n, q2), q > 3, with |L| = q3 + 1+ δ.

If δ < q − 3, then L contains the example listed in Table 1 for H(2n, q2).

3.1 Preliminaries

The following technical lemma will be useful.

Lemma 3.2. (a) If a quadric πn−4Q
+(3, q) or πn−3Q(2, q) in PG(n, q) is cov-

ered by generators, then for any hyperplane T of PG(n, q), at least q − 1 of
the generators in the cover are not contained in T .

(b) If a quadric πn−4Q(4, q) or πn−3Q
−(3, q) in PG(n + 1, q) is covered by

generators, then for any hyperplane T , at least q2 − q of the generators in
the cover are not contained in T .

(c) If a hermitian variety πn−3H(2, q
2) in PG(n, q2) is covered by generators,

then for any hyperplane T of PG(n, q2), at least q3 − q of the generators in
the cover are not contained in T .

Proof. (a) This is clear if T does not contain the vertex of the quadric (i.e. the
subspace πn−4, πn−3 respectively). If T contains the vertex, then going to
the quotient space of the vertex, it is sufficient to handle the cases Q(2, q)
and Q+(3, q). The case Q(2, q) is degenerate but obvious, since any line
contains at most two points of Q(2, q). So suppose that C is a cover of
Q+(3, q) ⊂ PG(3, q), then T is a plane. If T ∩ Q+(3, q) contains lines,
then it contains exactly two lines of Q+(3, q). Since at least q + 1 lines are
required to cover Q+(3, q), at least q − 1 lines in C do not lie in T .
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(b) Again, we only have to consider the case that T contains the vertex, and so
it is sufficient to consider the two cases Q−(3, q) and Q(4, q) in the quotient
geometry of the vertex T . For Q−(3, q), the assertion is obvious. Suppose
finally that C is a cover of Q(4, q) ⊂ PG(4, q). Then T has dimension three.
If T ∩Q(4, q) contains lines at all, then T ∩Q(4, q) is a hyperbolic quadric
Q+(3, q) or a cone over a conic Q(2, q). As these can be covered by q + 1
lines and since a cover of Q(4, q) needs at least q2 + 1 lines, the assertion is
obvious also in this case.

(c) Now we only have to handle the case H(2, q2). Since all lines of PG(2, q2)
contain at most q + 1 points of H(2, q2), the assertion is obvious.

�

From now on, we always assume that Sn ∈ {Q(2n, q),Q−(2n+1, q),H(2n, q2)}.
In this section, L denotes a generator blocking set of size |L| = t + 1 + δ of a
polar space Sn.

Section 2 was devoted to the case n = 2 of Theorem 3.1 (b) and (c), the
case n = 2 of Theorem 3.1 (a) is Proposition 1.1. The case n = 2 serves as the
induction basis. The induction hypothesis is that if L is a generator blocking
set of Sn of size t+1+δ, with δ < δ0, then L contains one of the examples listed
in Table 1. The number δ0 can be derived from the case n = 2 in Theorem 3.1.

The polar space Sn has PG(2n + e, s) as ambient projective space. Here
e = 1 if and only if Sn = Q−(2n+ 1, q), and e = 0 otherwise. Call a point P of
Sn a hole if it is not covered by a generator of L. If P is a hole, then P⊥ meets
every generator of L in an (n − 2)-dimensional subspace. In the polar space
Sn−1, which is induced in the quotient space of P by projecting from P , these
(n − 2)-dimensional subspaces induce a generator blocking set L′, |L′| ≤ |L|.
Applying the induction hypothesis, L′ contains one of the examples of Sn−1

described in Table 1, living in dimension n + e; we will denote this example
by LP . Hence, the (n + 1 + e)-space on P containing the (n − 2)-dimensional
subspaces that are projected from P on the elements of LP , is a cone with vertex
P and base the (n + e)-dimensional subspace containing a minimal generator
blocking set of Sn−1 described in Table 1. We denote this (n+ 1 + e)-space on
P by SP .

Lemma 3.3. Consider a polar space Sn ∈ {Q(2n, q),Q−(2n+1, q),H(2n, q2)},
and a generator blocking set of size t+ 1 + δ. If P is a hole and T an (n+ e)-
dimensional space π on P and in SP , then at least t− t

s generators of L meet
SP in an (n− 2)-dimensional subspace not contained in T .

Proof. This assertion follows by going to the quotient space of P , and using
Lemma 3.2 and the induction hypothesis of this section. �

We recall the following facts from [6]. Consider a quadric Q in a projective
space PG(n, q). An i-dimensional subspace πi of PG(n, q) will intersect Q again
in a possibly degenerate quadric Q′. If Q′ is degenerate, then πi ∩ Q = Q′ =
RQ′′, where R is a subspace completely contained in Q, and where Q′′ is a
non-singular quadric. We call R the radical of Q′. Clearly, all generators of Q′

contain R. We recall that Q′′ does not have necessarily the same type as Q.
Consider a hermitian variety H in a projective space PG(n, q2). An i-

dimensional subspace πi of PG(n, q2) will intersect H again in a possibly degen-
erate hermitian variety H′. If H′ is degenerate, then πi∩H = H′ = RH′′, where
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R is a subspace completely contained in H, and H′′ is a non-singular hermitian
variety. We call R the radical of H′. Clearly, all generators of H′ contain R.

Lemma 3.4. Let L be a minimal generator blocking set of size t+1+ δ of Sn.
If an (n + 1 + e)-dimensional subspace Π of PG(2n + e, s) contains more than
t
s + 1 + δ generators of L, then L is one of the examples listed in Table 1.

Proof. First we show that Π is covered by the generators of L. Assume not and
let P be a hole of Π. If Π∩ Sn is degenerate, then its radical is contained in all
generators of Π ∩ Sn, so P is not in the radical. Hence, P⊥ ∩ Π has dimension
n+ e and thus SP ∩ Π has dimension at most n+ e. Lemma 3.3 shows that at
least t− t

s generators of L meet SP in an (n− 2)-subspace that is not contained
in Π. Hence, Π contains at most t

s + 1 + δ generators of L. This contradiction
shows that Π is covered by the generators of L.

The subspace Π is an (n+1+e)-dimensional subspace containing generators
of Sn. This leaves a restricted number of possibilities for the structure of Π ∩
Sn: Π ∩ Sn ∈ {πn−3Q

+(3, q), πn−2Q(2, q)} when Sn = Q(2n, q), Π ∩ Sn ∈
{πn−4Q

+(5, q), πn−3Q(4, q), πn−2Q
−(3, q)} when Sn = Q−(2n + 1, q), and Π ∩

Sn ∈ {πn−3H(3, q
2), πn−2H(2, q

2)} when Sn = H(2n, q2).
Case 1: Π ∩ Sn = πn−2S1 (S1 = Q(2, q),Q−(3, q), or H(2, q2)).

A generator of L contained in Π contains the vertex πn−2. If one of the t + 1
generators on πn−2 is not contained in L, then at least s generators of L are
required to cover its points outside of πn−2. Hence, if x of the t+ 1 generators
on πn−2 are not contained in L, then |L| ≥ t+1−x+xs. Since |L| = t+1+ δ,
with δ < s − 1, this implies x = 0. So L contains the pencil of generators of
πn−2S1, and by the minimality of L, it is equal to this pencil.

Case 2: Π ∩ Sn ∈ {πn−3Q
+(3, q), πn−3Q(4, q)}.

Recall that Π∩Sn = πn−3Q
+(3, q) when Sn = Q(2n, q) and then (s, t) = (q, q),

and that Π∩Sn = πn−3Q(4, q) when Sn = Q−(2n+1, q) and then (s, t) = (q, q2).
All generators of L contained in Π must contain the vertex πn−3. We will

show that the generators of L contained in Π already cover Π ∩ Sn; then L
contains (by minimality) no further generator and thus L is one of the two
examples.

Assume that some point P of Π ∩ Sn does not lie on any generator of L
contained in Π. As all generators of L contained in Π contain the vertex πn−3,
then P is not in this vertex. Hence, P⊥ ∩Π∩Sn is a pencil of t

s +1 generators
g0, . . . , g t

s
on the subspace πn−2 = 〈P, πn−3〉. None of the generators gi is

contained in L. Therefore, at least s+ 1 generators of L are required to cover
gi. One such generator of L may contain the vertex πn−2 and counts for each
generator gi, but this still leaves at least (

t
s +1)s+1 generators in L necessary

to cover all the generators gi. But |L| < t+ s, a contradiction.
Case 3: Π∩Sn ∈ {πn−4Q

+(5, q), πn−3H(3, q
2)}, and we will show that this

case is impossible.
Recall that Π ∩ Sn = πn−4Q

+(5, q) when Sn = Q−(2n+ 1, q) and then (s, t) =
(q, q2), and that Π ∩ Sn = πn−3H(3, q

2) when Sn = H(2n, q2) and then (s, t) =
(q2, q3). In both cases, t

s = q. Denote by V the vertex of Π ∩ Sn.
All generators of L contained in Π must contain the vertex V . We will show

that the generators of L contained in Π already cover Π ∩ Sn.
Assume that some point P of Π ∩ Sn does not lie on any generator of L

contained in Π. As all generators of L contained in Π contain the vertex V ,
then P is not in V . When Sn = Q−(2n+1, q), then P⊥∩Π∩Sn contains 2(q+1)
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generators on the subspace π = 〈P, V 〉. None of these generators is contained in
L. These 2(q + 1) generators split into two classes, corresponding with the two
classes of generators of the hyperbolic quadric Q+(3, q), the base of the cone
πQ+(3, q) = P⊥ ∩ Π ∩ Sn. Consider one such class of generators, denoted by
g0, . . . , gq. When Sn = H(2n, q2), then P⊥∩Π∩Sn contains q+1 generators on
the subspace π = 〈P, V 〉, and none of these generators is contained in L. Also
denote these generators by g0, . . . , gq. So in both cases we consider t

s +1 = q+1
generators g0, . . . , gq on the subspace π = 〈P, V 〉, not contained in L. Consider
now any generator gi, then at least s+1 generators of L are required to cover gi.
One such generator of L may contain the vertex π and counts for each generator
gi, but this still leaves at least ( ts + 1)s+ 1 generators in L necessary to cover
all the generators gi. But |L| < t+ s, a contradiction.

Hence in the quotient geometry of the vertex V , the generators of L contained
in Π induce either a cover of Q+(5, q), which has size at least q2 + q (see [4]) or
a cover of H(3, q2), which has size at least q3 + q2 (see [8]). In both cases, this
is a contradiction with the assumed upper bound on |L|. �

3.2 The polar spaces Q−(2n+ 1, q) and H(2n, q2)

This subsection is devoted to the proof of Theorem 3.1 (b) and (c).

Lemma 3.5. Suppose that C is a line cover of Q(4, q) with q2 + 1 + δ lines.
Then each conic and each line of Q(4, q) meets at most (δ+1)(q+1) lines of C.

Proof. If w(P ) + 1 is defined as the number of lines of C on a point P , then the
sum of the weights w(P ) over all points of Q(4, q) is δ(q + 1). Hence, a conic
can meet at most (δ + 1)(q + 1) lines of C, and the same holds for lines. �

Lemma 3.6. Suppose that Sn ∈ {Q−(2n + 1, q),H(2n, q2)}, n ≥ 3. Suppose
that L is a minimal generator blocking set of size t + 1 + δ of Sn, δ < δ0. If
there exists a hole P that projects L on a generator blocking set containing a
minimal generator blocking set of Sn−1 that has a non-trivial vertex, then L is
one of the examples in Table 1.

Proof. Let P be the hole that projects L on an example with a vertex α. Hence,
there exists a line l on P in SP meeting at least t+1 of the generators of L, and
the vertex of SP equals 〈P, α〉. We have l⊥ ∩ Sn = lSn−2, hence the number of
planes completely contained in Sn on the line l equals |Pn−2| (Pn−2 is the point
set of Sn−2).

Suppose that a generator g of L meets such a plane π in a line, then this
line intersects l in a point P ′ 6= P . But then l⊥ ∩ g has dimension n− 2, so the
number of lines on P ′ contained in l⊥ ∩ g equals θn−3, and so θn−3 planes of Sn

on l meet g in a line.
Denote by λ the number of planes on l contained completely in the vertex

of SP . Then λ equals the number of points in a hyperplane of α; when α is a
point, then λ = 0. Then there are |Pn−2| − λ planes on l, completely contained
in Sn, but not contained in the vertex of SP .

Consequently, we find such a plane π meeting the vertex of SP only in l,
and meeting at most m := |L| · θn−3/(|Pn−2| − λ) generators gi in a line. A
calculation shows that m < 2 if n ≥ 3. Hence, from the at least t+1 generators
of L that meet l, at most one meets π in a line, and the at most δ generators
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of L that do not meet l can meet π in at most one point. Hence, π contains a
hole Q not on l.

At least t + 1 generators of L meet SP in an (n − 2)-dimensional subspace
and meet the line l, and at least t + 1 generators of L meet SQ in an (n − 2)-
dimensional subspace. Hence, at least 2(t+ 1)− |L| = t+1− δ generators of L
meet both SP and SQ in an (n− 2)-dimensional subspace, and meet the line l.

Suppose that the projection of L from Q contains a generators blocking set
with a non-trivial vertex α′. It is not possible that lQ is contained in α′, since
then all elements of L meeting SQ in an (n − 2)-dimensional subspace would
meet π in a line, a contradiction to m < 2.

The base of LQ is either a parabolic quadric Q(4, q), an elliptic quadric
Q−(3, q) or a hermitian curve H(2, q2). In the latter two cases, since neither
Q−(3, q) nor H(2, q2) contain lines, the projection of the line l from Q, denoted
by lQ, is not contained in the base of LQ. Suppose now that the base of LQ is a
parabolic quadric Q(4, q), and that this base contains the line lQ. The t+1− δ
generators of L meeting both SP and SQ in an (n−2)-dimensional subspace, all
meet l. These t+ 1 − δ generators are projected on generators of LQ, meeting
the base of LQ in a cover. Hence, in the quotient geometry of the vertex of LQ,
lQ is now a line of Q(4, q) meeting at least t+1− δ = q2 +1− δ lines of a cover
of Q(4, q), a contradiction with Lemma 3.5, since t + 1 − δ > (δ + 1)(q + 1) if
δ0 ≤ q/2.

We conclude that the line lQ is neither contained in the vertex of LQ nor in
the base of LQ. (This excludes also the possibility that LQ has a trivial vertex,
which is only possible for n = 3 and Sn = Q−(7, q)). Hence, lQ is a line meeting
α′ and the base of LQ, and there exists a line l′ 6= l in π connecting Q with a
point of α′.

The t + 1 − δ generators of L meeting both SP and SQ in an (n − 2)-
dimensional subspace also meet l′ in a point. At most one of these generators
meets π in a line, so at least t − δ of these generators are projected from the
different points P and Q on generators through a common point, so before
projection, these t−δ generators of L must meet in the common pointX := l∩l′.

Now consider a hole R not in the perp of X . Then SR meets at least
(t−δ+ t+1)− (t+1+δ) = t−2δ of the generators on X in an (n−2)-subspace.
These generators are therefore contained in T := 〈SR, X〉. Finally, consider a
hole R′ not in T and not in the perp of X . Then at least t− 3δ > t

s + 1 + δ of
the generators that contain X and are contained in T meet SR′ in an (n − 2)-
subspace. These generators lie therefore in 〈SR′ ∩ T,X〉, which has dimension
n+ 1 + e. Now Lemma 3.4 completes the proof. �

Corollary 3.7. Theorem 3.1 (c) is true for H(2n, q2), n ≥ 3.

Proof. Theorem 2.15 guarantees that the assumption of Lemma 3.6 is true for
Sn = H(2n, q2) and n = 3. Theorem 3.1 (c) then follows from the induction
hypothesis. �

We may now assume that Sn = Q−(2n+1, q), n = 3, and that the projection
of L from every hole contains a generator blocking set with a trivial vertex, i.e.
a cover of Q(4, q). As n = 3, then L is a set of planes.

Lemma 3.8. If a hyperplane T contains more than q + 1 + 3δ elements of L,
then L is one of the two examples in Q−(7, q) from Table 1.
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Proof. Denote by L′ the set of the generators of L that are contained in T . If
P is a hole outside of T , then SP meets all except at most δ planes of L in a
line, and hence more than q + 1+ 2δ of these planes are contained in T . Recall
that SP is a cone with vertex P over SP ∩ T , and SP ∩ T has dimension 4.

Note that P⊥ ∩ Q−(7, q) = PQ5 with Q5 an elliptic quadric Q−(5, q), and
we may suppose that Q5 ⊆ T . Denote by Q4 the parabolic quadric Q(4, q)
contained in Q5 such that SP = PQ4, then T ∩ SP ∩Q−(7, q) = Q4. Consider
any point Q ∈ (Q−(7, q) ∩ P⊥) \ (SP ∪ Q5). Clearly W := Q⊥ ∩ T ∩ SP meets
Q−(7, q) in an elliptic quadric Q−(3, q). There are (q4 − q2)(q − 1) points like
Q, and at most (q2 − q)(q + 1) of them are covered by elements of L, since we
assumed that more than q+1+3δ elements of L are contained in T . So at least
q5 − q4 − 2q3 + q2 + q > 0 points of (Q−(7, q) ∩ P⊥) \ (SP ∪ Q5) are holes and
have the property that W := Q⊥ ∩ T ∩SP meets Q−(7, q) in an elliptic quadric
Q−(3, q). As before, SQ∩T has dimension four and meets at least |L′|−δ planes
of L′ in a line. Then at least |L′|− 2δ planes of L′ meet SP ∩T and SQ ∩T in a
line. As SP ∩ SQ ∩ T ⊆ W does not contain singular lines, it follows that these
|L′| − 2δ planes of L′ are contained in the subspace H := 〈SP ∩ T, SQ ∩ T 〉.

We have W ∩ Q−(7, q) = Q−(3, q), so in the quotient geometry of P , the
|L′|−2δ planes induce |L′|−2δ lines all meeting this Q−3, q). Now L is projected
from P on a cover of a parabolic quadric Q(4, q) with at most q2 + 1 + δ lines.
Then |L′| − 2δ lines of the cover must meet more than q + 1 points of this
elliptic quadric Q−(3, q). It follows that SQ∩T contains more than q+1 points
of the elliptic quadric Q−(3, q) in W and hence W ⊆ SQ. Then SP ∩ T and
SQ ∩ T meet in W , so the subspace H they generate has dimension five. As
|L′| − 2δ > q + 1 + δ planes of L lie in H , Lemma 3.4 completes the proof. �

Lemma 3.9. Suppose that L is a minimal generator blocking set of size t+1+δ
of Q−(7, q), δ < δ0. If there exists a hole P that projects L on a generator
blocking set containing a cover of Q(4, q), then L is one of the examples in
Table 1.

Proof. Consider a hole P . Then SP ∩Q−(7, q) = PQ(4, q). Denote the base of
this cone by Q4. The assumption of the lemma is that LP is a minimal cover
C of Q4. Consider a point X ∈ Q4 contained in exactly one line of C. Then
X⊥ ∩ Q4 = XQ(2, q), and each line on X is covered completely, so X⊥ ∩ Q4

meets at least q2 + 1 lines of C.
The lines of C are projections from P of the intersections of elements of L

with the subspace SP , call C′ this set of intersections that is projected on C. Thus
the line h = PX of SP on P meets exactly one line of C and h⊥∩SP ∩Q−(7, q) =
hQ(2, q) meets at least q2 + 1 lines of C′. At most δ elements of L are possibly
not intersecting SP in an element of C′, so we find a hole Q on h with Q 6= P .
There are at least q2 + 1 elements in C′, so at least q2 + 1 − δ elements come
from planes π ∈ L with π ∩ Q⊥ ⊂ SQ. For each such element, its intersection
with hQ(2, q) lies in SQ. Thus either SP ∩ SQ = h⊥ ∩ SP or SP ∩ SQ is a
3-dimensional subspace of h⊥ ∩ SP that contains a cone YQ(2, q).

In the second case, the vertex Y must be the point Q (as Q ∈ SQ); but
then projecting from Q we see a cover of Q(4, q) containing a conic meeting at
least q2 + 1 − δ of the lines of the cover. In this situation, Lemma 3.5 gives
q2 + 1− δ ≤ (δ + 1)(q + 1), that is δ > q − 3, a contradiction.

Hence, SP ∩ SQ has dimension four, so T = 〈SP , SQ〉 is a hyperplane. At
least q2 planes of L meet SP in a line that is not contained in SP ∩ SQ. At
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least q2 − δ of these also meet SQ in a line and hence are contained in T . It
follows from δ < q/2 that q2 − δ > q + 1 + 3δ, and then Lemma 3.8 completes
the proof. �

Corollary 3.10. Theorem 3.1 (b) is true for Q−(2n+ 1, q), n ≥ 3.

Proof. Theorem 2.10 guarantees that for Sn = Q−(7, q) and n = 3, the assump-
tion of either Lemma 3.6 or Lemma 3.9 is true. Hence, Theorem 3.1 (b) follows
for n = 3. But then the assumption of Lemma 3.6 is true for Sn = Q−(2n+1, q)
and n = 4, and then Theorem 3.1 (b) follows from the induction hypothesis. �

3.3 The polar space Q(2n, q)

This subsection is devoted to the proof of Theorem 3.1 (a). Lemma 3.6 can
also be translated to this case, but only for a bad upper bound on δ. Therefore
we treat the polar space Q(2n, q) separately. Recall that for Q(2n, q), δ0 =
min{ q−1

2
, ǫ}, with ǫ such that q + 1 + ǫ is the size of the smallest non-trivial

blocking set of PG(2, q).
We suppose that L is a generator blocking set of Q(2n, q), n ≥ 3, of size

q + 1 + δ, δ < δ0. Recall that LR is the minimal generator blocking set of
Q(2n− 2, q) contained in the projection of L from a hole R. So when n = 3, it
is possible that LR is a generator blocking set of Q(4, q) with a trivial vertex.

For the Lemmas 3.11, 3.12, and 3.13, the assumption is that n = 3, and that
for any hole R, LR has a trivial vertex, i.e. LR is a regulus.

So let R be a hole such that LR is a regulus. Let gi, i = 1, . . . , q+1+ δ, be
the elements of L and denote by li the intersection of R⊥ ∩ gi. At least q + 1
of the lines li are projected on the lines of the regulus LR. We denote the q+1
lines of the regulus LR by l̃i, i = 1, . . . , q + 1. The opposite lines of the regulus
LR are denoted by m̃i, i = 1, . . . , q + 1.

Lemma 3.11. Suppose that m̃j is a line of the opposite regulus and that Bj is
the set of points that are the intersection of the lines li with 〈R, m̃j〉. Then Bj

contains a line.

Proof. Since at least q + 1 lines li must meet 〈R, m̃j〉 in a point, |Bj | ≥ q + 1.
We show that Bj is a blocking set in 〈R, m̃j〉. Assume that a line k in 〈R, m̃j〉
is disjoint to Bj and take a point R′ on k, then R′ is a hole. By the assumption

made before this lemma, LR′

is also a generator blocking set with a trivial
vertex, i.e. a regulus R′. Consider now the plane π := 〈R, k〉. The plane π is
contained in SR. If the plane π is also contained in SR′ , then it is projected from
R′ on a line of R′ or of the opposite regulus of R′; in both cases it is projected
on a covered point of R′, and hence the line k must contain an element of Bj ,
a contradiction. So the plane π is not contained in SR′ .

There are at least q + 1 elements of L that meet SR′ in a line; such a line
is projected from R′ on a line of R′. No two lines that are projected on two
different lines of R′ can meet π in the same point. Hence, of the at least q + 1
elements of L that are projected from R′ on R′, at most one can meet π in a
point, since otherwise π is projected from R′ on a line of the opposite regulus
of R′, but then the plane π would be contained in SR′ . But then at most δ+ 1
elements of L can meet π in a point, a contradiction with |Bj | ≥ q + 1. �
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We denote the line contained in the set Bj by mj , and so mj is projected
from R on m̃j . Now we consider again the hole R and the regulus LR.

Lemma 3.12. The generator blocking set LR arises as the projection from R
of a regulus, of which the lines are contained in the elements of L.

Proof. An element gi ∈ L that is projected from R on the line m̃j must meet the

plane 〈R, m̃j〉 in a line. But an element gi ∈ L cannot meet a plane 〈R, l̃i〉 and a
plane 〈R, m̃j〉 in a line, since then gi would be a generator of Q(6, q) contained
in R⊥ not containing R, a contradiction. So at most δ elements of L meet SR

in a line that is projected on a line m̃j . Hence, at least q+1− δ planes 〈R, m̃j〉
do not contain a line li, so, by Lemma 3.11, there are at least q + 1 − δ lines
mj ⊆ Bj not coming from the intersection of an element of L and SR, that are
projected on a line of the opposite regulus of LR. Number these n ≥ q + 1 − δ
lines from 1 to n.

Suppose that l1, l2, . . . , lq+1 are transversal to m1. Since δ ≤ q−1

2
, a second

transversal m2 has at least q+3

2
common transversals with m1. So we find lines

l1, . . . , l q+3

2

lying in the same 3-space 〈m1,m2〉. A third line mj , j 6= 1, 2, has

at least 2 common transversals with m1 and m2, so all transversals mj lie in
〈m1,m2〉. Suppose that we find at most q lines l1, . . . , lq which are transversal
to m1, . . . ,mq+1−δ. Then q + 1 − δ remaining points on the lines mj must be
covered by the δ+1 remaining lines li, so δ+1 ≥ q+1− δ, a contradiction with
the assumption on δ. So we find a regulus of lines l1, . . . , lq+1 that is projected
on LR from R. �

Lemma 3.13. The set L contains q + 1 generators through a point P , which
are projected from P on a regulus.

Proof. Consider the hole R. By Lemma 3.12, R⊥ contains a regulus R1 of q+1
lines li contained in planes of L. Denote the 3-dimensional space containing
R1 by π3. Consider any hole R′ ∈ Q(6, q) \ π⊥

3 . By the assumption made
before Lemma 3.11 and Lemma 3.12, R′ gives rise to a regulus R2 of q+1 lines
contained in planes of L. Since R′ ∈ Q(6, q) \ π⊥

3 , R1 6= R2. Hence, at least
q+3

2
planes of L contain a line of both R1 and R2 and in at most one plane, the

reguli R1 and R2 can share the same line. The reguli R1 and R2 define a 4- or
5-dimensional space Π.

If Π is 4-dimensional, then Π ∩ Q(6, q) = 〈P,Q〉, for some point P and
some hyperbolic quadric Q+(3, q), denoted by Q. For Q we may choose the
hyperbolic quadric containing R1. There are at least q+1

2
planes of Q(6, q),

completely contained in Π, containing a line of R1 and a different line of R2.
These planes are necessarily planes of L. Consider now a plane π2 of Q(6, q),
completely contained in Π, only containing a line of R1 and not containing a
different line of R2. If π2 is not a plane of L, it contains a hole Q. Then Q⊥

intersects the at least q+1

2
planes of L on P in a line, and the projection of these

at least q+1

2
lines from Q is one line l. If this line l belongs to LQ, then at least q

more elements of L are projected from Q on the q other elements of LQ, hence,
q + q+1

2
≤ q + 1 + δ, a contradiction with δ < q−1

2
. Hence, π2 is a plane of L,

and L contains q+1 generators of Q(6, q) through P , which are projected from
P on a regulus.

If Π is 5-dimensional, then its intersection with Q(6, q) is a cone PQ, Q a
parabolic quadric Q(4, q), or a hyperbolic quadric Q+(5, q). If Π ∩ Q(6, q) =
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PQ(4, q), then the base Q can be chosen in such a way that R1 ⊂ Q. But then
the same arguments as in the case that Π is 4-dimensional apply, and the lemma
follows.

So assume that Π∩Q(6, q) = Q+(5, q). Consider again the at least q+1

2
planes

π1 . . . πn, of L containing a line of R1 and a different line of R2. Then half of
these planes lie in the same equivalence class and so intersect mutually in a point.
We can assume that the two planes π1 and π2 intersect in a point P , hence,
〈π1, π2〉 is a 4-dimensional space necessarily intersecting Q(6, q) in a cone PQ,
Q a hyperbolic quadric Q+(3, q). Clearly, since two different lines of R1 span
〈R1〉 (and two different lines of R2 span 〈R2〉), the reguli R1,R2 ⊆ 〈π1, π2〉.
But since the planes π3 . . . πn contain a different line from R1 and R2, these at
least q+1

2
planes of L are completely contained in 〈π1, π2〉. But then again the

same arguments as in the case that Π is 4-dimensional apply, and the lemma
follows. �

From now on we assume that n ≥ 3, and that there exists a hole R such
that LR has a non-trivial vertex α. This means that also for n = 3, this vertex
is non-trivial. This assumption will be in use for Lemmas 3.14, 3.16, 3.17, 3.18,
and Corollary 3.15. Remark that also the induction hypothesis is used. We will
call the (n− 2)-dimensional subspace 〈R,α〉 the vertex of SR.

A nice point is a point that lies in at least q − δ elements of L. In the
next lemma, for X a hole, we denote by L̄X the set of generators of L that are
projected from X on the elements of LX . Hence, the generators of L̄X intersect
X⊥ in (n− 2)-dimensional subspaces.

Lemma 3.14. Call α the vertex of LR. Then there exists a nice point N on
every line through R meeting α.

Proof. Let l be a line on R projecting to a point of α, and consider the planes of
Q(2n, q) on l. Consider any generator g ∈ L. Suppose that g meets two planes
π1 and π2 on l in a line different from l. Then in the quotient geometry of l, i.e.
l⊥∩Q(2n, q) = Q(2n− 4, q), the two planes π1 and π2 are two points contained
in the generator l⊥ ∩ g, which is an (n − 3)-dimensional subspace. Hence, any
generator g ∈ L meets at most θn−3 planes through l in a line different from l.

If g meets two planes π1 and π2 on l in only one point not on l, then in the
quotient geometry of l, the two planes π1 and π2 are again two points contained
in the generator l⊥ ∩ g. Hence, any generator g ∈ L meets at most θn−3 planes
through l in exactly one point not on l. Finally, if a generator g ∈ L meets a
plane π1 in a line different from l and a plane π2 in a point not on l, then g
meets also π2 in a line different from l, since by the assumption, g also contains
a point of l.

Hence, for g ∈ L, l 6⊆ g implies that g can meet at most θn−3 of these planes
in one or more points outside of l. As l lies in θ2n−5 ≥ θn−3(q + 1) > 1

2
|L|θn−3

planes of Q(2n, q), we can choose a plane π on l such that at most one generator
of L meets π in a line different from l or in exactly one point of π\l. Let Q ∈ π\l
be on no generator of L. Also, if there is a generator in L meeting π \ l in a
single point T , then choose Q in such a way that this point T does not lie on
the line QR.

If the generator blocking set LQ in the quotient of Q has a non-trivial vertex,
then π is not a plane of this vertex, since otherwise all the generators of L̄Q

would meet π in a line different from l, but this is a contradiction with the
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choice of π. Since L̄Q and L̄R share at least q+1− δ generators, then q+1− δ
generators of L̄Q meet l, and at most one of these contains a point of π \ l.
Hence, we find q − δ generators in L̄Q ∩ L̄R, each of them meeting π in one
point, which is on l.

If the generators of L̄Q are projected from Q on a generator blocking set
with an (n − 3)-dimensional vertex (and base a conic Q(2, q)), then points in
different generators of LQ are collinear only if they are in the vertex of the cone.
But the points of the q − δ generators on l are collinear after projection from
Q. Hence, if two points of these q − δ generators on l are different, then l is
projected from Q on a line of the vertex of LQ, so π is a plane in the vertex of
SQ, a contradiction. So the q − δ generators meeting l in a point all meet l in
the same point X , and we are done.

Now assume that the generators of L̄Q are projected from Q on a generator
blocking set with an (n− 4)-dimensional vertex, and base a regulus R. Assume
that l has no nice point, then at least two of the q − δ generators do not meet
l in a common point. Then l is skew to the vertex of the cone, since otherwise
all the generators of L̄Q would meet π in a line different from l, but this is a
contradiction with the choice of π. Hence, l is projected from the vertex of SQ

on a line of the regulus R or on a line of the opposite regulus R′. But a line
of R meets exactly one line of LQ, so l must be projected from the vertex of
SQ on a line of the opposite regulus R′. This means that each line of π on Q
is met by a generator of L̄Q in a single point. This applies to the line QR, so
some generator of L meets π in a point, which lies on the line QR. This is a
contradiction with the choice of Q inside π. �

Corollary 3.15. If R is a hole and N ∈ R⊥ a nice point, then N lies in the
vertex of SR.

Proof. A nice point lies in at least q− δ generators of L and at least q− 2δ ≥ 2
if these must belong to LR. As two elements of LR necessarily meet in a point
of the vertex of SR, the assertion follows. �

Lemma 3.16. Let n ≥ 4. If β denotes the subspace generated by all nice points,
then dim(β) ≥ n− 3.

Proof. Suppose that R is a hole. If n ≥ 4, then by the induction hypothesis,
the vertex of LR has dimension at least n − 4. Hence, using Lemma 3.14,
the nice points generate a subspace γ of dimension at least n − 4. Suppose
that dim(γ) = n − 4, then dim(γ⊥) = n + 3 < 2n, and so we find a hole
P 6∈ γ⊥. Consider this hole P , then the same argument gives us a subspace γ′

spanned by nice points in P⊥ of dimension at least n− 4, different from γ. So
dim(β) ≥ n− 3. �

Lemma 3.17. There exists a hole R and a generator g on the vertex of SR

such that g meets exactly one element of L in an (n− 2)-dimensional subspace
and such that all other elements of L do not meet g or meet g only in points of
the vertex of SR.

Proof. First let n = 3. By the assumption, there exists a hole R such that LR

has a non-trivial vertex, which is a point X . So the vertex of SR is the line RX
and has dimension n− 2.
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Now let n ≥ 4. By Lemma 3.16, we find a subspace γ of dimension n − 3
spanned by nice points. Consider a hole R ∈ γ⊥. Clearly, the vertex of SR will
be spanned by the projection of γ from R and R, so has dimension n− 2.

So for n ≥ 3, we always find a hole R such that the vertex V of SR has
dimension n − 2, and V = 〈R, πn−3〉, πn−3 the vertex of LR. As LR consists
of the q + 1 generators of a cone αQ(2, q), points in different elements of LR

are collinear only when they are contained in πn−3. So the projection from R
of any (n − 2)-dimensional intersection πi of an element L and SR, meets at
most one element of LR outside of the vertex πn−3. Hence, before projection,
no element of L meets two generators of Q(2n, q) on V in points outside of V .
Also, at least q + 1 elements of L meet SR in an (n− 2)-dimensional subspace
that is projected from R on an element of LR. So at most δ elements of L can
meet a generator on V in points outside of V , and thus we find a generator of
Q(2n, q) on V only meeting elements of L in points of V . �

Lemma 3.18. Let n ≥ 3. There exists an (n − 3)-dimensional subspace con-
tained in at least q elements of L.

Proof. Consider the special hole R from Lemma 3.17. Call again V = 〈R, πn−3〉
the vertex of SR, with πn−3 the vertex of LR. Denote the elements of L in-
tersecting SR in an (n − 2)-dimensional subspace by gi. By Lemma 3.17,
we find a generator g on V intersected by a unique element g1 of L in an
(n− 2)-dimensional subspace, and intersected by further elements gi of L in at
most (n − 3)-dimensional subspaces contained in V . So we find a hole Q 6= P ,
Q ∈ g \ V .

Clearly, at least q− δ elements of L that meet SR in an (n− 2)-dimensional
subspace, also meet SQ in an (n − 2)-dimensional subspace and are projected
on elements of LQ. Consider now the hole Q, and suppose that LQ is a cone
πn−4R, R a regulus. The generator g1 is projected from Q on a subspace g̃1
not in LQ, since g̃1 meets at least q − δ of the projected spaces gi, i 6= 1, in
an (n − 3)-dimensional space, which has larger dimension than the vertex of
LQ. But g̃1 lies in πn−4R, since it intersects at least q − δ spaces gi in an
(n − 3)-dimensional subspace. Hence, g̃1 meets the q + 1 elements of LQ in
different (n− 3)-spaces and is completely covered. So the projection of R from
Q is covered by elements of LQ, and hence, the line l = 〈R,Q〉 must meet an
element of L \ {g1}, a contradiction. So LQ is a cone π′

n−3Q(2, q).
It follows that g̃1 ∈ LQ, so π′

n−3 ⊂ g̃1, and g1 and V are projected from Q
on g̃1. Before projection from R, the elements gi meet V in (n− 3)-dimensional
subspaces contained in V .

The subspace π′
n−3 lies in the projection from Q of elements of L meeting

〈π′
n−3, Q〉 in an (n− 3)-dimensional subspace. But the choice of g implies that

there is only a unique element of L meeting 〈π′
n−3, Q〉 in an (n− 3)-dimensional

subspace and in points outside of V (the element meeting g in g1), so, at least q
other elements of L intersect V in the same (n− 3)-dimensional subspace. �

The following lemma summarizes in fact Lemmas 3.14, 3.16 and 3.17, 3.18,
and Corollary 3.15. The condition on δ enables the use of the induction hypoth-
esis.

Lemma 3.19. Let n ≥ 3. Suppose that L is a minimal generator blocking set
of size q + 1 + δ of Q(2n, q), δ ≤ δ0. If there exists a hole R that projects
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Polar space Lower bound

Q−(2n+ 1, q) n ≥ 3 : q2 + 1

2
(3q −

√

5q2 + 2q + 1)

Q+(4n+ 3, q) n ≥ 1, q ≥ 7 : 2q + 1

Q(2n, q) n ≥ 3 : q + 1 + δ0, with δ0 = min{ q−1

2
, ǫ},

ǫ such that q + 1 + ǫ is the size of the smallest non-trivial
blocking set in PG(2, q).

W(2n+ 1, q) n ≥ 2, q ≥ 5 : 2q + 1
H(2n, q2) n ≥ 3 : q3 + q − 2

H(2n+ 1, q2) q ≥ 13 and n ≥ 2 : 2q + 3

Table 2: Bounds on the size of small maximal partial spreads

L on a generator blocking set containing a minimal generator blocking set of
Q(2n− 2, q) that has a non-trivial vertex, then L is a generator blocking set of
Q(2n, q) listed in Table 1.

Proof. By Lemma 3.18, we can find an (n − 3)-dimensional subspace α of
Q(2n, q) that is contained in at least q elements of L. Consider now a hole
H 6∈ α⊥. Then H⊥ ∩ α⊥ is an (n + 1)-dimensional space containing at least
q−δ intersections ofH⊥ with elements of L on α through the (n−4)-dimensional
subspaceH⊥∩α. Since SH is (n+1)-dimensional, these q−δ (n−2)-dimensional
subspaces lie in the n-dimensional space SH ∩α⊥. Hence, we find in the (n+1)-
dimensional space 〈α,SH ∩α⊥〉 at least q− δ > δ+2 elements of L. Lemma 3.4
assures that L is one of the generator blocking sets of Q(2n, q) listed in Ta-
ble 1. �

Finally, we can prove Theorem 3.1 (a).

Lemma 3.20. Theorem 3.1 (a) is true for Q(2n, q), n ≥ 3.

Proof. Proposition 1.1 assures that the assumptions of either Lemma 3.13 or
Lemma 3.19, n = 3 are true. Hence, Theorem 3.1 (a) follows for n = 3. But
then the assumption of Lemma 3.19 is true for Q(2n, q) and n = 4, and then
Theorem 3.1 (a) follows by induction. �

4 Remarks

We mentioned already that a maximal partial spread is in fact a special genera-
tor blocking set. The results of Theorem 3.1 imply an improvement of the lower
bound on the size of maximal partial spreads in the polar spaces Q−(2n+1, q),
Q(2n, q), and H(2n, q2) when the rank is at least 3. In Table 2, we summarize
the known lower bounds on the size of small maximal partial spreads of polar
spaces. The results for Q+(2n+1, q), W(2n+1, q) and H(2n+1, q2) are proved
in [7].

One can wonder what happens with generator blocking sets of the polar
spaces Q+(2n+1, q), W(2n+1, q), q odd, and H(2n+1, q2). Unfortunately, the
approach presented in Section 2 for these polar spaces, fails, which makes the
completely approach of this paper not usable for these polar spaces in higher
rank.
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In [1], an overview of the size of the smallest non-trivial blocking sets of
PG(2, q) is given. When q is a prime, then ǫ = q+1

2
. So when q is a prime, the

condition on δ in the case of generator blocking sets of Q(2n, q), n ≥ 3, drops
to δ < q−1

2
.
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