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Abstract

We classify all {δvµ+1, δvµ; N, p3}-minihypers, δ ≤ 2p2 − 4p, p = ph
0 ≥ 11, h ≥ 1,

for a prime number p0 ≥ 7, with excess e ≤ p3 − 4p when µ = 1 and with excess
e ≤ p2 + p when µ > 1. For N ≥ 4, p non-square, such a minihyper is a sum of µ-
dimensional spaces PG(µ, p3) and of at most one (possibly projected) subgeometry
PG(3µ + 2, p); except for one special case when µ = 1. When p is a square, also
(possibly projected) Baer subgeometries PG(2µ + 1, p3/2) can occur.
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1 Introduction

Let PG(N, q) be the N -dimensional projective space over the finite field of
order q.

Definition 1 (Hamada and Tamari [12]) An {f,m; N, q}-minihyper is a pair
(F,w), where F is a subset of the point set of PG(N, q) and w is a weight
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function w : PG(N, q) → N : x 7→ w(x), satisfying
(1) w(x) > 0 ⇔ x ∈ F ,
(2)

∑

x∈F w(x) = f , and
(3) min(|(F,w) ∩ H| =

∑

x∈H w(x)||H ∈ H) = m; where H denotes the set of
hyperplanes.

In the case that w is a mapping onto {0, 1}, the minihyper (F,w) can be
identified with the set F and is simply denoted by F .

The excess of a point of a minihyper (F,w) is the weight of the point minus
one.

The excess e of a minihyper (F,w) is the number
∑

x∈F (w(x) − 1).

Let vs = (qs − 1)/(q − 1).

Minihypers in finite projective spaces were first introduced to study linear
codes meeting the Griesmer bound. The Griesmer bound states that if there
exists an [n, k, d; q] code for given values of k, d and q, then

n ≥
k−1
∑

i=0

⌈

d

qi

⌉

= gq(k, d),

where dxe denotes the smallest integer greater than or equal to x [7,19].

Suppose that there exists a linear [n, k, d; q] code meeting the Griesmer bound
(d ≥ 1, k ≥ 3), then we can write d in an unique way as d = θqk−1 −∑k−2

i=0 εiq
i

such that θ ≥ 1 and 0 ≤ εi < q.

Using this expression for d, the Griesmer bound for an [n, k, d; q] code can be
expressed as: n ≥ θvk −

∑k−2

i=0 εivi+1.

Let Ē(t, q) denote the set of all ordered tuples (ζ0, . . . , ζt−1) of integers ζi

such that (ζ0, . . . , ζt−1) 6= (0, . . . , 0) and either: (a) 0 ≤ ζ0 ≤ q − 1, 0 ≤ ζ1 ≤
q − 1, . . . , 0 ≤ ζt−1 ≤ q − 1, or (b) ζ0 = q, 0 ≤ ζ1 ≤ q − 1, . . . , 0 ≤ ζt−1 ≤ q − 1,
or (c) ζ0 = . . . = ζλ−1 = 0, ζλ = q, 0 ≤ ζλ+1 ≤ q − 1, . . . , 0 ≤ ζt−1 ≤ q − 1
for some integer λ ∈ {1, . . . , t − 1}. Let E(t, q) denote the set of all ordered
tuples (ζ0, . . . , ζt−1) of integers ζi such that (ζ0, . . . , ζt−1) 6= (0, . . . , 0) and
0 ≤ ζ0 ≤ q − 1, 0 ≤ ζ1 ≤ q − 1, . . . , 0 ≤ ζt−1 ≤ q − 1.

In the next paragraph, we suppose that (ε0, . . . , εk−2) ∈ E(k − 1, q).

Hamada and Helleseth [10] showed that there is a one-to-one correspondence
between the set of all non-equivalent [n, k, d; q] codes meeting the Griesmer
bound and the set of all projectively distinct {∑k−2

i=0 εivi+1,
∑k−2

i=0 εivi; k− 1, q}-
minihypers (F,w), such that 1 ≤ w(p) ≤ θ for every point p ∈ F .
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More precisely, the link is described in the following way. Let G = (g1 · · · gn) be
a generator matrix for a linear [n, k, d; q] code, meeting the Griesmer bound.
We look at a column of G as being the coordinates of a point in PG(k− 1, q).
Let the point set of PG(k−1, q) be {s1, . . . , svk

}. Let mi(G) denote the number
of columns in G defining si. Let m(G) = max{mi(G)||i = 1, 2, . . . , vk}. Then
θ = m(G) is uniquely determined by the code C and we call it the maximum
multiplicity of the code. Define the weight function w : PG(k − 1, q) → N

as w(si) = θ − mi(G), i = 1, 2, . . . , vk. Let F = {si ∈ PG(k − 1, q)||w(si) >
0}, then (F,w) is a {∑k−2

i=0 εivi+1,
∑k−2

i=0 εivi; k − 1, q}-minihyper with weight
function w.

Minihypers also have many applications in finite geometries [2,4–6]. A class
of minihypers which is crucial in the study of maximal partial µ-spreads and
minimal µ-covers in finite projective spaces PG(N, q), where (µ+1)|(N +1), is
the class of {δvµ+1, δvµ; N, q}-minihypers. These have been used by Govaerts
and Storme [4,5] to study the extendability of maximal partial µ-spreads in
PG(N, q), (µ + 1)|(N + 1), of small deficiency δ; by Ferret and Storme [2]
to study the extendability of maximal partial 1-spreads in PG(3, q) of small
deficiency δ; and by Govaerts, Storme and Van Maldeghem [6] to obtain results
on other types of substructures in finite incidence structures.

This article improves the results of [5]. By using the recent results on the
classification of the smallest minimal blocking sets B in PG(2, p3), new clas-
sification results on {δvµ+1, δvµ; N, p3}-minihypers are obtained.

This article presents the results for {δv2, δv1; N, p3}-minihypers, N > 3, and
for {δvµ+1, δvµ; N, p3}-minihypers, µ > 1. In a first paper [3], the {δv2, δv1; 3, p

3}-
minihypers were discussed.

The easiest way to construct weighted minihypers is to construct a sum of
certain geometrical objects.

Consider a number of geometrical objects, such as subspaces PG(d, q = ph)
of PG(N, q = ph), subgeometries PG(d, pt) of PG(N, q = ph), where t|h, and
projected subgeometries PG(d, pt) in PG(N, q = ph), where t|h. In the first
two cases, a point of respectively PG(d, q) or PG(d, pt) has weight one, while
all the other points not belonging to respectively PG(d, q) or PG(d, pt) have
weight zero. In the latter case, let Π be a projected PG(d, pt). The weight of
a point s of Π is the number of points s′ of PG(d, pt) that are projected onto
s; all other points s not belonging to Π have weight zero.

Then the sum of these subspaces and (projected) subgeometries is the weighted
set (F,w), where the weight w(s) of a point s of (F,w) is the sum of all the
weights of s in the subspaces and (projected) subgeometries of (F,w).
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We will also speak of a minihyper (F,w) in which a line R is deleted. This
means that we consider the following minihyper (F,w) \ R:

(1) if r ∈ R, then the weight of r in the minihyper (F,w) \ R is w(r) − 1,
(2) if r 6∈ R, then the weight of r in the minihyper (F,w) \ R is w(r).

The following characterization results on {δv2, δv1; 3, p
3}-minihypers were ob-

tained in [3].

Theorem 2 (Ferret and Storme [3]) A {δ(p3 + 1), δ; 3, p3}-minihyper (F,w),
p non-square, p = ph

0 , p ≥ 11, p0 prime, h ≥ 1, p0 ≥ 7, δ ≤ 2p2 − 4p, and with
excess e ≤ p3, is either:
(1) a sum of lines and of at most one projected PG(5, p) projected from a line
L for which dim〈L,Lp, Lp2〉 ≥ 3,
(2) a sum of lines and of a {(p2 +p)(p3 +1), p2 +p; 3, p3}-minihyper (Ω, w)\R,
where Ω is a PG(5, p) projected from a line L for which dim〈L,Lp, Lp2〉 = 3,
and where R is the line contained in Ω.

Theorem 3 (Ferret and Storme [3]) A {δ(p3 + 1), δ; 3, p3}-minihyper (F,w),
p = ph

0 , p0 prime, h ≥ 2 even, p0 ≥ 7, δ ≤ 2p2 − 4p, and with excess e ≤ p3,
is either:
(1) a sum of lines, (projected) PG(3, p3/2), and of at most one projected
PG(5, p) projected from a line L for which dim〈L,Lp, Lp2〉 ≥ 3,
(2) a sum of lines, (projected) PG(3, p3/2), and of a {(p2 + p)(p3 + 1), p2 +
p; 3, p3}-minihyper (Ω, w) \ R, where Ω is a PG(5, p) projected from a line L
for which dim〈L,Lp, Lp2〉 = 3, and where R is the line contained in Ω.

Crucial in the classification results of the preceding theorems are the recent
classification results on non-trivial minimal blocking sets in PG(2, p3).

Definition 4 A blocking set of PG(2, q) is a set of points intersecting every
line of PG(2, q) in at least one point.

A blocking set is called minimal when no proper subset of it is still a blocking
set; and we call a blocking set non-trivial when it contains no line.

A blocking set of PG(2, q) is called small when it has less than 3(q + 1)/2
points.

If q = ph, p prime, we call the exponent E of the minimal blocking set B the
maximal integer E such that every line intersects B in 1 modulo pE points.

From a result of Szőnyi [21], it follows that E ≥ 1 for every small non-trivial
minimal blocking set in PG(2, q).
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Remark 5 In [21], it is proven that, if E is the exponent of a small non-trivial
minimal blocking set in PG(2, q), q = ph, p prime, then 1 ≤ E ≤ h/2, and
the size of the blocking set must lie in certain intervals depending on pE. We
note that the bounds given in [21] are improved in [15] and in [17].

The results of [21] have been used to classify all non-trivial small minimal
blocking sets of PG(2, q), q = ph, of exponent E ≥ h/3.

Theorem 6 (Polverino, Polverino and Storme [16–18]) The smallest minimal
blocking sets in PG(2, p3), p = ph

0 , p0 prime, p0 ≥ 7, with exponent E ≥ h,
are:
(1) a line,
(2) a Baer subplane of cardinality p3 + p3/2 + 1, when p is a square,
(3) a set of cardinality p3 + p2 + 1, equivalent to

{(x, T (x), 1)||x ∈ GF (p3)} ∪ {(x, T (x), 0)||x ∈ GF (p3) \ {0}},

with T the trace function from GF (p3) to GF (p),
(4) a set of cardinality p3 + p2 + p + 1, equivalent to

{(x, xp, 1)||x ∈ GF (p3)} ∪ {(x, xp, 0)||x ∈ GF (p3) \ {0}}.

This result is also the complete classification of all small minimal non-trivial
blocking sets in PG(2, p3), p prime, p ≥ 7.

From the intervals for the sizes of minimal non-trivial blocking sets in PG(2, p3),
the following result follows.

Theorem 7 In PG(2, p3), p = ph
0 , p0 prime, p0 ≥ 7, h ≥ 1, every non-trivial

blocking set B of size at most p3 + 2p2 − 4p contains a minimal blocking set
of one of the types described in Theorem 6.

Remark 8 (1) The minimal blocking set of size p3+p2+1 has a unique point,
called the vertex, lying on exactly p + 1 lines containing p2 + 1 points of the
blocking set. These p + 1 lines form a dual PG(1, p). All other lines intersect
the blocking set in 1 or in p + 1 points.

Furthermore, these (p2 + 1)-sets which are the intersection of the blocking set
with these (p2 + 1)-secants are equivalent to the set {∞} ∪ {x ∈ GF (p3)||x +
xp + xp2

= 0}, with ∞ corresponding with the vertex of the blocking set.

Later on, we will refer to the point corresponding with ∞ as being the special
point of this (p2 + 1)-set.

The lines sharing p + 1 points with this blocking set intersect the blocking set
in a subline PG(1, p).
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(2) The minimal blocking set of size p3 + p2 + p + 1 has p2 + p + 1 points in
common with exactly one line; all other lines intersect the blocking set in 1 or
in p + 1 points.

This (p2 + p + 1)-set which is the intersection of the blocking set with the
(p2 + p + 1)-secant is equivalent to {x ∈ GF (p3)||xp2+p+1 = 1}. The (p + 1)-
secants intersect the blocking set in a subline PG(1, p).

(3) These two blocking sets are also characterized [13] as being a projected
PG(3, p) in the plane PG(2, p3). Namely, embed the plane PG(2, p3) in a 3-
dimensional space PG(3, p3). Consider a subgeometry PG(3, p) of PG(3, p3)
and a point r not belonging to this subgeometry PG(3, p) and not belonging
to the plane PG(2, p3).

Project PG(3, p) from r onto PG(2, p3).

If the point r belongs to a line of the subgeometry PG(3, p), then this PG(3, p)
is projected onto the blocking set of size p3+p2+1; else we obtain the blocking
set of size p3 + p2 + p + 1.

(4) To simplify the notations in this article, every set of p2 +1 collinear points
projectively equivalent to the set {∞}∪ {x||xp2

+ xp + x = 0} will be called a
(p2 +1)-set, and every set of p2 + p+1 collinear points projectively equivalent
to the set {x||xp2+p+1 = 1} will be called a (p2 + p + 1)-set.

We will also use recent results on blocking sets K with respect to hyperplanes
of PG(N, q); these are sets of points intersecting every hyperplane in at least
one point; hence {|B|, 1; N, p3}-minihypers.

Theorem 9 (Storme and Weiner [20]) In PG(N, p3), p = ph
0 , h ≥ 1, p0

prime, p0 ≥ 7, N ≥ 3, a minimal blocking set K with respect to hyperplanes,
of cardinality at most p3 + p2 + p + 1, is either:

(1) a line;

(2) a Baer subplane when p is a square;

(3) a minimal blocking set of cardinality p3 + p2 + 1 in a plane of PG(N, p3);

(4) a minimal blocking set of cardinality p3+p2+p+1 in a plane of PG(N, p3);

(5) a subgeometry PG(3, p) in a 3-dimensional subspace of PG(N, p3).

Remark 10 Since we are considering weighted minihypers (F,w), we wish to
distinguish between the following notations. The notation F ∩ H means the
intersection of the two sets F and H; so all points of F ∩H are counted with
weight one. The notation (F,w)∩H is the weighted minihyper in H consisting
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of the point set F ∩ H, where each point of H is given the same weight as in
the minihyper (F,w).

We will use the following results on minihypers. Note that these results were
stated for minihypers which are sets of points, they can however easily be
extended to weighted minihypers.

Theorem 11 (Ferret and Storme [1], Hamada and Helleseth [11]) Let (F,w)
be a {∑t−1

i=0 εivi+1,
∑t−1

i=1 εivi; t, q}-minihyper where t ≥ 2, h ≥ 2, q ≥ h, 0 ≤
εi ≤ q − 1,

∑t−1

i=0 εi = h.
(1) If for a hyperplane H of PG(t, q), |(F,w)∩H| =

∑t
i=1 mivi, (m1, . . . ,mt) ∈

Ē(t, q), then (F,w)∩H is a {∑t
i=1 mivi,

∑t
i=1 mivi−1; t−1, q}-minihyper in H.

(2) There does not exist a hyperplane H in PG(t, q) such that |(F,w) ∩ H| =
∑t

i=1 mivi for any (m1, . . . ,mt) ∈ Ē(t, q) such that
∑t

i=1 mi > h.
(3) In the case ε0 = 0 and q ≥ 2h − 1, there is no hyperplane H in PG(t, q)
such that |(F,w) ∩ H| =

∑t
i=1 mivi for any (m1, . . . ,mt) ∈ Ē(t, q) such that

∑t
i=1 mi < h.

Theorem 12 (Hamada [9]) If there exists a {∑N−1

i=0 εivi+1,
∑N−1

i=1 εivi; N, q}-
minihyper (F,w) for some ordered set (ε0, ε1, . . . , εN−1) in E(N, q), then for
1 ≤ n < N :

(1) |(F,w) ∩ Ω| ≥ ∑N−1

i=n−1 εivi+1−n for any (N − n)-dimensional subspace Ω
in PG(N, q) and equality holds for some (N − n)-dimensional subspace Ω in
PG(N, q).

(2) In the special case n = 2, |(F,w) ∩ ∆| ≥ ∑N−1

i=1 εivi−1 for any (N − 2)-
dimensional subspace ∆ in PG(N, q) and |(F,w)∩G| =

∑N−1

i=1 εivi−1 for some
(N − 2)-dimensional subspace G in PG(N, q). Let Hj, j = 1, 2, . . . , q + 1,
be the q + 1 hyperplanes in PG(N, q) that contain G. Then (F,w) ∩ Hj is a
{

δj +
∑N−1

i=1 εivi,
∑N−1

i=1 εivi−1; N − 1, q
}

-minihyper in Hj for j = 1, 2, . . . , q+1,

where the δj are some non-negative integers such that
∑q+1

j=1 δj = ε0.

2 Projected PG(5, p) in PG(3, p3)

From the results of Theorem 2 and 3 on {δ(p3 + 1), δ; 3, p3}-minihypers, such
minihypers might contain projected subgeometries PG(5, p) ≡ Ω.

To obtain the classification results on the {δ(p3 + 1), δ; N, p3}-minihypers,
N > 3, and on the {δvµ+1, δvµ; N, p3}-minihypers, µ > 1, we will use the de-
scriptions of these projected PG(5, p). A detailed description of the different
types of projected subgeometries PG(5, p) ≡ Ω was given in [3]. We now re-
peat the properties of these projected subgeometries which will be used in the
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next sections.

Consider a subgeometry Λ = PG(5, p) naturally embedded in PG(5, p3). Let
L be a line of PG(5, p3) skew to Λ. Then L has two conjugate lines with
respect to Λ. We will always denote these conjugate lines by Lp and Lp2

.

We now present the detailed descriptions of such projected PG(5, p).

Case 1. Suppose that Ω is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 5.

Then every projected point s in Ω has weight one, a line of PG(3, p3) sharing
at least two points with Ω shares a PG(1, p) or a (p2 + p + 1)-set with Ω,
and planes either share a (p2 + p + 1)-set, a subplane PG(2, p), or a minimal
blocking set of size p3 + p2 + p + 1 with Ω.

Case 2. Suppose that Ω is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 4.

Then the 4-dimensional space 〈L,Lp, Lp2〉 ∩ Λ is called the special 4-space of
Λ, and similarly, its projection is called the special projected 4-space of Ω.
We will denote this special 4-space 〈L,Lp, Lp2〉 ∩ Λ by P .

Then for exactly one point r of L, dim〈r, rp, rp2〉 = 1. This line M = 〈r, rp, rp2〉
is projected from L onto a point m of Ω of weight p + 1.

Every plane π of Λ passing through M , and not lying in P , is projected from L
onto a (p2+1)-set with special point m. Each such plane π lies in p2+p+1 solids
of Λ which are projected onto planar minimal blocking sets of size p3 + p2 +1;
thus implying that m lies in p4 + p3 + p2 planes of PG(3, p3) sharing a 1-fold
blocking set of size p3 + p2 + 1 with Ω.

Let s be a point of Ω not lying in the special 4-space of Ω. Assume that s is
the projection of s′ ∈ Λ. Then each solid 〈r, rp, rp2

, s′〉 ∩Λ, with r ∈ L \M , is
projected from L onto a planar minimal blocking set of size p3 + p2 + p + 1;
hence, s lies in p3 such planar minimal blocking sets. Every solid of Λ passing
through M and s′ is projected onto a planar minimal blocking set of size
p3 + p2 + 1 passing through s; thus giving p2 + p + 1 extra planes through s
intersecting Ω in a projected PG(3, p).

Let s be a point of weight one of Ω which is the projection of a point s′
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of P . Then the plane 〈M, s′〉 lies in p2 distinct 3-spaces of Λ not contained
in P which are projected onto planar blocking sets of size p3+p2+1 through s.

Case 3. Suppose that Ω is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 3.

Let P = 〈L,Lp, Lp2〉 ∩ Λ.

Every plane α through L in 〈L,Lp, Lp2〉 has two conjugate planes αp, αp2

with
respect to Λ, and these three planes intersect in at least one point of P . Hence
every plane through L in 〈L,Lp, Lp2〉 contains at least one point of P and the
projection of P is a line R of PG(3, p3). There are p+1 skew lines L1, . . . , Lp+1

in P which are projected onto points of weight p+1, and the remaining p3−p
points of P are projected onto points of weight one of the line R.

Then we call P the special 3-space of Λ, and its projection will always be
denoted by the line R.

A point s′ of Λ \ P is projected onto a point s lying on p + 1 (p2 + 1)-secants
to Ω, which are the projections of 〈s′, Li〉 ∩ Λ, i = 1, . . . , p + 1. Each such
(p2 + 1)-secant through s lies in p2 planes of PG(3, p3) containing a projected
PG(3, p) of Λ, which is a minimal blocking set of size p3 + p2 +1; hence, s lies
in p3 +p2 such planes. Considering these PG(3, p) in Λ; these are the PG(3, p)
through a plane 〈s′, Li〉 only intersecting P in Li.

Furthermore, through R, there are p + 1 planes of PG(3, p3) containing p4 +
p3 + p2 + p + 1 projected points of Λ. The other planes through R contain
p3 + p2 + p + 1 projected weighted points of Λ; these all lie on R.

Hence, this projection forms a {(p2 +p+1)(p3 +1), p2 +p+1; 3, p3}-minihyper
containing the line R. Reducing the weight of every point on R by one yields
a {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω, w) \ R.

Case 4. Suppose that Ω is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 2.

Then this projection is a cone of p2 + p + 1 lines; the vertex of the cone is a
point having weight p2 + p+1, arising from the projection of the points of the
plane 〈L,Lp, Lp2〉 ∩ Λ, and the base of the cone is a subplane PG(2, p).

Remark 13 In this article, the symbols Ω, Λ and R will always have the
following meaning. The symbol Ω will always denote the projection of a
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PG(5, p) ≡ Λ from a line L, and if Ω is the projection of Λ from a line L
with dim〈L,Lp, Lp2〉 = 3, then R will always denote the line contained in Ω.

3 {δ(p3 + 1), δ; N, p3}-minihypers for p non-square

Let (F,w) be a {δ(p3 + 1), δ; 4, p3}-minihyper.

We suppose that the total excess
∑

x∈F (w(x) − 1) is at most p3 − 4p and
that δ ≤ 2p2 − 4p. Let r 6∈ F be a point lying on at most |F |(|F | − 1)(p3 +
1)/(2(|PG(4, p3)| − |F |)) < 2p secants to (F,w); these latter secants contain
at most 4p points of (F,w). So we can project (F,w) from r onto a solid Π
to obtain a weighted minihyper (F ′, w′), and at most 2p points of (F ′, w′) are
the projection of at least two distinct points in F .

Lemma 14 There is a bijective relation between the lines contained in (F,w)
and the lines contained in (F ′, w′).

PROOF. A line of (F,w) is projected onto a line of (F ′, w′). No two lines
are projected onto the same line. Assume that there is a line M contained in
(F ′, w′). A point on M which only is the projection of one point in (F,w) de-
fines one point of (F,w) in 〈M, r〉. The points on M which are the projections
of at least two points of (F,w) define at most 4p points in F ∩ 〈M, r〉. So, in
〈M, r〉 lie at most p3 +1+4p distinct points of (F,w) and they define a 1-fold
blocking set in 〈M, r〉; hence there is a line of (F,w) in 〈M, r〉 (Theorems 6
and 11).

Theorem 15 ([5]) If there is a line M contained in a {δ(q + 1), δ; N, q}-
minihyper (F,w), with δ ≤ (q + 1)/2, then (F,w) \M is a {(δ − 1)(q + 1), δ −
1; N, q}-minihyper.

The preceding lemma and theorem imply that from now on, we can assume
that (F,w), and its projection (F ′, w′) from r, do not contain any lines. Since
by projecting from r, the excess increases by at most 4p, (F ′, w′) has at most
excess p3. Using Theorem 2, the only projections (F ′, w′) we have to consider
are the following {δ(p3 + 1), δ; 3, p3}-minihypers. Since these projected subge-
ometries PG(5, p) lie in a 3-dimensional space Π, they are easily described as
the projection of a subgeometry PG(5, p) ≡ Λ from a line L.

(1) δ = p2 + p + 1 and (F ′, w′) is the projection of a PG(5, p) ≡ Λ from a
line L for which dim〈L,Lp, Lp2〉 = 5. Then (F ′, w′) only contains points
of weight one.
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(2) δ = p2 + p + 1 and (F ′, w′) is the projection of a PG(5, p) ≡ Λ from a
line L for which dim〈L,Lp, Lp2〉 = 4. Then (F ′, w′) contains one point of
weight p + 1 and p5 + p4 + p3 + p2 points of weight one.

(3) δ = p2 + p and (F ′, w′) = (Ω, w) \ R is the projection of a PG(5, p) ≡ Λ
from a line L for which dim〈L,Lp, Lp2〉 = 3, minus the line R contained
in this projection. Then (F ′, w′) contains exactly p + 1 points of weight
p, lying on R, and all other points of (F ′, w′) have weight one.

The goal now is to prove that (F,w) itself equals a projected subgeometry
PG(5, p) or a {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω, w) \ R.

To achieve this goal, we discuss the preceding three possibilities one by one.
The main difficulty is that we have to use certain properties of solids in pro-
jected subgeometries PG(5, p). To make the ideas as clear as possible in Cases
2 and 3, we first describe these, rather obvious, properties originally in the
non-projected subgeometry Λ. These are then described in the projected sub-
geometry (F ′, w′) in Π, and by then describing them in the 4-space PG(4, p3),
the characterization of the original minihyper (F,w) is obtained.

Case 1. Suppose that (F ′, w′) is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 5.

Every plane of Π intersects (F ′, w′) in p2 + p + 1 or p3 + p2 + p + 1 points.

Then every solid of PG(4, p3) through r has p3 +p2 +p+1 or p2 +p+1 points
of (F,w). If a solid π3 through r has p3+p2+p+1 points of (F,w), then F ∩π3

is a 1-fold blocking set with respect to the planes of π3 (Theorem 11). By the
results of Theorem 9, F ∩ π3 contains a non-projected PG(3, p) or a minimal
blocking set of size p3 + p2 + p + 1. For if it would share a minimal blocking
set of size p3 + p2 + 1 with (F,w), we would have p + 1 different (p2 + 1)-sets
in the projection (F ′, w′).

Let T be a (p2 + p + 1)-secant to (F ′, w′). Consider two planes πi, i = 1, 2,
in Π through T containing p3 + p2 + p + 1 points of (F ′, w′). These planes πi

and r define solids containing p3 + p2 + p+1 points of (F,w). The (projected)
PG(3, p) 〈πi, r〉 ∩ (F,w), i = 1, 2, sharing p3 + p2 + p + 1 points with (F,w),
define a (projected) PG(4, p) = Ω4. Now, select a third plane π3 of Π through
T containing p3 +p2 +p+1 points of (F ′, w′) such that F ∩〈r, π3〉 does not lie
in Ω4. Note that there are p2 choices for such a plane π3. Then 〈πi, r〉∩ (F,w),
i = 1, 2, 3, define a (projected) PG(5, p) ≡ Ω.

We show that Ω is completely contained in (F,w). Consider a second (p2 +p+
1)-secant M to (F ′, w′), skew to T , and consider all planes π4 of Π through M
containing p3 + p2 + p+1 points of (F ′, w′). Then πi ∩π4 ∩ (F ′, w′), i = 1, 2, 3,
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is a subline PG(1, p)i since both planes contain a projected PG(3, p) of the
projected PG(5, p) ≡ (F ′, w′). Then 〈πi, r〉 ∩ 〈π4, r〉 ∩ (F,w) ≡ PG(1, p)i, i =
1, 2, 3, share one point with (F,w), projected from r onto T . Hence the (pro-
jected) PG(3, p) ≡ F ∩〈π4, r〉 shares three sublines PG(1, p)i with Ω. Hence, it
also shares the plane 〈PG(1, p)1, PG(1, p)2〉 with Ω. Finally it is contained in Ω
since it also shares PG(1, p)3 with Ω and PG(1, p)3 6⊂ 〈PG(1, p)1, PG(1, p)2〉.
Letting vary π4, we obtain that all p5 + p4 + p3 + p2 + p + 1 points of Ω lie in
(F,w). So, (F,w) is a (projected) PG(5, p) of size p5 + p4 + p3 + p2 + p + 1
only having points of weight one.

Case 2. Suppose that (F ′, w′) is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 4.

Then (F ′, w′) consists of one point of weight p + 1 and of p5 + p4 + p3 + p2

points of weight one. Let M denote the line of Λ which is projected onto one
point m of (F ′, w′).

We first describe some properties of 3-spaces of Λ. These properties allow us
to reconstruct Λ from carefully selected solids. We do this since these ideas
will then be used to construct the projected PG(5, p) ≡ Ω contained in (F,w).

Let π = 〈s, sp, sp2〉 ∩ Λ, with s ∈ L \ M , be a plane of Λ which is projected
onto a (p2 + p + 1)-set of (F ′, w′). Again we select PG(3, p)i, i = 1, 2, 3, of
Λ through π defining Λ. This time we select all PG(3, p)i outside the special
PG(4, p) ≡ P of Λ. Consider a solid PG(3, p)4 of Λ through M not lying in
P . This solid shares a unique point with π since this plane is skew to M . It
shares a subline PG(1, p)i with PG(3, p)i, i = 1, 2, 3, since they are two solids
in Λ and since M is skew to the intersection. This implies that PG(3, p)4

is contained in Λ. By letting vary the solid PG(3, p)4, the subgeometry Λ is
reconstructed.

We now describe the preceding observations in the subgeometry Λ in the
projected subgeometry (F ′, w′) to find the projected subgeometry Ω contained
in (F,w).

Let T be a (p2 + p + 1)-secant to (F ′, w′). Let π1, π2, π3 be three distinct
planes of Π through T intersecting (F ′, w′) in 1-fold blocking sets PG(3, p)i,
i = 1, 2, 3, of size p3 + p2 + p + 1 such that the 1-fold blocking sets of (F ′, w′)
in π1, π2, π3 generate the projected subgeometry (F ′, w′).

Then, as in Case 1, the corresponding solids 〈πi, r〉 again intersect (F,w) in
a non-projected subgeometry PG(3, p) or in a minimal blocking set of size
p3 + p2 + p + 1. Let Ω be the projected subgeometry PG(5, p) of PG(4, p3)
defined by these 1-fold blocking sets of (F,w) in the solids 〈πi, r〉, i = 1, 2, 3.
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Let π be a plane of Π through m sharing a projected PG(3, p) with (F ′, w′).
Returning to PG(4, p3), 〈π, r〉 ∩ (F,w) is either a (projected) PG(3, p) of size
p3 +p2 +p+1; or contains a minimal blocking set of size p3 +p2 +1 and maybe
some extra points. In this latter case, since the projection m of M has weight
p + 1, the possible extra points lie on the line 〈m, r〉. In PG(4, p3), F ∩ 〈π, r〉
shares a PG(1, p)i with (F,w) ∩ 〈πi, r〉, i = 1, 2, 3.

So the (projected) PG(3, p) contained in (F,w) ∩ 〈π, r〉 lies in Ω.

Letting vary π, this implies that already p5+p4+p3+p2+1 points of (F,w) lie
in Ω. If Ω has p5 + p4 + p3 + p2 + p + 1 distinct points, we will show further on
that (F,w) coincides with this set of p5+p4+p3+p2+p+1 points. If Ω has one
point of weight p + 1, we show that (F,w) coincides with the p5 + p4 + p3 + p2

points of weight one and one point of weight p + 1. The only doubt which
remains concerns the points on the line 〈m, r〉 =(say) T ′.

We project (F,w) from another point r′ 6∈ T ′, lying on at most 2p secants to
F , onto a minihyper (F ′′, w′′). Then (F ′′, w′′) is the projection of a subgeom-
etry PG(5, p) ≡ Λ′. We obtain at most 4p extra multiple points. Hence, the
total excess is at most 5p; and we are again in Case 1 or Case 2. If we are in
Case 1, there is nothing left to prove. If we are in Case 2, let m′ ∈ F ′′ be the
point of weight p + 1 of (F ′′, w′′). All points of (F,w) on 〈m, r〉 \ 〈m′, r′〉 must
lie in Ω. Note that there can only be one projected PG(5, p) in PG(4, p3)
containing at least p5 + p4 + p3 + p2 points of (F,w). Since the points of
(〈m′, r′〉 \ 〈m, r〉) ∩ (F,w) have weight one, but the projection m′ has weight
p + 1, 〈m, r〉 has no points of (F,w) outside Ω. Hence, either 〈m, r〉 ∩Ω is one
point of weight p + 1 or p + 1 points of weight one.

Case 3. Suppose that (F ′, w′) is the projection of Λ from a line L for which
dim〈L,Lp, Lp2〉 = 3.

We will again describe properties of 3-spaces in Λ. The ideas following from
these properties will then be translated into properties of projected 3-spaces
in (F ′, w′). These latter properties will then be interpreted with respect to
(F,w) in PG(4, p3) to construct a projected PG(5, p) ≡ Ω containing at least
p5 + p4 points of (F,w).

Let Li, i = 1, . . . , p+1, be the lines of P ⊂ Λ which contain p points projected
onto one point of (F ′, w′). Select a plane π of Λ through L1 not contained in
P = 〈L,Lp, Lp2〉 ∩ Λ. Select three distinct 3-spaces PG(3, p)i, i = 1, 2, 3,
through π only sharing L1 with P and generating Λ.

Every solid PG(3, p) of Λ through L2, only intersecting P in L2, intersects
the solids PG(3, p)i, i = 1, 2, 3, in sublines PG(1, p)i. These latter sublines
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PG(1, p)i, i = 1, 2, 3, generate this solid PG(3, p) of Λ through L2; hence by
letting vary PG(3, p) through L2, we can prove that all points of Λ \ P lie in
the 5-space generated by the solids PG(3, p)i, i = 1, 2, 3.

We now interpret this in the projection (F ′, w′). Let l1, . . . , lp+1 be the projec-
tions of the lines L1, . . . , Lp+1 of Λ.

A plane π of Λ through L1, with π 6⊂ P, is projected onto a (p2 + 1)-set
T through l1. The solids PG(3, p)i selected above are projected onto 1-fold
blocking sets of size p3 + p2 + 1 in planes π1, π2, π3 through T .

This implies that in 〈πi, r〉, i = 1, 2, 3, (F,w) shares a 1-fold blocking set of
size p3 + p2 + p with 〈πi, r〉, hence it contains a minimal blocking set Bi of
size p3 + p2 + 1 (Theorems 9 and 11). The point l1 had weight p in (F ′, w′);
so possible points of (F,w) ∩ 〈πi, r〉 not in Bi lie on the line 〈l1, r〉.

Interpreting everything with respect to (F,w) in PG(4, p3), the minimal block-
ing sets Bi, i = 1, 2, 3, generate a (projected) subgeometry PG(5, p) ≡ Ω. Note
that Bi, i = 1, 2, 3, have the same vertex, since they share the (p2+1)-set which
is projected onto T .

Every projected PG(3, p) of (F ′, w′), in a plane π4, through lj, j = 2, . . . , p+1,
only intersecting the projection of P in lj intersects T in exactly one point,
and intersects πi ∩ (F ′, w′) in a (p + 1)-secant. By the choice of the planes πi,
i = 1, 2, 3, these (p + 1)-secants are not coplanar in Ω; hence this projected
PG(3, p) is completely contained in (F ′, w′), and interpreting this in 〈π4, r〉,
the corresponding minimal blocking set of size p3 + p2 + 1 in (F,w) ∩ 〈π4, r〉
is completely contained in Ω.

Hence we have found a (projected) PG(5, p) ≡ Ω in PG(4, p3) having p5 +
p4 + p + 1 points lying in (F,w).

Now Ω has p + 1 points through which there pass (p2 + 1)-secants. This is
impossible for a PG(5, p) projected from one point onto PG(4, p3). So Ω lies
in a 3-dimensional subspace Π3 of PG(4, p3), and Ω is a subgeometry PG(5, p)
projected from a line L′ for which dim〈L′, L′p, L′p2〉 = 3. Let R be the line
contained in Ω.

Since the total weight of the points of (F,w) is equal to (p2 + p)(p3 + 1), we
still need to determine the exact description of a total weight of order p2 − 1.
If there are points of (F,w) not belonging to Ω, then these points must lie on
the lines 〈li, r〉, i = 1, . . . , p + 1.

At most p2 − 1 points of (F,w) do not belong to Π3. Select new points r′ 6∈ F ,
r′ 6∈ Π3. For all these points, the projection of (F,w) from r′ onto Π3 must be
a projected {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω′, w′) \ R′, where Ω′
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is a projected PG(5, p) in Π3 from a line L′′ with dim〈L′′, L′′p, L′′p2〉 = 3 and
where R′ is the line contained in Ω′. Necessarily, Ω′ = Ω.

Furthermore, the points of (F,w) not belonging to Π3 must always be pro-
jected onto the points of weight p in (Ω, w) \ R. This is not possible when
(F,w) has points not belonging to Π3. The only possibility is that (F,w) is
this {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω, w) \ R.

We now state the first concluding theorem of this article.

Theorem 16 A {δ(p3 + 1), δ; N, p3}-minihyper (F,w), N ≥ 4, p non-square,
p = ph

0 , p ≥ 11, p0 prime, h ≥ 1, p0 ≥ 7, δ ≤ 2p2 − 4p, and with excess
e ≤ p3 − 4p, is either:
(1) a sum of lines and of at most one (projected) PG(5, p),
(2) a sum of lines and of a {(p2 +p)(p3 +1), p2 +p; 3, p3}-minihyper (Ω, w)\R,
where Ω is a PG(5, p) projected from a line L for which dim〈L,Lp, Lp2〉 = 3,
and where R is the line contained in Ω.

PROOF. For N = 4, this follows from the preceding lemmas.

The result for N > 4 follows from analogous arguments, using an inductive
proof with N = 4 as induction hypothesis.

Since for N = 4, the projection of (F,w) from r can increase the excess by at
most 4p, we only allow here e ≤ p3 − 4p so that the projection (F ′, w′) has
excess e′ ≤ p3.

4 {δ(p6 + p3 + 1), δ(p3 + 1); N, p3}-minihypers for p non-square

In this section, we classify {δ(p6 + p3 + 1), δ(p3 + 1); N, p3}-minihypers (F,w),
δ ≤ 2p2 − 4p, N ≥ 3, p non-square, p ≥ 11, p = ph

0 , p0 prime, p0 ≥ 7, h ≥ 1,
with excess e ≤ p2 + p.

Consider a PG(N − 3, p3) skew to (F,w). The (N − 2)-dimensional subspaces
through it intersect (F,w) in δ points (Theorem 12). Since the total excess of
the points is at most p2+p, there certainly is a PG(N−2, p3) ≡ ∆ intersecting
(F,w) in δ points of weight one.

The hyperplanes through ∆ will be denoted by H0, . . . , Hp3 . By Theorem 11,
they intersect (F,w) in weighted {δ(p3 +1), δ; N −1, p3}-minihypers satisfying
the conditions of Theorem 16. So they intersect (F,w) in a weighted sum of
lines and of at most one (projected) PG(5, p), or at most one {(p2 + p)(p3 +
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1), p2 +p; 3, p3}-minihyper (Ω, w)\R, with Ω a projected PG(5, p) from a line
L with dim〈L,Lp, Lp2〉 = 3 and with R the line contained in Ω.

We want to classify the above mentioned {δ(p6 + p3 + 1), δ(p3 + 1); N, p3}-
minihypers (F,w), δ ≤ 2p2 − 4p, as a sum of planes and of at most one
(projected) PG(8, p).

We first show that if there are many lines in the intersections of the hyper-
planes Hi with (F,w), then there are planes contained in (F,w).

Lemma 17 If r ∈ (F,w) ∩ ∆ lies on two lines L1, L2 contained in (F,w),
then 〈L1, L2〉 is contained in (F,w).

PROOF. Assume that 〈L1, L2〉 is not contained in (F,w).

The plane 〈L1, L2〉 intersects (F,w) in a t-fold blocking set, with t ≥ 2 (Theo-
rem 11). If it intersects (F,w) in a t-fold blocking set, with necessarily t ≤ 2p2,
by Theorem 11, it contains at most tp3 + 2p2 points of (F,w). On the other
hand, it contains the two lines L1 and L2, and at least t − 1 other points
on every other line through r in 〈L1, L2〉 since r has weight one; yielding
tp3 + 2p2 ≥ |(F,w) ∩ 〈L1, L2〉| ≥ (t + 1)p3 − t + 2; a contradiction. Hence
〈L1, L2〉 is completely contained in (F,w).

Reducing the weights of all points of 〈L1, L2〉 by 1, yields a {(δ − 1)(p6 + p3 +
1), (δ − 1)(p3 + 1); N, p3}-minihyper (F,w) \ 〈L1, L2〉 [4].

Hence, from now on, we assume that (F,w) does not contain planes.

Remark 18 (1) We can then assume that δ = p2 + p + 1 or δ = p2 + p, since
if δ > p2 + p + 1, then every hyperplane through ∆ contains at least one line,
and hence some point s of (F,w) ∩ ∆ lies on at least two lines of (F,w), and
so s lies in a plane α contained in (F,w).

We assume that the total excess of the points of (F,w) is at most p2 +p. Since
∆ intersects (F,w) in points of weight one, it is impossible that all p3 + 1
hyperplanes Hi, i = 0, . . . , p3, through ∆ intersect (F,w) in a {(p2 + p)(p3 +
1), p2 + p; N − 1, p3}-minihyper (Fi, w), which is a projected PG(5, p) minus
a line, since each such minihyper has p + 1 points of weight p.

Hence, there is at least one hyperplane through ∆ intersecting (F,w) in a
{(p2+p+1)(p3+1), p2+p+1; N−1, p3}-minihyper (Fi, w) which is a projected
PG(5, p). Hence ∆ contains p2 +p+1 points of weight one and we can assume
that δ = p2 + p + 1.

16



(2) Also, every (N − 2)-dimensional subspace ∆′ sharing p2 + p + 1 points
of weight one with (F,w) must intersect (F,w) in either a non-projected
PG(2, p), or in a (p2 + p + 1)-set.

For if ∆′∩(F,w) would not be of one of these types, then this would imply that
no hyperplane through ∆′ would intersect (F,w) in a (projected) PG(5, p).
So, all hyperplanes H ′

i through ∆′ would share p2 + p + 1 lines with (F,w),
or they would share a minihyper (F ′

i , w) with (F,w), where (F ′

i , w) is the sum
of a {(p2 + p)(p3 + 1), p2 + p; N − 1, p3}-minihyper (Ωi, wi) \Ri and a line R′

i,
where Ωi is a projected PG(5, p) and Ri is the line contained in Ωi. But then
there is a point of (F,w) ∩ ∆′ lying on two lines of (F,w); so (F,w) would
contain at least one plane, and this was excluded.

Lemma 19 If there is a hyperplane H0 through ∆ containing p2 + p + 1 lines
of (F,w), then these lines form a cone with a (p2 + p + 1)-set or a subplane
PG(2, p) as base.

PROOF. Case 1. Assume first that the p2 + p+ 1 points in ∆∩ (F,w) form
a non-projected PG(2, p).

We show that all lines in (F,w) ∩ H0 are contained in a unique projected
PG(5, p) ≡ Ω which is projected from a line L, for which dim〈L,Lp, Lp2〉 = 2.

Consider a subline PG(1, p) ≡ M̃ in ∆ ∩ (F,w). Construct two (N − 2)-
dimensional subspaces ∆1 and ∆2 of H0 through M̃ , only sharing two distinct
subplanes PG(2, p)1 and PG(2, p)2 with (F,w). Then there are exactly p2 lines
of (F,w) in H0 intersecting PG(2, p)1 and PG(2, p)2 in distinct points. The
two subplanes PG(2, p)i, i = 1, 2, define a unique PG(3, p) ≡ Ω3 and these p2

lines of H0 ∩ (F,w) share already a subline PG(1, p) with Ω3.

Select a third (N −2)-dimensional subspace ∆3 in H0 through M̃ only sharing
one subplane PG(2, p)3 with (F,w), such that PG(2, p)3 6⊆ Ω3. Then PG(2, p)3

and Ω3 define a (possibly projected) subgeometry PG(4, p) ≡ Ω4. Then the
p2 lines of (F,w) in H0 intersecting PG(2, p)1 and PG(2, p)2 in distinct points
share an other intersection point with Ω4, and so they intersect Ω4 in a (p2+1)-
or (p2 + p + 1)-set.

By now selecting a fourth (N − 2)-dimensional subspace ∆4 in H0 through M̃
only sharing one subplane PG(2, p)4 with (F,w), such that PG(2, p)4 6⊆ Ω4,
and by repeating the arguments above, all lines of H0 ∩ (F,w) intersecting
PG(2, p)1 and PG(2, p)2 in distinct points now are completely contained in
the projected PG(5, p) ≡ 〈Ω4, PG(2, p)4〉 ≡ Ω5.

Repeating the arguments for other sublines than M̃ , we get that all p2 + p+1
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lines of (F,w) ∩ H0 are contained in Ω5. Actually, Ω5 is contained in a 3-
dimensional space over GF (p3), namely the one generated by the planes over
GF (p3) containing PG(2, p)1 and PG(2, p)2.

The only possibility is that Ω5 is the projection of a subgeometry Λ from a
line L, for which dim〈L,Lp, Lp2〉 = 2. The plane 〈L,Lp, Lp2〉 ∩ Λ is projected
onto one point s of weight p2 + p + 1 and the p2 + p + 1 solids of Λ through
this plane are projected onto lines through s.

Case 2. Assume that the p2 +p+1 points in ∆∩ (F,w) form a (p2 +p+1)-set
{r1, . . . , rp2+p+1} on a line L1.

We may assume that every PG(N −2, p3) of H0 containing p2 +p+1 points of
weight one of (F,w)∩H0 intersects (F,w) in a (p2 +p+1)-set, since otherwise
we are reduced to Case 1.

Consider a point r1 of this (p2 + p + 1)-set. By induction on the dimension of
a subspace through r1, it is possible to find an (N − 3)-dimensional subspace
of H0 only sharing r1 with (F,w). Then this (N − 3)-dimensional subspace
lies in at least a second (N − 2)-dimensional subspace of H0 only intersecting
(F,w) in a (p2 + p + 1)-set on a line L2.

Then there are already p2 + p lines of (F,w) lying in the plane 〈L1, L2〉. Since
r1 is an arbitrary point of the (p2 + p + 1)-set (F,w) ∩ L1, all p2 + p + 1 lines
T1, . . . , Tp2+p+1 of (F,w) ∩ H0 are contained in 〈L1, L2〉.

The line T1 has already p2 + p intersection points with the other lines T2, . . . ,
Tp2+p+1, hence we have already the total excess p2 + p of (F,w) on the line T1.
This implies that all other intersections Ti ∩ Tj, 2 ≤ i < j, of the other lines
Ti in (F,w)∩H0 have to coincide with T1 ∩T2. Hence, we have p2 +p+1 lines
through one point.

We note that a cone of lines with vertex a point and base a (p2 + p + 1)-
set also is a projected subgeometry PG(5, p). To obtain such a projected
PG(5, p), project first of all a subgeometry PG(5, p) from a line L for which
dim〈L,Lp, Lp2〉 = 2. This projection is a cone with base a non-projected sub-
plane PG(2, p) in a plane Π skew to the vertex. Select a point r of Π only
lying on tangents to the base of this cone. Project again, but now from r, then
the projection is a cone with a (p2 + p + 1)-set as base.

Lemma 20 If there is a hyperplane H0 through ∆ intersecting (F,w) in a
minihyper which is the sum of a {(p2 + p)(p3 +1), p2 + p; N − 1, p3}-minihyper
(Ω, w) \ R and a line R′, where Ω is a projected PG(5, p) containing the line
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R, then R = R′.

PROOF. We know from Remark 18 (2) that every (N −2)-dimensional sub-
space ∆ in H0 intersecting (F,w) ∩ H0 in p2 + p + 1 distinct points must
intersect (F,w)∩H0 in a subplane PG(2, p) or (p2 + p+1)-set. At least p2 + p
of these points must belong to Ω\R, so also the latter point must belong to Ω.
This latter point lies on R′. So R and R′ share at least two points, so R = R′.

Consider again the (N − 2)-dimensional space ∆ containing δ = p2 + p + 1
points of weight one of (F,w). The preceding lemmas show that all hyperplanes
through ∆ intersect (F,w) in a projected PG(5, p). This enables us to prove
the following result.

Theorem 21 There is a (projected) PG(8, p) completely contained in (F,w).

PROOF. Consider again a PG(N−2, p3) ≡ ∆ intersecting (F,w) in p2+p+1
distinct points. Since e ≤ p2 +p, there is at least one hyperplane H through ∆
intersecting (F,w) in a (projected) PG(5, p) only having points of weight one.
It is then possible to select an (N − 2)-dimensional space in H intersecting
(F,w) in a PG(2, p). Let this (N − 2)-dimensional space in H play the role
of ∆. Then the hyperplanes Hi, i = 0, . . . , p3, through ∆ intersect (F,w) in a
(projected) PG(5, p)i. Since the total excess e of (F,w) is at most p2 + p, it
is possible to find two hyperplanes H1 and H2 through ∆ intersecting (F,w)
in (projected) PG(5, p)1 and PG(5, p)2 without multiple points. These two
subgeometries PG(5, p)1 and PG(5, p)2 define a (projected) PG(8, p).

Consider a point r in PG(5, p)2 \ ∆ and consider a line T ⊂ H2 through
r containing a point of ∆ ∩ (F,w). Then T intersects (F,w) in p + 1 or in
p2 + p + 1 distinct points. If T intersects (F,w) in p2 + p + 1 points, consider
a PG(N − 3, p3) in H2 through T only sharing the points on T with (F,w).
There is at least one PG(N − 2, p3) ≡ ∆′ in H2 through this PG(N − 3, p3)
only sharing these p2 +p+1 points with (F,w); since if a PG(N −2, p3) shares
more than δ = p2 + p + 1 points with (F,w), it shares at least p3 + p2 + p + 1
points with (F,w) (Theorem 11). If T intersects (F,w) in p + 1 points, we
similarly find a PG(N − 2, p3) ≡ ∆′ in H2 through T intersecting (F,w) in
p2 + p + 1 distinct points. The points in T ∩ (F,w) generate together with
PG(5, p)1 a (projected) PG(6, p) or PG(7, p). We show that this subgeometry
consists completely of points of (F,w).

Consider a hyperplane H through ∆′. Then H intersects (F,w) in a (pro-
jected) PG(5, p). This hyperplane shares a subgeometry PG(d, p), d ≥ 2, with
PG(5, p)1, and this PG(d, p) defines together with the points in T ∩ (F,w) a
(projected) PG(d′, p), d′ ≥ 3, in H ∩ (F,w) containing r.
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Letting vary H, all points of the (projected) subgeometry 〈PG(5, p)1, T 〉 are
contained in (F,w).

Letting vary T , we obtain that the, possibly projected, 8-dimensional subge-
ometry PG(8, p) = 〈PG(5, p)1, PG(5, p)2〉 is contained in (F,w).

We present a new classification result on minihypers.

Theorem 22 Let (F,w) be a {δ(p6 + p3 +1), δ(p3 +1); N, p3}-minihyper, δ ≤
2p2 − 4p, N ≥ 3, p ≥ 11 non-square, p = ph

0 , h ≥ 1, p0 ≥ 7 prime, with excess
e ≤ p2 + p.

Then (F,w) is a sum of planes and of at most one (projected) subgeometry
PG(8, p).

PROOF. This follows from the preceding arguments. We first discussed the
possibility of planes in (F,w) and showed that it was possible to remove these
planes from (F,w) by reducing in each such plane the weight of its points by
one. This either characterized (F,w) completely, or in the other case, we proved
that there is a (projected) subgeometry Π8 = PG(8, p) contained in (F,w).
Assume that all planes have been removed from (F,w), then δ = p2 + p + 1.
We now show that in this latter case, (F,w) coincides with Π8. Let ∆ be an
(N − 2)-dimensional space containing δ = p2 + p + 1 distinct points of (F,w).
Every hyperplane through ∆ intersects (F,w) in a PG(5, p) and intersects Π8

in a PG(d, p), d ≥ 5. These intersections must coincide, yielding that Π8 is
equal to (F,w).

There is also no problem regarding the weights of the points of (F,w) in
this description of (F,w) as a sum of planes and of at most one (projected)
PG(8, p). For the planes, this again follows from the fact that it was possible
to remove these planes from (F,w) by reducing in all these planes the weight
of their points by one. For the possible remaining (projected) subgeometry
PG(8, p) in (F,w), everything is correct regarding the weights of the points
by the definition of (F,w) ∩ Hi, i = 0, . . . , p3 (Remark 10).

5 The general result for p non-square

We now prove by induction on µ the following characterization result.

Theorem 23 Let (F,w) be a {δvµ+1, δvµ; N, p3}-minihyper, µ ≥ 3, δ ≤ 2p2−
4p, N ≥ 3, p ≥ 11 non-square, p = ph

0 , h ≥ 1, p0 ≥ 7 prime, with excess
e ≤ p2 + p.

20



Then (F,w) is a sum of µ-dimensional spaces PG(µ, p3) and of at most one
(projected) subgeometry PG(3µ + 2, p).

Let ∆ be a PG(N − 2, p3) intersecting (F,w) in δvµ−1 points of weight one.
Then ∆∩ (F,w) is a {δvµ−1, δvµ−2; N −2, p3}-minihyper. Let Hi, i = 0, . . . , p3,
be the hyperplanes through ∆. They intersect (F,w) in {δvµ, δvµ−1; N−1, p3}-
minihypers (Fi, w) (Theorem 12). By the induction hypothesis, these minihy-
pers (Fi, w) are sums of (µ−1)-dimensional spaces PG(µ−1, p3) and of at most
one (projected) subgeometry PG(3µ− 1, p). This then implies that δ ∩ (F,w)
is a union of pairwise disjoint (µ − 2)-dimensional subspaces PG(µ − 2, p3)
and of at most one (projected) PG(3µ − 4, p).

Lemma 24 If ∆∩ (F,w) contains a (µ− 2)-dimensional space PG(µ− 2, p3)
Π, then (F,w) contains a µ-dimensional space PG(µ, p3).

PROOF. Consider all hyperplanes Hi, i = 0, . . . , p3, through ∆. Using the
induction hypothesis, they either contain a PG(µ−1, p3) of (F,w)∩Hi through
Π or a (projected) PG(3µ − 1, p) ≡ Ω of (F,w) ∩ Hi through Π.

Now assume that this latter possibility occurs. Then Π is the projection of a
PG(d, p) ≡ π, d ≥ 3µ − 6, of Ω. Since |π| > |Π|, some points of Π are the
projection of more than one point of π, so this would imply that there are
multiple points in ∆ ∩ (F,w); a contradiction.

Hence, Π lies in p3 +1 subspaces PG(µ−1, p3) ≡ Πi of (F,w) in the respective
hyperplanes Hi, i = 0, . . . , p3, through ∆. Every plane 〈L1, L2〉 with L1 ⊂
Πi and Lj ⊂ Πj, i 6= j, is completely contained in (F,w). Namely, if this
plane is not contained in (F,w), then it intersects (F,w) in an {m1(p

3 +
1) + m0,m1; 2, p

3}-minihyper, with m1 + m0 ≤ 2p2 − 4p (Theorem 11). But,
again using the fact that this plane already contains two lines of (F,w), the
arguments of Lemma 17 imply that this is impossible. We conclude that (F,w)
contains a subspace PG(µ, p3).

Removing the subspaces PG(µ, p3) from (F,w) [4] by reducing for each such
subspace PG(µ, p3) the weight of its points by one shows that (F,w) is either
a sum of subspaces PG(µ, p3), or there remains a {(p2 + p + 1)vµ+1, (p

2 + p +
1)vµ; N, p3}-minihyper (F ′, w′), and the only case we still need to discuss is
that (F ′, w′)∩∆ is a projected PG(3µ− 4, p), and all hyperplanes through ∆
intersect (F ′, w′) in a (projected) PG(3µ−1, p). Since there are at most p2 +p
multiple points, we can select two hyperplanes H1, H2 through ∆ intersecting
(F ′, w′) only in points of weight one. Both intersections contain a (projected)
PG(3µ − 1, p), call them respectively PG(3µ − 1, p)1 and PG(3µ − 1, p)2. In
PG(3µ− 1, p)i, i = 1, 2, we do not have lines over GF (p3) since this would be
a projection of a subgeometry PG(t, p), t ≥ 3, of size at least p3 + p2 + p + 1,
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and such a projection contains multiple points. So, a line T of H2, intersecting
PG(3µ − 1, p)2 in at least two points, intersects PG(3µ − 1, p)2 in p + 1 or
p2 + p + 1 points forming respectively a PG(1, p) or (p2 + p + 1)-set.

Lemma 25 The (3µ+2)-dimensional (projected) subgeometry PG(3µ+2, p) =
〈PG(3µ − 1, p)1, PG(3µ − 1, p)2〉 is completely contained in (F,w).

PROOF. Consider a (p+1)- or a (p2+p+1)-secant T to H2∩(F,w) containing
one point of ∆ ∩ (F,w).

Consider a PG(N − 2, p3) ≡ ∆′ in H2 through T intersecting (F,w) in a
{(p2+p+1)vµ−1, (p

2+p+1)vµ−2; N−2, p3}-minihyper. Again the hyperplanes
H ′

0, . . . , H
′

p3 through ∆′ intersect (F,w) in a (projected) PG(3µ − 1, p), call
them respectively PG(3µ−1, p)′i, i = 0, . . . , p3. Then H1∩PG(3µ−1, p)′i ≡ Pi

is a (projected) PG(d′

i, p), d′

i ≥ 3µ − 4. Then 〈Pi, T ∩ (F,w)〉 is completely
contained in PG(3µ−1, p)′i. Hence 〈PG(3µ−1, p)1, T ∩(F,w)〉 lies completely
in (F,w). Letting vary T , we obtain that 〈PG(3µ − 1, p)1, PG(3µ − 1, p)2〉 =
PG(3µ + 2, p) = Π3µ+2 lies completely in (F,w).

We now show that (F,w) coincides with Π3µ+2. Every hyperplane through
∆ intersects (F,w) in a PG(3µ − 1, p) and intersects Π3µ+2 in a PG(d, p),
d ≥ 3µ− 1. These intersections must coincide, yielding that Π3µ+2 is equal to
(F,w).

This now completes the proof of Theorem 23.

6 The case where p is a square

6.1 {δ(p3 + 1), δ; 4, p3}-minihypers

Let q = p3. We will project on a hyperplane Π from a point r lying on at most
2p secants to (F,w). This projection (F ′, w′) is a sum of lines, (projected)
PG(3, p3/2) and of at most one projected PG(5, p) or a {(p2 + p)(p3 + 1), p2 +
p; 3, p3}-minihyper (Ω, w)\R (Theorem 3). As before, we can remove the lines
of (F,w); now we will discuss the possible PG(3, p3/2) in (F ′, w′).

Lemma 26 Every point s of (F,w) which is projected onto a point s′ of weight
one of (F ′, w′), lying in a PG(3, p3/2) contained in (F ′, w′), lies in at least two
Baer subplanes completely contained in (F,w).
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PROOF. We proceed as in [5, Lemma 2.10].

Lemma 27 Through any point s of (F,w) which is projected onto s′, a point
of (F ′, w′) of weight one lying in a PG(3, p3/2) contained in (F ′, w′), there is
a PG(3, p3/2) completely consisting of points of (F,w).

PROOF. We proceed as in [5, Lemma 2.11].

As in the proof of [5, Theorem 2.1], if (F,w) contains a subgeometry D ≡
PG(3, p3/2), then reducing the weight of every point of D by one, gives a
{(δ − p3/2 − 1)(p3 + 1), δ − p3/2 − 1; 4, p3}-minihyper (F ′, w′).

The previous lemma, together with the previous sections, implies the following
theorem. We wish to remark that the description of the minihypers can be done
in different ways.

In the statement of the theorem, also the possibility of projected subge-
ometries PG(3, p3/2) is included. In PG(3, q), if one projects a subgeometry
PG(3, p3/2) ≡ D from a point s 6∈ D, then a cone with base a Baer subline
PG(1, p3/2) is obtained. This cone is a {(p3/2 + 1)(p3 + 1), p3/2 + 1; 3, p3}-
minihyper if the vertex is given the weight p3/2 + 1 and all other points are
given weight one.

This cone is also a sum of lines, so it is also possible to simply not state
explicitly these projected Baer subgeometries PG(3, p3/2), and simply consider
these lines as lines of the sum of lines inside the minihyper.

We however have written them in the formulation of the theorem since also in
the general case of Theorems 31 and 33 projected subgeometries PG(2µ +
1, p3/2) can occur, and these projections are not equal to sums of spaces
PG(µ, p3) when µ ≥ 2.

Theorem 28 A {δ(p3 + 1), δ; N, p3}-minihyper (F,w), N ≥ 4, p square, p =
ph

0 , p0 prime, p0 ≥ 7, δ ≤ 2p2 − 4p, with total excess e ≤ p3 − 4p, is a sum of
either:
(1) lines, (projected) PG(3, p3/2) (where the projection is from a point), and
of at most one (projected) PG(5, p),
(2) lines, (projected) PG(3, p3/2), and of a {(p2 + p)(p3 + 1), p2 + p; 3, p3}-
minihyper (Ω, w) \R, where Ω is a PG(5, p) projected from a line L for which
dim〈L,Lp, Lp2〉 = 3, and where R is the line contained in Ω.

PROOF. The proof for N = 4 follows from the preceding lemmas and of the
techniques of Section 3. To prove the result for N > 4, we use induction on
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N , with N = 4 as induction basis.

6.2 {δ(p6 + p3 + 1), δ(p3 + 1); N, p3}-minihypers

Lemma 29 ([14]) A Baer subline and a (p2 + p + 1)-set in PG(1, p3) share
at most p +

√
p + 1 points.

Let ∆ be a PG(N − 2, p3) intersecting (F,w) in δ points of weight one. As
in Lemma 17, we can assume that a point of (F,w) ∩ ∆ lies on at most one
line contained in (F,w). Since the total excess e is at most p2 + p, it is also
possible to find two distinct hyperplanes H1 and H2 through ∆ intersecting
(F,w) in unions of pairwise disjoint PG(3, p3/2) and of at most one {(p2 + p+
1)(p3 + 1), p2 + p + 1; N − 1, p3}-minihyper which is a (projected) PG(5, p)i,
i = 1, 2, containing no multiple points. This implies that these latter projected
PG(5, p)i only have (p + 1)- and (p2 + p + 1)-secants.

This also implies that ∆ ∩ (F,w) is a union of pairwise disjoint Baer sublines
PG(1, p3/2) and of at most one subplane PG(2, p) or (p2 + p + 1)-set.

There are less than 2p2/(p3/2 + 1) < 2
√

p Baer sublines in ∆ ∩ (F,w).

Consider a Baer subline in ∆∩(F,w), and consider the PG(3, p3/2) of (F,w) in
H1 and H2 through this Baer subline. Call them PG(3, p3/2)1 and PG(3, p3/2)2

respectively.

Lemma 30 The Baer subspace PG(5, p3/2) = 〈PG(3, p3/2)1, PG(3, p3/2)2〉 is
completely contained in (F,w).

PROOF. Consider a Baer subline B̃ of PG(3, p3/2)2 containing exactly one
point of ∆ ∩ (F,w). The line T containing B̃ satisfies |T ∩ (F,w)| ≤ δ, and
has either a Baer subline, a point, or no points in common with a PG(3, p3/2)
contained in F ∩H2, and it has either a PG(1, p), a (p2 + p+1)-set, one point
or no points in common with the possible projected PG(5, p) in (F,w) ∩ H2.
The Baer sublines on T which are the intersection of T with a subgeometry
PG(3, p3/2) contained in H2 ∩ (F,w) are the only Baer sublines contained in
(F,w) ∩ T .

We now show that the subgeometry PG(4, p3/2) = Π4 = 〈B̃, PG(3, p3/2)1〉 is
completely contained in (F,w). Consider a PG(N−3, p3) in H2 through T not
containing any other points of (F,w) than those of T ∩ (F,w), and consider
a PG(N − 2, p3) ≡ ∆′ through this PG(N − 3, p3) only containing δ simple
points of (F,w).
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From the fact above stating that the only Baer sublines in (F,w) ∩ T arise
from the intersections of T with the subgeometries PG(3, p3/2) contained in
(F,w)∩H2, if some hyperplane H ′ through ∆′ contains lines of (F,w) through
a point of B̃, then every point of B̃ lies on a line of (F,w) ∩ H ′.

So, consider all hyperplanes through ∆′; at most one of them contains lines of
(F,w) through the points of B̃.

So at least p3 hyperplanes through ∆′ intersect (F,w) in a {δ(p3 + 1), δ; N −
1, p3}-minihyper containing a PG(3, p3/2) intersecting ∆′ in B̃. This latter
PG(3, p3/2) intersects H1 in either a subline PG(1, p3/2) or a subplane PG(2, p3/2).
Call this intersection B′

1. Then 〈B̃, B′

1〉 is a subgeometry over GF (p3/2) com-
pletely contained in (F,w) ∩ H ′.

We conclude that Π4 is completely contained in (F,w), up to maybe one
hyperplane section Π3.

We now show that Π4 is completely contained in (F,w).

Consider a point r of Π4 \ F , then all Baer sublines of Π4 through r not
lying in Π3 share p3/2 points with (F,w). Select such a Baer subline R of Π4

through r intersecting (F,w) in p3/2 points of weight one and such that the
line T ′ through R only intersects (F,w) in points of weight one. Since T ′ is not
contained in (F,w), it shares at most δ points with (F,w); see [5]. As for T , the
only Baer sublines in T ′ ∩ (F,w) arise from the Baer subline intersections of
T ′ with (F,w). It is impossible to partition the p3/2 points of R in (F,w)∩Π4

over these Baer sublines and at most one PG(1, p) or (p2 + p + 1)-set. This
however implies that the p3/2 points of (F,w) ∩ Π4 on R are contained in a
Baer subline contained in (F,w). Hence, r ∈ F .

Letting vary B̃ over PG(3, p3/2)2 shows that the 5-dimensional Baer subge-
ometry 〈PG(3, p3/2)1, PG(3, p3/2)2〉 is completely contained in (F,w).

Theorem 31 Let (F,w) be a {δ(p6 + p3 +1), δ(p3 +1); N, p3}-minihyper, δ ≤
2p2 − 4p, N ≥ 5, p = ph

0 , h ≥ 2 even, p0 ≥ 7 prime, with excess e ≤ p2 + p.

Then (F,w) is a sum of planes, (projected) PG(5, p3/2), and of at most one
(projected) subgeometry PG(8, p).

PROOF. This follows from the preceding lemmas and the techniques of Sec-
tion 4.

Remark 32 The Baer subgeometry can be at most projected from a point,
since otherwise the total excess of the points would be too large.
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6.3 {δvµ+1, δvµ; N, q}-minihypers

We now prove by induction on µ the following characterization result.

Theorem 33 Let (F,w) be a {δvµ+1, δvµ; N, p3}-minihyper, µ ≥ 3, δ ≤ 2p2−
4p, N ≥ 3, p = ph

0 , h ≥ 2 even, p0 ≥ 7 prime, with excess e ≤ p2 + p.

Then (F,w) is a sum of µ-dimensional spaces PG(µ, p3), (projected) PG(2µ+
1, p3/2), and of at most one (projected) subgeometry PG(3µ + 2, p).

Let ∆ be a PG(N − 2, p3) intersecting (F,w) in δvµ−1 points of weight one.
Then ∆∩ (F,w) is a {δvµ−1, δvµ−2; N −2, p3}-minihyper. Let Hi, i = 0, . . . , p3,
be the hyperplanes through ∆. They intersect (F,w) in {δvµ, δvµ−1; N−1, p3}-
minihypers (Fi, w) (Theorem 12). By the induction hypothesis, these mini-
hypers (Fi, w) are sums of (µ − 1)-dimensional spaces PG(µ − 1, p3), (pro-
jected) Baer subgeometries PG(2µ − 1, p3/2), and of at most one (projected)
subgeometry PG(3µ − 1, p). This then implies that δ ∩ (F,w) is a union of
pairwise disjoint (µ − 2)-dimensional subspaces PG(µ − 2, p3), subgeometries
PG(2µ − 3, p3/2), and of at most one (projected) PG(3µ − 4, p).

Lemma 34 If ∆∩ (F,w) contains a (µ− 2)-dimensional space PG(µ− 2, p3)
Π, then (F,w) contains a µ-dimensional space PG(µ, p3).

PROOF. This proof is similar to that of Lemma 24. We only need to consider
the possibility that Π lies in a (projected) subgeometry PG(2µ− 1, p3/2) con-
tained in some hyperplane intersection Hi∩(F,w). If this occurs, then there are
multiple points of this projected subgeometry in Π since |PG(2µ− 3, p3/2)| >
|PG(µ− 2, q)|. This contradicts the fact that (F,w)∩∆ contains no multiple
points.

Removing the subspaces PG(µ, p3) from (F,w) [4] by reducing for every such
PG(µ, p3) the weight of its points by one, leaves us with a minihyper (F ′, w′)
which intersects ∆ in a union of pairwise disjoint PG(2µ − 3,

√
q), and of at

most one {(p2 +p+1)vµ−1, (p
2 +p+1)vµ−2; N −2, p3}-minihyper Ω5, where Ω5

is a (projected) PG(3µ− 4, p). Since there are at most p2 + p multiple points,
we can select two hyperplanes H1, H2 through ∆ intersecting (F ′, w′) only in
points of weight one. Both intersections contain (projected) PG(2µ − 1, p3/2)
and at most one (projected) PG(3µ − 1, p).

Suppose that (F ′, w′) ∩ ∆ contains a subgeometry PG(2µ − 3, p3/2), then H1

and H2 share a subgeometry PG(2µ − 1, p3/2)1 and PG(2µ − 1, p3/2)2 with
(F ′, w′), passing through this latter PG(2µ − 3, p3/2).
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Lemma 35 The (projected) subgeometry PG(2µ+1, p3/2) = 〈PG(2µ−1, p3/2)1,
PG(2µ − 1, p3/2)2〉 is completely contained in (F ′, w′).

PROOF. Here the arguments of the proof of [5, Theorem 4.1] can be used.

If ∆ ∩ (F ′, w′) contains a (projected) subgeometry PG(3µ − 4, p), proceeding
as in Section 5, it is possible to consider two hyperplanes H1 and H2 through
∆ intersecting (F ′, w′) in (projected) PG(3µ−1, p)1 and PG(3µ−1, p)2, only
having points of weight one. These two subgeometries over GF (p) define a
(3µ+2)-dimensional subgeometry over GF (p) completely contained in (F ′, w′).

Lemma 36 The (3µ+2)-dimensional (projected) subgeometry PG(3µ+2, p) =
〈PG(3µ − 1, p)1, PG(3µ − 1, p)2〉 is completely contained in (F ′, w′).

The preceding lemmas now finish the proof of Theorem 33. There is no problem
with the weights of the points of (F,w) in this description of (F,w) as a sum
of µ-dimensional spaces, (projected) Baer subgeometries PG(2µ+1, p3/2), and
of at most one (projected) subgeometry PG(3µ+2, p), since by induction, the
weights are correct in the hyperplane intersections (F,w) ∩ Hi, i = 0, . . . , p3,
of (F,w) with the hyperplanes Hi through ∆.

7 Applications

The preceding classification results have many applications. They not only
classify the corresponding linear codes meeting the Griesmer bound; they also
can be used to obtain many results on substructures in finite incidence struc-
tures. For a detailed description of the use of {δvµ+1, δvµ; N, p3}-minihypers
in finite incidence structures, we refer to [6].

We state explicitly the following results.

A µ-spread in PG(N, q), (µ + 1)|(N + 1), is a set of (qN+1 − 1)/(qµ+1 − 1) µ-
dimensional spaces partitioning the point set of PG(N, q). A partial µ-spread
S in PG(N, q), (µ + 1)|(N + 1), is a set of pairwise disjoint µ-dimensional
spaces. The deficiency δ of a partial µ-spread S in PG(N, q), (µ + 1)|(N + 1),
is the number δ = (qN+1 − 1)/(qµ+1 − 1)− |S|. A hole of a partial µ-spread S
is a point of PG(N, q) not belonging to an element of S. A maximal partial
µ-spread S is a partial µ-spread not contained in a larger partial µ-spread.

Using a link [4] between minihypers and maximal partial µ-spreads in PG(N, q),
(µ + 1)|(N + 1), of deficiency δ < q, the preceding classification results on the
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{δvµ+1, δvµ; N, p3}-minihypers imply the following result on maximal partial
µ-spreads.

Theorem 37 (1) A maximal partial µ-spread in PG(N, p3), (µ + 1)|(N + 1),
p = ph

0 , p ≥ 11, p0 prime, p0 ≥ 7, h ≥ 1 odd, of deficiency 0 < δ ≤ 2p2 − 4p,
has deficiency δ = p2 + p+1, and the set of holes is a (projected) subgeometry
PG(3µ + 2, p) of PG(N, p3).

(2) A maximal partial µ-spread in PG(N, p3), (µ + 1)|(N + 1), p = ph
0 , p0

prime, p0 ≥ 7, h ≥ 2 even, of deficiency 0 < δ ≤ 2p2 − 4p, has deficiency
δ = r(p3/2 +1)+s(p2 +p+1), for a non-negative integer r and s ∈ {0, 1}, and
the set of holes is a union of r subgeometries PG(2µ+1,

√
q) and s (projected)

subgeometries PG(3µ + 2, p) of PG(N, p3), which all are pairwise disjoint.
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