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Abstract

We provide more information about the GAP code that we used in [1] to obtain
the classification result.

1 Introduction

2 Polygonal valuations

3 The valuation geometry of GO(2, 1)

3.1 A computer model of GO(2, 1)

3.2 Computing the valuation geometry of GO(2, 1)

The GAP code to determine the valuation geometry of GO(2, 1) has been implemented
in ReeTits1.g. Valuations have been implemented there as arrays where the i-th entry is
the value of the point i. Valuations have also been scaled such that their maximal values
are equal to 0. In ReeTits1.g, the information of Table 1 (except for the last column) has
been stored in arrays:
• Second column: NumberValuations
• Third column: MaximalValues
• Fourth column: SizeZeroSets
• Fifth column: SizeMinSets
• Sixth column: SizeHyperplanes
• Seventh column: StructureStabilizers
• Eighth column: OrbitsStabilizer

The number of lines of the valuation geometry incident with a given point, and the types
of these lines can be found with the function ThroughPoint1. For instance, if we give the
following commands:

CompType(complements[12]);

ThroughPoint1(complements[12]);
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then the output is

"C7"

[ [ [ "B1", "C5", "C7" ], [ "C7", "D2", "D2" ] ], 7 ]

which means that there are precisely 7 V-lines through each valuation of Type C7, and
that each of these lines has Type B1C5C7 or Type C7D2D2.

If we apply ThroughPoint1 to each of the 12 elements of complements, then we can
determine the set AllLineTypes, which contains all the 52 types for the lines of the
valuation geometry. These are the types mentioned in Tables 2 and 3. The information
mentioned in Table 3 can be obtained from the function ThroughPoint2. For instance,
in order to find the entry “8;4” that has been mentioned in row C3C5D2 and column C5,
we just give the command

ThroughPoint2("C5","C3","D2");

and the following output arises

[ 8, 4 ]

The numbers in each entry of Table 3 have been ordered such that the largest number
always comes first. The information given in Table 2 can easily be extracted from the
information of Tables 1 and 3.

3.3 Example: The Ree-Tits octagon of order (2,4)

The Ree-Tits octagon RT(2, 4) has been implemented in ReeTits2.g. We have also im-
plemented a suboctagon of order (2, 1) inside RT(2, 4). Let us discuss the theoretical
background that allowed us to compute such a suboctagon.

A set X of points of a partial linear space S is called convex of depth i ∈ N \ {0, 1} if for
any two distinct points x and y of X whose mutual distance j := d(x, y) is at most i, the
set Γ1(y)∩ Γj−1(x) is contained in X. The whole point set is a convex subspace of depth
i and the intersection of convex subspaces of depth i is again a convex subspace of depth
i. So, it makes sense to talk about the smallest convex subspace of depth i containing a
given nonempty set X. The following can be proved.

Lemma 3.1 Let S be a generalized 2d-gon with d ∈ N \ {0, 1} and X a nonempty set of
points of S.

(1) Suppose S ′ is a full sub-2d-gon of S. Then the point set of S ′ is a convex subspace
of depth d− 1.

(2) Suppose X is convex of depth d− 1. If x1, x2 ∈ X with d(x1, x2) ∈ {1, 2, . . . , d− 1},
then x2 has a unique neighbor in X at distance d(x1, x2)− 1 from x1.
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(3) Suppose X is a convex subspace of depth d−1 containing a line L, and let X̃ denote

the subgeometry of S induced on the point set X. Then: (a) X̃ is a connected
geometry; (b) if x1, x2 ∈ X, then dX̃(x1, x2) = dS(x1, x2).

(4) Suppose X is a convex subspace of depth d − 1 containing two points x1 and x2 at

distance d from each other and two distinct lines through x2. Then X̃ is a sub-2d-gon
of S.

Proof. (1) As S ′ is a full sub-2d-gon, we have that dS′(x1, x2) = dS(x1, x2) for any two
points x1 and x2 of S ′. Moreover, the point set P ′ of S ′ is a subspace of S. Now, take two
points x and y of S ′ at distance i ∈ {1, 2, . . . , d− 1} from each other. In the generalized
polygon S ′, there is a unique neighbor of y at distance i − 1 from x. This is also the
unique neighbor of y at distance i− 1 from x in the generalized polygon S. This implies
that P ′ is convex of depth d− 1.

(2) This follows from the fact that S is a generalized 2d-gon and the fact that X is
convex of depth d− 1.

(3) In order to show that X̃ is connected, it suffices to show that every point x ∈ X
is connected via a path in X to some point of L. Since S is a near 2d-gon, there exists
a unique point x′ on L nearest to x. Since dS(x, x′) ≤ d − 1 and X is convex of depth
d− 1, there is a path of length dS(x, x′) in X connecting x and x′.

If x1 and x2 are two points of X̃, then dX̃(x1, x2) ≥ dS(x1, x2). If dS(x1, x2) ≤ d− 1,
then the fact that X is convex of depth d−1 implies that dX̃(x1, x2) = dS(x1, x2). Suppose

now that dS(x1, x2) = d. Then dX̃(x1, x2) ≥ d. Since X̃ is connected, there exists a line
K through x2 contained in X. This line K contains a point x′2 at S-distance d− 1 from

x1 and hence also at X̃-distance d− 1 from x1. It follows that dX̃(x1, x2) = d.

(4) The geometry X̃ is a near polygon (as it is connected and distances are preserved).
It is a near 2d-gon as it has two points at maximal distance d from each other. Any
two non-opposite points of X̃ are connected by a unique shortest path. These properties
imply that S is a generalized 2d-gon if there are two opposite points having the property
that at least one of them is incident with at least two lines. This is indeed the case by
the assumption on X that we have made. �

Lemma 3.1 implies that if x and z are two opposite points of a generalized octagon S of
order (s, t) and y1, y2 two points of Γ3(x) ∩ Γ1(z), then:

(∗) Any full suboctagon of order (s, 1) of S containing {x, z, y1, y2} coincides
with the smallest convex subspace of depth 3 containing {x, z, y1, y2}.

In case s and t are finite, this fact in combination with a straightforward double counting

argument yields that there are at most (s+1)(st+1)(s2t2+1)·s4t3·(t+1)t
(s+1)(s+1)(s2+1)·s4·2 = t4(t+1)(st+1)(s2t2+1)

2(s+1)(s2+1)
full

suboctagons of order (s, 1). In particular, any generalized octagon of order (2, 4) con-
tains at most 24960 suboctagons of order (2, 1). Based on (∗), we have implemented in
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ReeTits2.g a suboctagon octa of order (2, 1) inside our implemented computer model of
RT(2, 4).

We denote the stabilizer of octa in the full automorphism group of RT(2, 4) by g2. It can
be verified that g2 has size 1440 by means of the following command:

Size(g2)=1440;

The centralizer inside g2 of octa is trivial, as can be verified by means of the following
command:

Stabilizer(g2,octa,OnTuples)=Group(());

This means that g2 induces the full group of automorphisms of octa. The number of
suboctagons isomorphic to octa is 24960 (= the maximal number), as can be computed
with the following code.

Index(g,g2);

The group g2 has 8 orbits on the set of points of RT(2, 4). The sizes of the orbits and the
types of the involved points can be computed with the commands:

orbs1:=Orbits(g2,[1..1755]);;

info1:=List(orbs1,x-> [ Size(x) , PointType(x[1]) ] );

resulting in the following output

[ [45,"A"], [180,"B1"], [720,"C2"], [360,"C6"], [90,"B1"], [180,"C5"], [36,"C7"], [144,"D1"] ]

The group g2 has 9 orbits on the set of lines of RT(2, 4). The sizes of the orbits and the
types of the involved lines can be computed with the commands:

orbs2:=Orbits(g2,lines,OnSets);;

info2:=List(orbs2,x-> [ Size(x) , LineType2(x[1]) ] );

resulting in the following output

[ [ 30, [ "A", "A", "A" ] ], [ 90, [ "A", "B1a", "B1a" ] ], [ 45, [ "A", "B1b", "B1b" ] ],

[ 720, [ "B1a", "C2", "C2" ] ], [ 720, [ "C2", "C2", "C6" ] ], [ 720, [ "C2", "C5", "D1" ] ],

[ 180, [ "B1b", "C6", "C6" ] ], [ 240, [ "C6", "C6", "C6" ] ], [ 180, [ "B1b", "C5", "C7" ] ] ]

The properties mentioned in (1), (2) and (5) of Section 3.3 follow from that (B1a means
B′1 and B1b means B′′1 ). The (constant) numbers in the last table of Section 3.3 can
be derived from the sizes of the various orbits by means of double counting. Property
(3) follows from the fact that there are as many points of Type T in RT(2, 4) as there
are valuations of Type T , also taking into account that g2 induces the full group of
automorphisms of the implemented suboctagon. For similar reasons, Property (4) will be
true.
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4 Generalized octagons of order (2, t) containing a

suboctagon of order (2, 1)

Lemmas 4.3, 4.4, 4.5 and 4.6 of the paper can also be proved directly in the generalized
octagon S.

Lemma 4.1 Let xy1y2 be an S-line of Type BCC and let x′ be the unique point of P ′
collinear with x. Then:

(1) (Γ2(y1) ∩ P ′) ∩ (Γ2(y2) ∩ P ′) = Γ1(x) ∩ P ′ = Ofx = {x′};

(2) Γ2(yi) ∩ P ′ ⊆Mfx and (Γ2(yi) ∩ P ′) \ {x′} ⊆ Mfx \ Ofx for every i ∈ {1, 2};

(3) Γ2(yi) ∩ P ′ ⊆Mfyj
and (Γ2(yi) ∩ P ′) \ {x′} ⊆ Mfyj

\ Ofyj
for all i, j ∈ {1, 2} with

i 6= j.

Proof. (1) Clearly, x′ ∈ Γ2(yi) ∩ P ′ for every i ∈ {1, 2}. On the other hand, suppose
z ∈ (Γ2(y1) ∩ P ′) ∩ (Γ2(y2) ∩ P ′). Then since d(z, y1) = d(z, y2) = 2, we necessarily have
d(z, x) = 1, i.e. z = x′.

(2) + (3) Without loss of generality, we may suppose that i = 1. Let z be an arbitrary
point of Γ2(y1) ∩ P ′. If z = x′, then z ∈ Ofx ∩ Ofy2

⊆Mfx ∩Mfy2
and we are done. So,

we may suppose that z 6= x′. Put {z′} = Γ1(z) ∩ Γ1(y1). Then x, y1, z
′, z and y2, y1, z

′, z
are two paths of length three with xy1 = y2y1 6= y1z

′ 6= z′z. (If y2y1 = y1z
′, then the fact

that d(z′,P ′) = 1 would imply that z′ = x and z ∈ Γ1(x) ∩ P ′ = {x′}, in contradiction
with the fact that z 6= x′.) So, d(x, z) = d(y2, z) = 3. The line z′z is thus the unique line
of S through z containing a point at distance 2 from y2 (or from x). Since the line zz′ is
not contained in P ′, we have z ∈ (Mfx ∩Mfy2

) \ (Ofx ∪ Ofy2
). �

Lemma 4.2 Let x1x2x3 be an S-line of Type CCC. Then:

(1) Γ2(x1) ∩ P ′, Γ2(x2) ∩ P ′ and Γ2(x3) ∩ P ′ are mutually disjoint;

(2) Γ2(xi) ∩ P ′ ⊆Mfxj
\ Ofxj

for all i, j ∈ {1, 2, 3} with i 6= j.

Proof. Let i, j ∈ {1, 2, 3} with i 6= j.
(1) If y is a point of (Γ2(xi)∩P ′)∩(Γ2(xj)∩P ′), then the fact that d(y, xi) = d(y, xj) = 2

would imply that y has distance 1 from the unique point in {x1, x2, x3} \ {xi, xj}, clearly
a contradiction.

(2) Let y ∈ Γ2(xi) ∩ P ′ and let y′ be the unique common neighbor of xi and y. Then
y, y′, xi, xj is a path of length 3 with yy′ 6= y′xi 6= xixj. So, d(y, xj) = 3. The line yy′ is
the unique line of S through y containing a point at distance 2 from xj. Since yy′ is not
contained in P ′, we have y ∈Mfxj

. Since d(y, xj) = 3, we also have y 6∈ Ofxj
. �

Lemma 4.3 Let x1x2y be an S-line of Type CCD. Then:

(1) Γ2(xi) ∩ P ′ ⊆ Γ3(y) ∩ P ′ for every i ∈ {1, 2};
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(2) (Γ2(x1) ∩ P ′) ∩ (Γ2(x2) ∩ P ′) = ∅;

(3) Γ2(xi) ∩ P ′ ⊆Mfxj
\ Ofxj

for all i, j ∈ {1, 2} with i 6= j.

Proof. Claim (1) is obvious. The proofs of (2) and (3) are completely similar to the
proofs given in Lemma 4.2. �

Lemma 4.4 Let xy1y2 be an S-line of Type CDD. Then (Γ3(y1)∩P ′)∩ (Γ3(y2)∩P ′) =
Γ2(x) ∩ P ′.

Proof. The proof is similar to the proof of Lemma 4.1(1). �

The values for c(x, L) and N(x) have been mentioned in Table 1. The entry “2” in column
B1 and row B1C1C4 means that if x is a point of Type B1 incident with a line of Type
B1C1C4, then c(x, L) = 2. The condition “

∑
L∈Lx c(x, L) = N(x)” thus means that in the

column corresponding to the type of x the sum of |Lx| entries (not necessarily in distinct
rows!) is equal to the entry N(x) occurring in the last row.

The GAP code that allows to compute the contents of Table 1 is mentioned below. If
x is an S-point of Type T1 and L is an S-line of Type T1,T2,T3 incident with x, then
CValue1(T1) is equal to c(x) and CValue2(T1,T2,T3) is equal to the c(x, L).

BB:=["B1","B2"];

CC:=["C1","C2","C3","C4","C5","C6","C7"];

DD:=["D1","D2"];

CValue1:=function(T)

if T in ["C1","C5","C6"] then return 1; fi;

if T in ["C2","C3"] then return 2; fi;

if T in ["C4"] then return 3; fi;

if T in ["C7"] then return 5; fi;

if T in ["A","B1","B2","D1","D2"] then return 0; fi;

end;

CValue2:=function(T1,T2,T3)

local help;

help := CValue1(T2) + CValue1(T3);

if T1 in BB and T2 in CC and T3 in CC then help := help-2; fi;

if T1 in CC and (T2 in BB or T3 in BB) then help := help-1; fi;

return help;

end;
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A B1 B2 C1 C2 C3 C4 C5 C6 C7 D1 D2

AAA 0 – – – – – – – – – – –
AB1B1 0 0 – – – – – – – – – –
AB2B2 0 – 0 – – – – – – – – –
B1C1C4 – 2 – 2 – – 0 – – – – –
B1C2C2 – 2 – – 1 – – – – – – –
B1C3C3 – 2 – – – 1 – – – – – –
B1C4C4 – 4 – – – – 2 – – – – –
B1C5C5 – 0 – – – – – 0 – – – –
B1C5C7 – 4 – – – – – 4 – 0 – –
B1C6C6 – 0 – – – – – – 0 – – –
B2C1C3 – – 1 1 – 0 – – – – – –
B2C2C2 – – 2 – 1 – – – – – – –
B2C4C5 – – 2 – – – 0 2 – – – –
B2C6C6 – – 0 – – – – – 0 – – –
C1C1C1 – – – 2 – – – – – – – –
C1C1C2 – – – 3 2 – – – – – – –
C1C1C3 – – – 3 – 2 – – – – – –
C1C1C4 – – – 4 – – 2 – – – – –
C1C1C5 – – – 2 – – – 2 – – – –
C1C1C6 – – – 2 – – – – 2 – – –
C1C1D1 – – – 1 – – – – – – 2 –
C1C1D2 – – – 1 – – – – – – – 2
C1C2C3 – – – 4 3 3 – – – – – –
C1C2C5 – – – 3 2 – – 3 – – – –
C1C2C6 – – – 3 2 – – – 3 – – –
C1C2D1 – – – 2 1 – – – – – 3 –
C1C2D2 – – – 2 1 – – – – – – 3
C1C3C6 – – – 3 – 2 – – 3 – – –
C1C3D1 – – – 2 – 1 – – – – 3 –
C1C4D2 – – – 3 – – 1 – – – – 4
C1C5C6 – – – 2 – – – 2 2 – – –
C1C5D1 – – – 1 – – – 1 – – 2 –
C1D1D2 – – – 0 – – – – – – 1 1
C2C2C2 – – – – 4 – – – – – – –
C2C2C6 – – – – 3 – – – 4 – – –
C2C2D2 – – – – 2 – – – – – – 4
C2C3D1 – – – – 2 2 – – – – 4 –
C2C4D2 – – – – 3 – 2 – – – – 5
C2C5D1 – – – – 1 – – 2 – – 3 –
C2D1D2 – – – – 0 – – – – – 2 2
C3C3C5 – – – – – 3 – 4 – – – –
C3C5D2 – – – – – 1 – 2 – – – 3
C3C6D1 – – – – – 1 – – 2 – 3 –
C3D2D2 – – – – – 0 – – – – – 2
C4C6D2 – – – – – – 1 – 3 – – 4
C4D1D1 – – – – – – 0 – – – 3 –
C5C5C5 – – – – – – – 2 – – – –
C5D2D2 – – – – – – – 0 – – – 1
C6C6C6 – – – – – – – – 2 – – –
C6D1D2 – – – – – – – – 0 – 1 1
C7D2D2 – – – – – – – – – 0 – 5
D1D1D2 – – – – – – – – – – 0 0

N(x) 0 8 8 12 9 9 6 12 12 0 15 15

Table 1: The values c(x, L) and N(x).
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5 Generalized octagons of order (2, 4) containing a

suboctagon of order (2, 1)

5.1 Proof of the isomorphism Γ0
∼= Γ∗0

Step 1

Having a set of possible line types, we can reduce it to a possible smaller set by means of
the implemented function Reduction from ReeTits1.g. If we apply this function to the
set AllLineTypes of all 52 possible line types, then we find the following set of 21 line
types:

AAA, AB1B1, AB2B2, B1C1C4, B1C2C2, B1C4C4, B1C5C5,
B1C5C7, B1C6C6, B2C2C2, C1C1C2, C1C1C4, C1C1C5, C1C1C6,
C1C2D2, C2C2C2, C2C2C6, C2C5D1, C5C5C5, C5D2D2, C6C6C6.

If we apply Reduction to the above collection of 21 possible line types, the following 13
line types remain:

AAA, AB1B1, AB2B2, B1C2C2, B1C4C4, B1C5C7, B1C6C6,
B2C2C2, C2C2C2, C2C2C6, C2C5D1, C5C5C5, C6C6C6.

If we apply Reduction to the above collection of 13 possible line types, the following ten
line types remain:

AAA, AB1B1, AB2B2, B1C2C2, B1C5C7, B1C6C6, C2C2C6, C2C5D1, C5C5C5, C6C6C6.

If we apply Reduction to the above collection of ten possible line types, the following
nine line types remain:

AAA, AB1B1, B1C2C2, B1C5C7, B1C6C6, C2C2C6, C2C5D1, C5C5C5, C6C6C6.

Applying the procedure another time, we found that no further line types can be excluded.

Some of the line types that we have killed in the reduction process, can also be killed
without use of computer computations. We give some examples.

Lemma 5.1 There are no S-lines of Type B2C1C3, nor of Type B2C6C6.

Proof. Suppose x is an S-point of Type B2. Then we know that
∑

L∈L′x
c(x, L) = N(x) =

8, where L′x denotes the set of four lines of S through x not meeting P ′. Now, any line
L ∈ L′x has Type B2C1C3, B2C2C2, B2C4C5 or B2C6C6 and hence c(x, L) ≤ 2 by Table
1. It follows that c(x, L) = 2 for every L ∈ L′x. This excludes the possibility that L′x
contains lines of Type B2C1C3 or B2C6C6. �

Lemma 5.2 There are no S-lines of Type C7D2D2.

8



Proof. Let x be an S-point of Type C7. Then there are precisely c(x) = 5 lines of S
through x containing an S-point of Type B. These are all the lines of S through x. So,
there cannot exist S-lines of Type C7D2D2 through x. �

Lemma 5.3 There are no S-points of Type C3. As a consequence, there are no S-lines of
Type B1C3C3, C1C1C3, C1C2C3, C1C3C6, C1C3D1, C2C3D1, C3C3C5, C3C5D2, C3C6D1

and C3D2D2.

Proof. Let x be an S-point of Type C3. Then there are precisely c(x) = 2 S-lines of Type
BCC through x. Each such line has Type B1C3C3 or B2C1C3. Lemma 5.1 then implies
that the two S-lines of Type BCC through x have Type B1C3C3. But this contradicts
Lemma 4.14 of the paper and the fact that there exists a unique V-line of Type B1C3C3

through fx. �

Lemma 5.4 There are no S-lines of Type C1C1D1, C1C5D1, C1D1D2, C2D1D2, C6D1D2

and D1D1D2.

Proof. Let x be an S-point of Type D1. By Lemma 5.3, any S-line L through x has Type
C1C1D1, C1C2D1, C1C5D1, C1D1D2, C2C5D1, C2D1D2, C4D1D1, C6D1D2 or D1D1D2.
For such a line L, we have c(x, L) ≤ 3 by Table 1. The equality

∑
L∈Lx c(x, L) = N(x) =

15 then implies that c(x, L) = 3 for every L ∈ Lx. We conclude that there are no S-lines
of Type C1C1D1, C1C5D1, C1D1D2, C2D1D2, C6D1D2 and D1D1D2 through x. �

Step 2

The information in Lemma 5.3 can be obtained by means of the function ThroughPoint4.
For instance, if we give the command

ThroughPoint4("C5");

then the following output arises

[ [ [ "B1", "C5", "C7" ], [ "C2", "C5", "D1" ], [ "C2", "C5", "D1" ],

[ "C2", "C5", "D1" ], [ "C2", "C5", "D1" ] ],

[ [ "B1", "C5", "C7" ], [ "C2", "C5", "D1" ], [ "C2", "C5", "D1" ],

[ "C5", "C5", "C5" ], [ "C5", "C5", "C5" ] ],

[ [ "B1", "C5", "C7" ], [ "C5", "C5", "C5" ], [ "C5", "C5", "C5" ],

[ "C5", "C5", "C5" ], [ "C5", "C5", "C5" ] ] ]

From this we can immediately see the validity of Claim (4) of Lemma 5.3.

Step 3

The validity of Lemma 5.5 was verified in ReeTits1.g. If this lemma is true, then Status1

(as defined in ReeTits1.g) will be true. It is also possible to give another proof of Lemma
5.5 that does not require extra computer computations.
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Lemma 5.5 The geometry G is connected.

Proof. Let S∗ be the Ree-Tits octagon of order (2, 4) and let S∗1 be a suboctagon of order
(2, 1) of S∗. We will identify V with the valuation geometry of S∗1 . Every point x of S∗ will
induce a valuation f ∗x of S∗1 . We call a point x of S∗ of Type T ∈ {A,B1, C2, C5, C6, C7, D1}
if the valuation f ∗x of S∗1 has Type T . We say that a line {x1, x2, x3} of S∗ has Type T1T2T3

if the line {f ∗x1
, f ∗x2

, f ∗x3
} of V is of Type T1T2T3. Now, let G∗ be the point-line geometry

whose points are the points of S∗ of Type C2, C5, C7 and D1, and whose lines are the lines
of S∗ of Type B1C2C2, C2C5D1, C2C2C6 and B1C5C7, with incidence being containment.
Then the map x 7→ f ∗x defines an isomorphism between G∗ and G (recall paragraph 3.3).
So, it suffices to prove that G∗ is connected. Since G∗ contains 1080 points, it thus suffices
to prove that each connected component C of G∗ contains more than 540 points. By the
last table of paragraph 3.3 (see also Lemma 5.3(3)+(6)+(7) and Lemma 5.4(3)) of the
paper, C contains a line L of Type C2C5D1. For every point x of C whose G∗-distance
to L is at most 3, we have dG∗(x, L) = dS∗(x, L) since S∗ has no ordinary m-gons with
m ∈ {3, 4, . . . , 7} as subgeometries. Also, we denote by Lx the unique line through x
nearest to L, with Lx = L if x ∈ L. For every i ∈ {1, 2, . . . , 7} and every j ∈ {0, 1, 2, 3},
we define the following numbers:
• N (j)

1 : number of points x ∈ C of Type C2 for which dG∗(x, L) = j and Lx has Type
B1C2C2;
• N (j)

2 : number of points x ∈ C of Type C2 for which dG∗(x, L) = j and Lx has Type
C2C2C6;
• N (j)

3 : number of points x ∈ C of Type C2 for which dG∗(x, L) = j and Lx has Type
C2C5D1;
• N (j)

4 : number of points x ∈ C of Type C5 for which dG∗(x, L) = j and Lx has Type
B1C5C7;
• N (j)

5 : number of points x ∈ C of Type C5 for which dG∗(x, L) = j and Lx has Type
C2C5D1;
• N (j)

6 : number of points x ∈ C of Type C7 for which dG∗(x, L) = j (and Lx has Type
B1C5C7);

• N (j)
7 : number of points x ∈ C of Type D1 for which dG∗(x, L) = j (and Lx has Type

C2C5D1).

Then
N

(0)
1 = N

(0)
2 = N

(0)
4 = N

(0)
6 = 0, N

(0)
3 = N

(0)
5 = N

(0)
7 = 1.

By the last table of paragraph 3.3 (see also Lemma 5.3(3)+(6)+(7) and Lemma 5.4(3))
of the paper, we have

N
(j+1)
1 = N

(j)
1 + 2 ·N (j)

2 + 2 ·N (j)
3 ,

N
(j+1)
2 = 2 ·N (j)

1 +N
(j)
2 + 2 ·N (j)

3 ,

N
(j+1)
3 = 4 ·N (j)

4 + 3 ·N (j)
5 + 4 ·N (j)

7 ,

N
(j+1)
4 = 4 ·N (j)

6 ,

N
(j+1)
5 = N

(j)
1 +N

(j)
2 + 4 ·N (j)

7 ,
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N
(j+1)
6 = N

(j)
5 ,

N
(j+1)
7 = N

(j)
1 +N

(j)
2 + 4 ·N (j)

4 + 3 ·N (j)
5

for every j ∈ {0, 1, 2}. From this it follows that

N
(1)
1 = 2, N

(1)
2 = 2, N

(1)
3 = 7, N

(1)
4 = 0, N

(1)
5 = 4, N

(1)
6 = 1, N

(1)
7 = 3,

N
(2)
1 = 20, N

(2)
2 = 20, N

(2)
3 = 24, N

(2)
4 = 4, N

(2)
5 = 16, N

(2)
6 = 4, N

(2)
7 = 16,

N
(3)
1 = 108, N

(3)
2 = 108, N

(3)
3 = 128, N

(3)
4 = 16, N

(3)
5 = 104, N

(3)
6 = 16, N

(3)
7 = 104.

Hence, |C| ≥
∑7

i=1

∑3
j=0N

(j)
i = 710. So, the geometries G and G∗ are connected. �

5.2 Proof of the isomorphism Γ ∼= Γ∗

Step 1: Definition of Γ∗1 and the isomorphism θ1 : Γ1 → Γ∗1

Regarding the following claims:

• There are two collections of five V-lines through f that are compatible with respect
to f and satisfy (a), (b), (c) and (d).

• The two associated C6-sets partition the set of 8 V-lines through f that have Type
C6C2C2 or C6C6C6.

These claims have been verified in ReeTits1.g. If they are valid, then Status2 (as defined
in ReeTits1.g) will be true.

The claim that there exists a unique i∗ ∈ {1, 2} such that
• The distance between X and Xi∗ in Γ∗0 is equal to 5,
• The distance between X and X3−i∗ in Γ∗0 is equal to 4,

has been verified in ReeTits1.g. If this claim is true, then Status3 (as defined in
ReeTits1.g) will be true.

Step 2: Definition of Γ∗2 and the isomorphism θ2 : Γ2 → Γ∗2

The claim that dΓ∗1
(U1, U2) is equal to 4 or 6 has been verified in ReeTits2.g. If this claim

is true, then Status1 (as defined in ReeTits2.g) will be true.
The claim that there exists an equivalence relation on the set Cf has been verified in

ReeTits2.g. If this claim is true, then Status2 (as defined in ReeTits2.g) will be true.
The claim that there exist three equivalence classes of size 4 has been verified in

ReeTits2.g. If this claim is true, then Status3 (as defined in ReeTits2.g) will be true.
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Step 3: Definition of Γ∗3 and the isomorphism θ3 : Γ3 → Γ∗3

The claim that there exists a unique i ∈ {1, 2, 3} such that
• the distance between X and Xi in Γ∗1 is equal to 5,
• for every j ∈ {1, 2, 3} \ {i}, the distance between X and Xj in Γ∗1 is equal to 4,

has been verified in ReeTits2.g. If this claim is true, then Status4 (as defined in
ReeTits2.g) will be true.

Step 4: Definition of Γ∗ and the isomorphism θ∗ : Γ→ Γ∗

There is no extra information here.

A GAP Code

All used GAP code has been organized in three files such that they can immediately be
processed by the GAP computer algebra system. These three files are:

• ReeTits1.g : Contains all GAP code related to a computer implementation of the
generalized octagon GO(2, 1).

• ReeTits2.g : Contains all GAP code related to a computer implementation of the
Ree-Tits octagon RT(2, 4).

• ReeTits3.g : In this file, an algorithm is implemented that is equivalent to a back-
track for finding all valuations of GO(2, 1).

The present manuscript, along with comments in these files should guide the user on how
the various commands in these files should be used. The three files are available online,
see http://cage.ugent.be/geometry/preprints.php.
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