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Abstract

In the theory of generalized polygons, the question whether there exists a unique
generalized octagon of order (2, 4) is still open. In this paper, we show the unique-
ness of such a generalized octagon under an extra assumption. We give a computer-
assisted proof for the fact that the Ree-Tits octagon of order (2, 4) is, up to iso-
morphism, the unique generalized octagon of order (2, 4) containing at least one
suboctagon of order (2, 1).
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1 Introduction

Let d ∈ N \ {0, 1}. A point-line geometry S = (P ,L, I) with nonempty point set P , line
set L and incidence relation I ⊆ P × L is called a generalized 2d-gon if it satisfies the
following three properties:

(GP1) S is a partial linear space, i.e. every two distinct points of S are incident with at
most one line;

(GP2) if {A1, A2} ⊆ P ∪L, then there exists a subgeometry S ′ = (P ′,L′, I′) of S isomorphic
to an ordinary 2d-gon for which {A1, A2} ⊆ P ′ ∪ L′;

(GP3) S has no subgeometries that are ordinary m-gons with m ∈ {3, 4, . . . , 2d− 1}.

Recall that a point-line geometry S ′ = (P ′,L′, I′) is called a subgeometry of S = (P ,L, I)
if P ′ ⊆ P , L′ ⊆ L and I′ = I ∩ (P × L). If {x ∈ P | x I L} = {x ∈ P ′ |x I′ L} for every
line L of L′, then the subgeometry S ′ of S is called full.

Generalized 2d-gons were introduced by Tits in [18]. The point-line dual of a general-
ized 2d-gon is again a generalized 2d-gon. A generalized 2d-gon is called thick if every line
is incident with at least three points and if every point is incident with at least three lines.
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A generalized 2d-gon is said to have order (s, t) if every line is incident with precisely s+1
points and if every point is incident with precisely t+ 1 lines.

There are plenty of constructions known for finite thick generalized quadrangles. This
situation is no longer true for generalized 2d-gons with d ≥ 3. There are, up to duality,
only two classes of finite thick generalized hexagons and one class of finite thick generalized
octagons known. There is moreover a result due to Feit & Higman [8] which states that
finite thick generalized 2d-gons can only exist if d ∈ {2, 3, 4}.

The two classes of generalized hexagons mentioned above were already described in
Tits’ paper [18]. The class of generalized octagons alluded to above was first constructed
in Tits [19] using a new family of simple groups discovered by Ree [15]. More precisely,
Tits showed that with every field F of characteristic two having an endomorphism σ
satisfying xσ

2
= x2, ∀x ∈ F, there corresponds a generalized octagon O(F, σ) of order

(|F|, |F|2). This generalized octagon O(F, σ) is called a Ree-Tits octagon. An alternative
construction for the Ree-Tits octagons using coordinates can be found in Joswig & Van
Maldeghem [12], see also Van Maldeghem [21, Section 3.6]. It is known that the Ree-Tits
octagon O(F, σ) has full suboctagons of order (|F|, 1), see Joswig & Van Maldeghem [12,
Section 5.1], Sarli [16, 6.1.3], Tits [20, 3.17] or Van Maldeghem [21, Theorem 3.6.3].

It is a well-known open problem whether finite thick generalized hexagons or octagons
exist besides the known ones described in the papers [18, 19]. If S is a thick generalized
2d-gon of order (s, t) with d ∈ {2, 3, 4} and s, t finite, then the numbers s and t are
known to satisfy certain parameter restrictions, see Feit & Higman [8], Haemers & Roos
[10] and Higman [11] (see also Van Maldeghem [21, Section 1.7]). If s, t ≥ 2 satisfy all
these conditions, then one can ask for a classification of all generalized 2d-gons of order
(s, t). As one can expect, such a classification can probably only be performed for small
values of s and t. For generalized quadrangles, this task has been completed if either
(s, t) or (t, s) belongs to the set {(2, 2), (2, 4), (3, 3), (3, 5), (3, 6), (3, 9), (4, 4)}, see Payne
& Thas [14, Chapter 6]. Cohen & Tits [2] classified all generalized hexagons of order (2, 2)
and (2, 8). For generalized octagons however, no classification result in this direction is
known, not even for the smallest case (s, t) = (2, 4). In fact, very few characterization
results for generalized octagons are known up to present. For the Ree-Tits octagons, there
are the geometrical characterization due to Van Maldeghem [22] and the group theoretical
characterizations due to Tits [20] and Cohen, O’Brien & Shpectorov [1].

The aim of the present paper is to give a partial solution to the classification problem
of the generalized octagons of order (2, 4). The following is our main result.

Main Theorem. The Ree-Tits octagon RT(2, 4) of order (2, 4) is, up to isomorphism,
the unique generalized octagon of order (2, 4) containing a suboctagon of order (2, 1).

A result, similar to our Main Theorem, can be found in De Medts & Van Maldeghem [7],
where it was shown that the split Cayley hexagon H(3) is, up to isomorphism, the unique
generalized hexagon of order (3, 3) containing a subhexagon of order (3, 1).

There exists, up to isomorphism, a unique generalized octagon GO(2, 1) of order (2, 1).
It is related to the generalized quadrangle W (2) whose points and lines are the points
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and lines of PG(3, 2) that are totally isotropic with respect to a given symplectic polarity
of PG(3, 2) (natural incidence). The points of GO(2, 1) are the flags of W (2) (i.e. the
unordered point-line pairs {p, L} with p ∈ L) and the lines of GO(2, 1) are the points and
lines of W (2), with incidence being reverse containment.

The generalized octagon GO(2, 1) contains 45 points and 30 lines, while any generalized
octagon of order (2, 4) contains 1755 points and 2925 lines. So, the condition that a
generalized octagon S of order (2, 4) contains a suboctagon S ′ ∼= GO(2, 1) only seems to
reveal a small part of the structure of S. Despite this fact, we will be able to completely
reconstruct S from its suboctagon S ′. As the number of points and lines of S is quite
large, we believe that the completion of S ′ to the whole octagon S cannot happen via a
standard backtrack algorithm.

The proof of the main theorem relies on the theory of polygonal valuations which was
developed in De Bruyn [3]. We recall the basics of this theory in Section 2. An important
notion from this theory is the notion of the valuation geometry of a generalized 2d-gon.
If we know the valuation geometry of a particular generalized 2d-gon, then we also know
some information of how this generalized polygon can be fully embedded as a subpolygon
in a larger generalized 2d-gon.

In Section 3, we give a detailed description of the valuation geometry of the general-
ized octagon GO(2, 1). To achieve this goal, we need to invoke the help of a computer
since computations get so extensive that they can hardly be done by a human. All our
computations will be done with the aid of the computer algebra system GAP [9].

In Sections 4 and 5, we use the information on the valuation geometry of GO(2, 1)
gathered in Section 3 to explicitly describe the structure of any generalized octagon S of
order (2, 4) containing a suboctagon S ′ of order (2, 1). In Section 4, we collect those results
that remain valid for any GO(2, t) (with t possibly infinite) containing a suboctagon of
order (2, 1). In Section 5, we show that there is essentially one way to reconstruct S from
S ′, finishing the proof of our Main Theorem. Also during that process we will often rely
on GAP to perform certain computations and verifications.

We have decided not to include all used GAP code here since this would overload
the paper. We will still include the GAP code that implements the geometries GO(2, 1)
and RT(2, 4), together with the GAP code that determines all hyperplane complements
of GO(2, 1). All used GAP code can be found in [4] which is available online. The GAP
code is available in separate files, arranged in such a way that they can immediately be
processed by the GAP computer algebra system.

The main tool used in this paper to obtain the desired classification result is that of val-
uations. Valuations are very useful for studying near polygons (in particular, generalized
polygons) that contain full subgeometries that are themselves near polygons (generalized
polygons). Valuations have been used to obtain several classification results regarding
near polygons, and also to construct new near polygons. The first result where valua-
tions have effectively been used to obtain classification results for near polygons was in
[6] where a complete classification of all dense near octagons with three points per line
was obtained (24 examples; computer free).
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2 Polygonal valuations

Let S = (P ,L, I) be a generalized 2d-gon with d ∈ N \ {0, 1}. Distances d(·, ·) between
points of S will always be measured in the collinearity graph of S. If x ∈ P and i ∈ N,
then Γi(x) denotes the set of points at distance i from x. If ∅ 6= X ⊆ P and i ∈ N,
then Γi(X) denotes the set of points at distance i from X, i.e. the set of all points y for
which min{d(y, x) |x ∈ X} = i. The generalized 2d-gon S belongs to the class of the
near polygons introduced in Shult & Yanushka [17]. This means that for every point x
and every line L of S there exists a unique point on L nearest to x. If x and y are two
points of S at distance i ∈ {1, 2, . . . , d − 1} from each other, then there is a unique line
through y containing a point at distance i− 1 from x. A subgeometry of S isomorphic to
a generalized 2d-gon will shortly be called a sub-2d-gon of S.

A map f : P → N is called a polygonal valuation if the following three conditions are
satisfied.

(PV1) There exists at least one point with f -value 0.

(PV2) Every line L of S contains a unique point xL such that f(x) = f(xL) + 1 for every
point xL 6= x of L.

(PV3) If x is a point of S for which f(x) < max{f(y) | y ∈ P}, then there is at most one
line through x containing a (necessary unique) point with f -value f(x)− 1.

In De Bruyn [3] a theory of polygonal valuations of generalized polygons was developed.
This theory has some similarities with the theory of valuations of dense near polygons
introduced in De Bruyn & Vandecasteele [5]. In the sequel of this paper, we will use the
word “valuation” as a shortening of “polygonal valuation”.

Two valuations f1 and f2 of S are called isomorphic if there exists an automorphism θ
of S such that f2 = f1 ◦ θ. If f is a valuation of S, then we denote by Of the set of points
with f -value 0 and by Mf the set of all points x of S that are not collinear with a point
having f -value f(x) − 1. We denote by Mf the maximal value attained by f . Clearly,
Of ⊆Mf and Mf ∈ {1, 2, . . . , d}. By Property (PV2), the set Hf of all points of S with
non-maximal f -value is a hyperplane of S, that is, Hf is a proper subset of P having the
property that every line has either one or all its points in Hf . A hyperplane of S is said
to be of valuation type if it is of the form Hf for some valuation f of S.

We now describe some classes of valuations that were introduced in [3].
(1) Let x be a given point of S and put f(y) := d(x, y) for every y ∈ P . Then f is a

so-called classical valuation of S.
(2) Suppose x ∈ P and O ⊆ Γd(x) such that every line of S at distance d − 1 from

x has a unique point in common with O. If y is a point of S at distance at most d − 1
from x, then we define f(y) := d(x, y). If y is a point of S at distance d from x, then
f(y) := d − 2 if y ∈ O and f(y) := d − 1 otherwise. Then f is a so-called semi-classical
valuation of S.

(3) Let j ∈ {2, 3, . . . , d} and let X be a set of points of S satisfying: (i) |X| ≥ 2;
(ii) j = min{d(x, y) |x, y ∈ X with x 6= y}; (iii) for every point a, there exists a point
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x ∈ X such that d(a, x) ≤ j
2
; (iv) for every line L, there exists a point x ∈ X such that

d(L, x) ≤ j−1
2

. Using the terminology of Offer & Van Maldeghem [13], X is a so-called
distance-j-ovoid of S. If j is even, then the map P → N;x 7→ d(x,X) is a so-called
distance-j-ovoidal valuation of S. Distance-2-ovoidal valuations are also called ovoidal
valuations.

The following propositions were proved in De Bruyn [3].

Proposition 2.1 ([3]) Suppose f is a valuation of S. Then Mf = 1 if and only if f
is ovoidal, Mf = d − 1 if and only if f is semi-classical and Mf = d if and only if f
is classical. Also, Of = Mf if and only if f is either classical or distance-j-ovoidal for
some even j.

Proposition 2.2 ([3]) Let f be a valuation and H a hyperplane of S. Let M denote the
maximal distance from a point of S to P \H and put fH(x) := M − d(x,P \H) for every
x ∈ P. Then:

(1) We have H = Hf if and only if f = fH .
(2) If every point of S is incident with precisely two lines, then fH is a valuation of S

if and only if fH satisfies Property (PV2).

Let fi, i ∈ I, be a collection of mutually distinct valuations of S, where I is some index
set of size at least two. We say that the set F = {fi | i ∈ I} is an L-set if for every point x
of S, there exists a (necessarily unique) i ∈ I such that fj(x)−Mfj = fi(x)−Mfi + 1 for
every j ∈ I \{i}. If F is an L-set, then by [3], there exists a line of S containing precisely
|F| = |I| points. The set F is called admissible if the following holds for all i1, i2 ∈ I with
i1 6= i2, for every x ∈Mfi1

and every y ∈Mfi2
:

• if fi1 and fi2 are classical, then d(x, y) = 1;
• if x = y, then (fi1(x)−Mfi1

)− (fi2(x)−Mfi2
) ∈ {−1, 0, 1};

• if x 6= y and at least one of fi1 , fi2 is not classical, then d(x, y) + fi1(x) + fi2(y) −
Mfi1

−Mfi2
+ 1 ≥ 0.

The valuation geometry VS of S is the point-line geometry whose points are the val-
uations of S and whose lines are the admissible L-sets of valuations of S, with incidence
being containment. The following two propositions were also proved in [3].

Proposition 2.3 ([3]) Suppose S ′ = (P ′,L′, I′) is a full sub-2d-gon of S. Let x be a
point of S and put m := min{d(x, y) | y ∈ P ′}. For every point y ∈ P ′, we define
fx(y) := d(x, y)−m. Then:

(1) fx is a valuation of S ′ with Mfx = d−m.
(2) If x1 and x2 are two distinct collinear points of S, then the valuations fx1 and fx2

are distinct.
(3) The map θ : x 7→ fx between the point-sets of S and VS′ maps every line of S to a

full line of VS′.

Proposition 2.4 ([3]) Let S be a generalized 2d-gon with three points per line. Then:
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(1) If {f1, f2, f3} is an admissible L-set of valuations of S, then Hf3 equals the com-
plement Hf1∆Hf2 of the symmetric difference Hf1∆Hf2 of Hf1 and Hf2.

(2) Let H1, H2 and H3 be three mutual distinct hyperplanes of valuation type of S such
that H3 = H1∆H2. Let fi, i ∈ {1, 2, 3}, be the unique valuation of S for which Hfi = Hi.
If {f1, f2, f3} is admissible, then {f1, f2, f3} is an admissible L-set of S.

(3) The valuation geometry of S is a partial linear space.

Proposition 2.5 Let F be an admissible L-set of valuations of S and let f1, f2 be two
distinct elements of F . Then the following hold:

(1) |Mf1 −Mf2| ∈ {0, 1}.

(2) If Mf2 = Mf1 + 1, then Of2 ⊆ Of1.

(3) If f2 is not ovoidal and not both f1, f2 are classical, then Of2 ⊆Mf1.

(4) If Mf1 = Mf2 ≥Mf for every f ∈ F \ {f1, f2}, then Of1 ∩ Of2 = ∅.

(5) If F = {f1, f2, f3} and Mf1 = Mf2 = Mf3 − 1, then Of1 ∩ Of2 = Of3.

Proof. (1) The fact that F is an L-set implies that |(f1(x)−Mf1)−(f2(x)−Mf2)| ≤ 1 for
every point x of S. If we take x ∈ Of1 , then the fact that |Mf2 −Mf1 − f2(x)| ≤ 1 implies
that Mf2−Mf1 ≥ −1. Reversing the roles of f1 and f2, we also see that Mf1−Mf2 ≥ −1.
It follows that |Mf1 −Mf2 | ∈ {0, 1}.

(2) Let x be a point of Of2 . Then from |(f1(x)−Mf1)− (f2(x)−Mf2)| ≤ 1, it follows
that |f1(x) + 1| ≤ 1. Hence, f1(x) = 0 and x ∈ Of1 .

(3) Since f2 is not ovoidal, we have Mf2 ≥ 2 by Proposition 2.1. Suppose x is a point
of Of2 not contained in Mf1 . There exists then a point y ∈ Mf1 at a certain distance
δ ≥ 1 from x such that f1(y) = f1(x)− δ. Then d(x, y) + f1(y)−Mf1 + f2(x)−Mf2 + 1 ≥
(f1(x) −Mf1) −Mf2 + 1 ≤ 0 + (−2) + 1 ≤ −1. But this is impossible. The facts that
x 6= y, that F is admissible and that at least one of f1, f2 is nonclassical implies that
d(x, y) + f1(y) + f2(x)−Mf1 −Mf2 + 1 ≥ 0.

(4) Suppose x ∈ Of1 ∩ Of2 . Since f(x) ≥ 0 and Mf ≤ Mf1 = Mf2 for every f ∈ F \
{f1, f2}, the number f(x)−Mf is at least equal to f1(x)−Mf1 = −Mf1 and f2(x)−Mf2 =
−Mf2 . Since F is an L-set, the smallest among the numbers f1(x) −Mf1 , f2(x) −Mf2 ,
f(x)−Mf (f ∈ F \ {f1, f2}) should be attained precisely once, in contradiction with the
fact that Mf1 = Mf2 .

(5) From (2), we already know that Of3 ⊆ Of1∩Of2 . Suppose now that x ∈ Of1∩Of2 .
Since f1(x)−Mf1 = f2(x)−Mf2 = −Mf1 = −Mf2 , the fact that {f1, f2, f3} is an admissible
L-set implies that f3(x)−Mf3 = −Mf1 − 1 and hence that x ∈ Of3 . �

3 The valuation geometry of GO(2, 1)

The aim of this section is to determine, up to isomorphism, all valuations and admissible
L-sets of valuations of the generalized octagon GO(2, 1). We will compute these objects
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with the aid of the computer algebra system GAP. Before we can compute these objects,
we first need to implement a computer model of GO(2, 1).

3.1 A computer model of GO(2, 1)

Recall that the generalized octagon GO(2, 1) is related to the generalized quadrangle
W (2). Its points are the flags of W (2) and its lines are the points and lines of W (2), with
incidence being reverse containment. Since Aut(W (2)) ∼= S6 and W (2) is isomorphic
to its point-line dual, the full automorphism group G of GO(2, 1) has order 1440. This
automorphism group acts primitively on the point set of the octagon.

The following GAP code implements a model of GO(2, 1) with point set {1, 2, . . . , 45},
line set lines, automorphism group g and distance function dist.

g:=AllPrimitiveGroups(DegreeOperation,45,Size,1440)[1];

orbs:=Orbits(Stabilizer(g,1),[1..45]);

dist1:=Filtered(orbs,x->Size(x)=4)[1];

dist2:=Filtered(orbs,x->Size(x)=8)[1];

perp:=Union([1],dist1);

perp2:=OnSets(perp,RepresentativeAction(g,1,dist2[1]));

dist3:=Filtered(orbs,x->Size(x)=16 and Intersection(x,perp2)<>[])[1];

dist4:=Filtered(orbs,x->Size(x)=16 and Intersection(x,perp2)=[])[1];

line:=Intersection(perp,OnSets(perp,RepresentativeAction(g,1,dist1[1])));

lines:=Orbit(g,line,OnSets);

partition:=[[1],dist1,dist2,dist3,dist4];

DistMat:=NullMat(45,45);

for x in [1..45] do

r:=RepresentativeAction(g,x,1);

for y in [1..45] do

z:=y^r;

i:=1; while not(z in partition[i]) do i:=i+1; od;

DistMat[x][y]:=i-1;

od;

od;

dist:=function(x,y)

return DistMat[x][y];

end;

3.2 Computing the valuation geometry of GO(2, 1)

Now that we have a computer model of GO(2, 1), we can search for valuations inside
GO(2, 1). We have implemented two algorithms to find the valuations, an algorithm
equivalent with a backtrack and an algorithm based on the connection between valuations
and hyperplanes. Among the two implemented algorithms, the one using the connection
with hyperplanes was the fastest.
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Let us first discuss the backtrack approach we implemented. We could assign to each
of the 45 points one of the five possible values (0 till 4) and check which of the 545 maps
that arise this way are valuations. Since the number 545 > 1031 is already huge, we will
not proceed this way and make use of some completion process that relies on the fact that
if you have a line L = {x1, x2, x3}, then the value of x3 is uniquely determined by the
values of x1 and x2 (Property (PV2)). During such a completion process an inconsistency
can occur if the values of x1 and x2 differ by at least 2. As the automorphism group
of GO(2, 1) is point-transitive, we are allowed to give one specific point x of GO(2, 1)
the value 0 and its neighbors the value 1. In this way, we obtain a “partial valuation”,
where some of the points of GO(2, 1) have been given a value, while others might not
have received a value. Suppose that we have a list of partial valuations (containing for
instance the partial valuation just described), then we can proceed as follows:

(1) Take a partial valuation f from the list which is not yet complete and take a point
which has not yet been assigned a value. By assigning one of the five possible values
(0 till 4) to this point we obtain a collection f ′0, f

′
1, . . . , f

′
4 of five partial valuations.

(2) For each f ′i , try to assign values to additional points by performing the completion
process described above. We collect those completed versions of f ′0, f

′
1, . . . , f

′
4 for

which no inconsistency has occurred during this completion process, and replace f
in the list by this collection.

(3) Do Steps (1) and (2) till our list only contains members for which all points have
been given a value.

(4) Select those members from the list that are valuations by verifying Properties (PV1),
(PV2) and (PV3).

In this way, we found that GO(2, 1) has up to isomorphism 12 valuations.
We have implemented another algorithm, which is based on the fact that for geometries

with three points per line, it is computationally very easy to generate hyperplanes (or
hyperplane complements). Once we know representatives for the various isomorphism
classes of hyperplane complements, we can then proceed to find all valuations by making
use of Proposition 2.2.

Suppose S = (P ,L, I) is a point-line geometry with three points on each line. Then
a set X 6= ∅ of points of S is a hyperplane complement if and only if its characteristic
vector is orthogonal (over F2) with the characteristic vector of all lines of S. It is this
property that makes it often possible for a computer to generate in a rather easy, fast and
straightforward way all hyperplanes of a given point-line geometry with three points per
line. Once we have implemented the vector space consisting of those vectors orthogonal
with the characteristic vectors of all lines, we just need to take vectors from this vector
space and compute the corresponding hyperplane complements. Based on this principle,
the following GAP code determines a set (called hypcomplements) of representatives for
the various isomorphism classes of hyperplane complements of GO(2, 1). To speed up the
computation, the code is implemented in such a way that the search stops as soon as
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there is a representative of each class. Each time a new hyperplane complement has been
found, a certain number (called balance) is updated which keeps track of the number of
missing hyperplane complements.

M:=NullMat(45,30,GF(2));

for i in [1..45] do for j in [1..30] do

if i in lines[j] then M[i][j]:=Z(2); fi;

od; od;

Y:=NullspaceMat(M);

U:=Subspace(GF(2)^(45),Y);

hypcomplements:=[Set(dist4)];

balance:=2^(Dimension(U))-46;

VectorToSet:=function(X) return Filtered([1..45],i->X[i]=One(GF(2))); end;

for w in U do

if w<>Zero(U) then

compl:=VectorToSet(w);

new:=true;

for i in [1..Length(hypcomplements)] do

if RepresentativeAction(g,compl,hypcomplements[i],OnSets) <> fail then

new:=false; break; fi;

od;

if new then

Append(hypcomplements,[compl]);

balance:=balance-Index(g,Stabilizer(g,compl,OnSets));

fi;

if balance=0 then break; fi;

fi;

od;

In this way, we found that GO(2, 1) has up to isomorphism 92 hyperplanes. If f is a
valuation of GO(2, 1), then Hf is a hyperplane of GO(2, 1), and Proposition 2.2 tells
us how f can be reconstructed from Hf . Based on the method exposed in Proposition
2.2, we have implemented an algorithm ([4]) to determine for each of the 92 hyperplane
complements a map that is a possible candidate for a valuation. After checking the
conditions (PV1), (PV2) and (PV3), it turned out that only 12 from the 92 hyperplane
complements were associated with valuations, confirming our earlier computation.

We say that a valuation of GO(2, 1) is of Type A, B, C, respectively D, if its maximal
value is equal to 4, 3, 2, respectively 1. It turns out that there are up to isomorphism two
valuations of Type D (D1 and D2), seven of Type C (C1 till C7), two of Type B (B1 and
B2) and a unique one of Type A. In Table 1, one can find the list of twelve valuations
together with some properties that make it possible to distinguish between them. The
information provided in the last column can easily be extracted from the values Mf , |Of |
and |Mf |, taking into account Proposition 2.1. In the second last column of Table 1 we
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Type # Mf |Of | |Mf | |Hf | Stabilizer Gf Orbits Type

A 45 4 1 1 29 (C2 ×D8) o C2 4 + 1 classical
B1 90 3 1 9 21 (C4 × C2) o C2 4 + 2 semi-classical
B2 90 3 1 9 21 D16 4 + 2 semi-classical
C1 720 2 1 13 17 C2 10 + 15 –
C2 720 2 2 11 19 C2 10 + 15 –
C3 720 2 2 11 19 C2 11 + 14 –
C4 360 2 3 9 21 C2 × C2 8 + 7 –
C5 180 2 1 13 17 C4 × C2 4 + 4 –
C6 180 2 1 13 17 D8 4 + 5 –
C7 36 2 5 5 25 C2 × (C5 o C4) 2 + 1 distance-4-ovoidal
D1 144 1 15 15 15 D10 2 + 5 ovoidal
D2 144 1 15 15 15 D10 3 + 4 ovoidal

Table 1: The valuations of GO(2, 1)

have listed the number of orbits of the stabilizer Gf of Hf on the hyperplane Hf and on
the complement Hf of Hf . For instance, the entry “8+7” means that if f is a valuation
of Type C4, then Gf has 8 orbits on Hf and 7 on Hf .

Now that we have determined all points of the valuation geometry V of GO(2, 1), we can
also determine its lines. The generation of admissible L-sets can be speed up by relying on
the fact that for an admissible L-set {f1, f2, f3}, the valuation f3 is uniquely determined
by f1 and f2. This is most easily expressed in terms of the associated hyperplane comple-
ments: the hyperplane complement associated with f3 should be the symmetric difference
of the hyperplane complements associated with f1 and f2 (Proposition 2.4(1)). For each
of the 12 possible valuations f1, we have determined all admissible L-sets {f1, f2, f3}
containing f1 and we have also computed the types of f2 and f3 ([4]). In this way, we
could find all types for the lines of V , where the type of a line is defined as the array
that consists of the types of the three involved valuations, where these types have been
lexicographically ordered.

After computation ([4]), we found that there are 52 line types. The 52 types can be found
in Table 2. With every automorphism θ of GO(2, 1), there corresponds an automorphism

θ̃ of V in the following way: for every valuation f of GO(2, 1), we define f θ̃ := f ◦ θ−1.

Put G̃ := {θ̃ | θ ∈ G}. In Table 2, we have also listed the orbits of G̃ on the set of lines of
V . There are in total 58 such orbits. Six of the 52 classes of lines of V with a given type
split in two G̃-orbits.

In Table 3, we list how many lines a given point of V is incident with. The entry
“4;2” in row C1C1D2 and column C1 means that every point of Type C1 is incident with
precisely six lines of Type C1C1D2. Four of these lines belong to the G̃-orbit of size 1440
and two of these lines belong to the G̃-orbit of size 720 (recall Table 2).
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Type # lines G̃-orbits Type # lines G̃-orbits

AAA 30 30 C1C2D2 2160 1440 + 720
AB1B1 45 45 C1C3C6 2880 1440 + 1440
AB2B2 45 45 C1C3D1 2880 1440 + 1440
B1C1C4 720 720 C1C4D2 720 720
B1C2C2 720 720 C1C5C6 720 720
B1C3C3 360 360 C1C5D1 1440 1440
B1C4C4 180 180 C1D1D2 720 720
B1C5C5 90 90 C2C2C2 480 480
B1C5C7 180 180 C2C2C6 720 720
B1C6C6 90 90 C2C2D2 720 720
B2C1C3 720 720 C2C3D1 1440 1440
B2C2C2 720 720 C2C4D2 720 720
B2C4C5 360 360 C2C5D1 720 720
B2C6C6 90 90 C2D1D2 1440 720 + 720
C1C1C1 480 480 C3C3C5 720 720
C1C1C2 1440 1440 C3C5D2 2160 1440 + 720
C1C1C3 1440 1440 C3C6D1 1440 1440
C1C1C4 720 720 C3D2D2 720 720
C1C1C5 1440 1440 C4C6D2 720 720
C1C1C6 720 720 C4D1D1 720 720
C1C1D1 1440 1440 C5C5C5 240 240
C1C1D2 2160 1440 + 720 C5D2D2 360 360
C1C2C3 1440 1440 C6C6C6 240 240
C1C2C5 1440 1440 C6D1D2 720 720
C1C2C6 1440 1440 C7D2D2 72 72
C1C2D1 1440 1440 D1D1D2 144 144

Table 2: The lines of the valuation geometry of GO(2, 1).
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Type A B1 B2 C1 C2 C3 C4 C5 C6 C7 D1 D2

AAA 2 – – – – – – – – – – –
AB1B1 1 1 – – – – – – – – – –
AB2B2 1 – 1 – – – – – – – – –
B1C1C4 – 8 – 1 – – 2 – – – – –
B1C2C2 – 8 – – 2 – – – – – – –
B1C3C3 – 4 – – – 1 – – – – – –
B1C4C4 – 2 – – – – 1 – – – – –
B1C5C5 – 1 – – – – – 1 – – – –
B1C5C7 – 2 – – – – – 1 – 5 – –
B1C6C6 – 1 – – – – – – 1 – – –
B2C1C3 – – 8 1 – 1 – – – – – –
B2C2C2 – – 8 – 2 – – – – – – –
B2C4C5 – – 4 – – – 1 2 – – – –
B2C6C6 – – 1 – – – – – 1 – – –
C1C1C1 – – – 2 – – – – – – – –
C1C1C2 – – – 4 2 – – – – – – –
C1C1C3 – – – 4 – 2 – – – – – –
C1C1C4 – – – 2 – – 2 – – – – –
C1C1C5 – – – 4 – – – 8 – – – –
C1C1C6 – – – 2 – – – – 4 – – –
C1C1D1 – – – 4 – – – – – – 10 –
C1C1D2 – – – 4;2 – – – – – – – 10;5
C1C2C3 – – – 2 2 2 – – – – – –
C1C2C5 – – – 2 2 – – 8 – – – –
C1C2C6 – – – 2 2 – – – 8 – – –
C1C2D1 – – – 2 2 – – – – – 10 –
C1C2D2 – – – 2;1 2;1 – – – – – – 10;5
C1C3C6 – – – 2;2 – 2;2 – – 8;8 – – –
C1C3D1 – – – 2;2 – 2;2 – – – – 10;10 –
C1C4D2 – – – 1 – – 2 – – – – 5
C1C5C6 – – – 1 – – – 4 4 – – –
C1C5D1 – – – 2 – – – 8 – – 10 –
C1D1D2 – – – 1 – – – – – – 5 5
C2C2C2 – – – – 2 – – – – – – –
C2C2C6 – – – – 2 – – – 4 – – –
C2C2D2 – – – – 2 – – – – – – 5
C2C3D1 – – – – 2 2 – – – – 10 –
C2C4D2 – – – – 1 – 2 – – – – 5
C2C5D1 – – – – 1 – – 4 – – 5 –
C2D1D2 – – – – 1;1 – – – – – 5;5 5;5
C3C3C5 – – – – – 2 – 4 – – – –
C3C5D2 – – – – – 2;1 – 8;4 – – – 10;5
C3C6D1 – – – – – 2 – – 8 – 10 –
C3D2D2 – – – – – 1 – – – – – 10
C4C6D2 – – – – – – 2 – 4 – – 5
C4D1D1 – – – – – – 2 – – – 10 –
C5C5C5 – – – – – – – 4 – – – –
C5D2D2 – – – – – – – 2 – – – 5
C6C6C6 – – – – – – – – 4 – – –
C6D1D2 – – – – – – – – 4 – 5 5
C7D2D2 – – – – – – – – – 2 – 1
D1D1D2 – – – – – – – – – – 2 1

Total 4 27 22 54 29 24 14 58 58 7 107 102

Table 3: Description of the valuation geometry of GO(2, 1): the number of lines incident
with a given point.
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All the GAP code that allowed to determine the information of Tables 1 and 3 can
be found in [4]. The information given in Table 2 can easily be extracted from the ones
given in Tables 1 and 3.

3.3 Example: The Ree-Tits octagon of order (2,4)

Only one generalized octagon of order (2, 4) is currently known (up to isomorphism),
namely the Ree-Tits octagon RT(2, 4). This generalized octagon is known to have suboc-
tagons of order (2, 1). Let GO(2, 1) denote one of these suboctagons. By Proposition 2.3,
every point x of RT(2, 4) will induce a valuation fx of GO(2, 1) and every line {x1, x2, x3}
of RT(2, 4) will induce a line {fx1 , fx2 , fx3} of the valuation geometry V of GO(2, 1). We
can now attach types to the points and lines of RT(2, 4) according to the types of the
points and lines of V they induce. At this stage, the curious reader might already be
interested in knowing which of the 12 possible point types and which of the 52 possible
line types can actually occur for the points and lines of RT(2, 4). To find out, we have
implemented a computer model for RT(2, 4) and one of its suboctagons. The generalized
octagon RT(2, 4) has 24960 suboctagons of order (2, 1) and its automorphism group acts
transitively on these suboctagons ([4]).

A computer model for RT(2, 4) can be implemented in a similar way as a computer
model for GO(2, 1). The first lines of such a code would now read as follows:

g:=AllPrimitiveGroups(DegreeOperation,1755)[2];

orbs:=Orbits(Stabilizer(g,1),[1..1755]);

dist1:=Filtered(orbs,x->Size(x)=10)[1];

dist2:=Filtered(orbs,x->Size(x)=80)[1];

dist3:=Filtered(orbs,x->Size(x)=640)[1];

dist4:=Filtered(orbs,x->Size(x)=1024)[1];

A set X of points of RT(2, 4) is called convex of depth 3 if for any two distinct points
x and y of X at distance j ∈ {1, 2, 3} from each other, the singleton Γ1(y) ∩ Γj−1(x) is
contained in X. Now, any suboctagon of order (2, 1) of RT(2, 4) can be found as the
smallest convex subspace of depth 3 containing a set {a, b, c1, c2} where d(a, b) = 4 and
c1, c2 are two distinct points of Γ1(b)∩ Γ3(a). Based on this observation, a suboctagon of
order (2, 1) can be implemented in our computer model of RT(2, 4).

Based on the information provided by Table 1, we have implemented functions in [4]
to determine the types of the points and lines of RT(2, 4) (with respect to the imple-
mented suboctagon). With the aid of these functions, the following information about
the structure of RT(2, 4) can be verified.

(1) Among the 1755 points of RT(2, 4), 45 have Type A, 270 have Type B1, 720 have
Type C2, 180 have Type C5, 360 have Type C6, 36 have Type C7 and 144 have Type
D1.
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(2) Among the 2925 lines, 30 have Type AAA, 135 have Type AB1B1, 720 have Type
B1C2C2, 180 have Type B1C5C7, 180 have Type B1C6C6, 720 have Type C2C2C6,
720 have Type C2C5D1 and 240 have Type C6C6C6.

(3) For each T ∈ {A,C2, C5, C7, D1}, the map x 7→ fx defines a bijection between the
set of points of Type T of RT(2, 4) and the set of points of Type T of V .

(4) For each T ∈ {AAA,B1C2C2, B1C5C7, C2C2C6, C2C5D1, C6C6C6}, the map {x1, x2,
x3} 7→ {fx1 , fx2 , fx3} defines a bijection between the set of lines of Type T of RT(2, 4)
and the set of lines of Type T of V .

(5) The stabilizer of the implemented octagon has two orbits on the set of points of
Type B1, one orbit of size 180 (Type B′1) and one orbit of size 90 (Type B′′1 ).

The following table provides information about the number of lines of each type that are
incident with a given point of Type T ∈ {A,B′1, B′′1 , C2, C5, C6, C7, D1}.

A B′1 B′′1 C2 C5 C6 C7 D1

AAA 2 – – – – – – –
AB′1B

′
1 2 1 – – – – – –

AB′′1B
′′
1 1 – 1 – – – – –

B′1C2C2 – 4 – 2 – – – –
B′′1C6C6 – – 2 – – 1 – –
B′′1C5C7 – – 2 – 1 – 5 –
C2C2C6 – – – 2 – 2 – –
C2C5D1 – – – 1 4 – – 5
C6C6C6 – – – – – 2 – –

We now define two graphs. The graph Γ̃0 is the subgraph of the collinearity graph Γ̃
of RT(2, 4) induced on the points of Type C2, C5, C7, D1, and Γ̃1 is the subgraph of Γ̃
induced on the points of Type C2, C5, C6, C7 and D1.

4 Generalized octagons of order (2, t) containing a

suboctagon of order (2, 1)

We suppose here that S = (P ,L, I) is a generalized octagon of order (2, t) with t possibly
infinite containing a suboctagon S ′ = (P ′,L′, I′) of order (2, 1). Recall that there exists
up to isomorphism a unique generalized octagon of order (2, 1) and that it is related to
the generalized quadrangle W (2).

Let V denote the valuation geometry of S ′. In order to distinguish between points or
lines of S and V , we will often talk about S-points, V-points, S-lines and V-lines.

For every point x of S and every point y of P ′, we define fx(y) := d(x, y)− d(x,P ′).
By Proposition 2.3, fx is a valuation of S ′ and hence a point of the valuation geometry V .
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The valuation fx has Type A, B, C, or D, depending on whether d(x,P ′) is equal to 0, 1,
2 or 3. We have Ofx = Γi(x)∩P ′ where i = d(x,P ′). A point x of S is said to be of Type
T ∈ {A,B,C,D,B1, B2, C1, C2, C3, C4, C5, C6, C7, D1, D2} if its corresponding valuation
fx has Type T . If x1, x2, . . . , xk is a nonempty finite collection of points such that xi has
Type Ti, then we will also say that x1x2 . . . xk has Type T1T2 . . . Tk. A line {x1, x2, x3} of
S is said to be of Type T1T2T3 if xσ(1)xσ(2)xσ(3) has Type T1T2T3 for some permutation
σ of {1, 2, 3}. If {x1, x2, x3} is a line of S such that xi has Type Ti, then by abuse of
notation we will also say that the line x1x2x3 of S has Type T1T2T3. We will follow a
similar convention for the lines of V . By Proposition 2.3(3), we immediately have:

Lemma 4.1 Every line of S has a Type XY Z, where XY Z is one of the 52 possibilities
occurring in the first column of Table 3.

Lemma 4.1 will be crucial for the rest of our discussion. In the following lemma, we collect
some obvious facts.

Lemma 4.2 (1) The S-lines of Type AAA are precisely the lines of S contained in P ′.

(2) Every S-point x of Type A is contained in precisely two S-lines of Type AAA and
every other S-line through x has Type ABB.

(3) Every S-point x of Type B is contained in a unique S-line of Type ABB and every
other S-line through x has Type BCC. The unique S-line of Type ABB through x
is equal to xy, where {y} = Ofx.

The lemmas 4.3, 4.4, 4.5 and 4.6 below are consequences of Proposition 2.5, taking into
account that Ofx = Γi(x)∩P ′ for every point x of S for which d(x,P ′) = i. These lemmas
can also be proved by means of a direct reasoning inside the generalized octagon S.

Lemma 4.3 Let xy1y2 be an S-line of Type BCC and let x′ be the unique point of P ′
collinear with x. Then:

(1) (Γ2(y1) ∩ P ′) ∩ (Γ2(y2) ∩ P ′) = Γ1(x) ∩ P ′ = Ofx = {x′};

(2) Γ2(yi) ∩ P ′ ⊆Mfx and (Γ2(yi) ∩ P ′) \ {x′} ⊆ Mfx \ Ofx for every i ∈ {1, 2};

(3) Γ2(yi) ∩ P ′ ⊆Mfyj
and (Γ2(yi) ∩ P ′) \ {x′} ⊆ Mfyj

\ Ofyj for all i, j ∈ {1, 2} with
i 6= j.

Lemma 4.4 Let x1x2x3 be an S-line of Type CCC. Then:

(1) Γ2(x1) ∩ P ′, Γ2(x2) ∩ P ′ and Γ2(x3) ∩ P ′ are mutually disjoint;

(2) Γ2(xi) ∩ P ′ ⊆Mfxj
\ Ofxj for all i, j ∈ {1, 2, 3} with i 6= j.

Lemma 4.5 Let x1x2y be an S-line of Type CCD. Then:
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(1) Γ2(xi) ∩ P ′ ⊆ Γ3(y) ∩ P ′ for every i ∈ {1, 2};

(2) (Γ2(x1) ∩ P ′) ∩ (Γ2(x2) ∩ P ′) = ∅;

(3) Γ2(xi) ∩ P ′ ⊆Mfxj
\ Ofxj for all i, j ∈ {1, 2} with i 6= j.

Lemma 4.6 Let xy1y2 be an S-line of Type CDD. Then (Γ3(y1)∩P ′)∩ (Γ3(y2)∩P ′) =
Γ2(x) ∩ P ′.

Lemma 4.7 Let x1x2x3 be an S-line of Type DDD. Then {Γ3(x1)∩P ′,Γ3(x2)∩P ′,Γ3(x3)
∩P ′} is a partition of P ′ into distance-2-ovoids of S ′.

Proof. Since fxi is ovoidal, Ofxi = Γ3(xi) ∩ P ′ is a distance-2-ovoid of S ′ for every i ∈
{1, 2, 3}. Let y be an arbitrary point of P ′. Then d(y, xi) ∈ {3, 4} for every i ∈ {1, 2, 3}.
Since {x1, x2, x3} contains a unique point nearest to y, there exists a unique i ∈ {1, 2, 3}
such that y ∈ Γ3(xi) ∩ P ′. So, {Γ3(x1) ∩ P ′,Γ3(x2) ∩ P ′,Γ3(x3) ∩ P ′} is a partition of P ′
into distance-2-ovoids of S ′. �

Lemma 4.8 Let x be a point of S not contained in P ′, and let y1, y2, . . . , yk be the (nec-
essarily finite) collection of mutually distinct points of S collinear with x at distance
d(x,P ′) − 1 from P ′. Then Ofx =

⋃k
i=1Ofyi and Ofyi1 ∩ Ofyi2 = ∅ for any two distinct

i1, i2 ∈ {1, 2, . . . , k}.

Proof. If z ∈ Ofx , then d(x, z) ≤ 3 and z ∈ Ofy , where y ∈ {y1, . . . , yk} is the unique
point collinear with x at distance d(x,P ′) − 1 from z. Conversely, if z ∈ Ofy for some
y ∈ {y1, . . . , yk} then z has distance at most and hence precisely d(z, y) + 1 = d(x,P ′)
from x, showing that z ∈ Ofx . Hence, Ofx =

⋃k
i=1Ofyi . Suppose z ∈ Ofyi1 ∩ Ofyi2 where

i1 and i2 are two distinct elements of {1, 2, . . . , k}. Then both yi1 and yi2 would coincide
with the unique point collinear with x at distance d(x, z)−1 = d(x,P ′)−1 from z, which
is impossible. �

If x is a point of S, then we define

• C(x) := Γ2(x) ∩ P ′ if x has Type C and C(x) := ∅ otherwise;

• N (x) :=Mfx \ Ofx is x has Type A, B or C, and N (x) := Ofx if x has Type D.

The sizes c(x) := |C(x)| and N(x) := |N (x)| of these sets are given in the following table:

Type x A B1, B2 C1, C5, C6 C2, C3 C4 C7 D1, D2

c(x) 0 0 1 2 3 5 0
N(x) 0 8 12 9 6 0 15

Clearly, N (x) = ∅ if x has Type A.

Lemma 4.9 N (x) consists of all points of P ′ at distance 3 from x that are not collinear
with a point of P ′ at distance 2 from x.
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Proof. This is clear for the Type A and Type D points. Suppose therefore that x has
Type B or C, and let y ∈ N (x) =Mfx \ Ofx .

If x has Type C, then fx assumes the values 0, 1 and 2. The point y cannot assume
the value 2 since every point with maximal value is collinear with points whose value is
smaller (one on each line through that point). The point y cannot assume the value 0
either since it does not belong to Ofx . Hence, fx(y) = 1.

Suppose x has Type B. Then fx is a semi-classical valuation having a unique point
z with value 0. By the definition of semi-classical valuation we know that the points of
Mfx \ Ofx lie at distance 4 from z and have value 2. In particular, fx(y) = 2.

In any case, we have that d(x, y) = d(x,P ′) + fx(y) = 3. �

Since c(x) = |Γ2(x) ∩ P ′| for every S-point of Type C, Lemma 4.2(3) and the fact that
every two points at distance 2 have a unique common neighbor imply the following:

Lemma 4.10 Let x be an S-point of Type C. Then there are precisely c(x) lines of S
through x containing a (necessarily unique) S-point of Type B.

For every line L = {x, y, z} of S, we define c(x, L) := c(y) + c(z)− ε, where

• ε = 2 if xyz has Type BCC;

• ε = 1 if x is a point of Type C and precisely one of the points y, z has Type B;

• ε = 0 otherwise.

For every line L = {x, y, z} of S, we define

C(x, L) :=
(
C(y)∆C(z)

)
\ C(x),

where C(y)∆C(z) denotes the symmetric difference of the sets C(y) and C(z).

Lemma 4.11 For every line L = {x, y, z} of S, we have c(x, L) = |C(x, L)| and C(x, L) ⊆
N (x).

Proof. We distinguish between the distinct cases.
If xyz has Type AAA, ABB or BBA, then C(x) = C(y) = C(z) = ∅, and hence

C(x, L) = ∅. The claims of the lemma obviously hold in this case.
Suppose xyz has Type BCC. Let x′ denote the unique point of P ′ collinear with x.

Then C(x) = ∅ and C(y) ∩ C(z) = {x′} by Lemma 4.3(1). Hence, |C(x, L)| = |C(y)| +
|C(z)|−2 = c(y)+c(z)−2. By Lemma 4.3(2), C(x, L) =

(
(Γ2(y)∩P ′)∪(Γ2(z)∩P ′)

)
\{x′}

is contained in N (x) =Mfx \ Ofx .
Suppose xyz has Type CCB, and denote by z′ the unique point of P ′ collinear with

z. Then C(z) = ∅ and C(x) ∩ C(y) = {z′} (again by Lemma 4.3(1)). Hence, C(x, L) =
C(y) \ {z′} and thus |C(x, L)| = c(y) − 1 = c(y) + c(z) − 1. By Lemma 4.3(3), the set

C(x, L) =
(

Γ2(y) ∩ P ′
)
\ {z′} is contained in N (x) =Mfx \ Ofx .
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Suppose xyz has Type T1T2T3, where T1T2T3 ∈ {C,D}. Then C(x), C(y) and C(z) are
mutually disjoint by Lemmas 4.4(1) and 4.5(2), implying that C(x, L) = C(y) ∪ C(z) and
|C(x, L)| = |C(y)| + |C(z)| = c(y) + c(z). If x has Type C, then C(x, L) = C(y) ∪ C(z) is
contained in N (x) = Mfx \ Ofx by Lemmas 4.4(2) and 4.5(3). If x has Type D, then
C(x, L) = C(y) ∪ C(z) is contained in N (x) = Ofx by Lemmas 4.5(1) and 4.6. �

Lemma 4.12 Let x be a point of S and y ∈ N (x). Then the following hold:

(1) There exists a unique S-point z collinear with x at distance 2 from y. This point z
has Type C.

(2) y ∈ C(x, xz).

Proof. Observe that x cannot have Type A since N (x) 6= ∅.
(1) We already know that d(x, y) = 3. So, there exists a unique S-point z collinear

with x at distance 2 from y. If z′ is the unique common neighbor of z and y, then z, z′ /∈ P ′
(since y ∈Mfx), zz

′ 6= z′y and hence zz′ has Type BCC by Lemma 4.2(3). In particular,
z has Type C.

(2) Put xz = {x, z, z̃}. We need to prove that y ∈
(
C(z)∆C(z̃)

)
\ C(x). Since z has

Type C and d(y, z) = 2, we have y ∈ C(z). Since d(x, y) = 3, we cannot have y ∈ C(x).
It remains to show that y 6∈ C(z̃). If y ∈ C(z̃), then y ∈ C(z)∩ C(z̃) would imply that xzz̃
has Type BCC and {y} = Ofx , in contradiction with y ∈ N (x) =Mfx \ Ofx . �

Lemma 4.13 Let x be a point of S and let Lx denote the set of lines of S through x.
If L1 and L2 are two distinct S-lines through x, then C(x, L1) and C(x, L2) are disjoint.
Moreover,

⋃
L∈Lx C(x, L) = N (x). Hence,

∑
L∈Lx c(x, L) = N(x).

Proof. This is trivial if x is a point of Type A and is a direct consequence of Lemmas
4.11 and 4.12 if x has Type B, C or D. �

Lemma 4.14 Let x be an S-point and let {fx, f1, f2} be a V-line such that x has Type
B, C or D and f1 has Type C. Suppose moreover that if x has Type B, then f1 has Type
Cj with j ∈ {2, 3, 4, 7}. Then there is at most one S-line {x, y1, y2} through x such that
{fx, fy1 , fy2} = {fx, f1, f2}.

Proof. The valuation f2 has Type B, C or D.
Suppose first that f2 has Type B. Then fxf1f2 necessarily has Type CCB. Let y be

the unique point of Of2 . If {x, y1, y2} is an S-line through x such that {fx, fy1 , fy2} =
{fx, f1, f2}, then y ∈ Ofx , d(x, y) = 2 and {x, y1, y2} necessarily is the unique S-line
through x containing a point collinear with y.

Suppose next that f2 has Type C or D. Then fxf1f2 has Type BCC, CCC, CCD,
DCC or DCD. Let y be an arbitrary point of Of1 such that y 6∈ Ofx if fx has Type B. It
is possible to choose y in such a way. Indeed, if x has Type B, then f1 has Type Cj for a
certain j ∈ {2, 3, 4, 7}, |Ofx| = 1 and |Of1| ≥ 2. Suppose now that {x, y1, y2} is an S-line
through x such that fy1 = f1 and fy2 = f2. Then the point y lies at distance 2 from y1
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and the unique point y′ in Γ1(y1)∩ Γ1(y) cannot be contained in the line {x, y1, y2} since
otherwise we would have y′ = x, x has Type B and y ∈ Ofx , which is impossible. So,
d(x, y) = 3 and {x, y1, y2} necessarily is the unique S-line through x containing a point
at distance 2 from y. �

If f is a valuation of S ′, then we define C(f) := Of if f has Type C and C(f) := ∅
otherwise. We also define Nf :=Mf \Of if f has Type A, B or C, and Nf := Of if f has
Type D. For every line F = {f1, f2, f3} of V , we define C(f1,F) := (C(f2)∆C(f3))\C(f1).

Suppose now that Fi = {f, gi, hi}, i ∈ I, is a collection of (not necessarily distinct)
V-lines through the same valuation f . For every i ∈ I, put

• Xi := Ogi if Mgi = Mf + 1 and Xi := ∅ otherwise;

• Yi := Ohi if Mhi = Mf + 1 and Yi := ∅ otherwise.

We say that the above collection of V-lines is compatible with respect to f if the following
two properties hold:

• Of is the disjoint union of the sets Xi ∪ Yi, i ∈ I;

• Nf is the disjoint union of the sets C(f,Fi), i ∈ I.

The reason why we have introduced the notion of compatibility for such a collection is
because of the following lemma.

Lemma 4.15 Let x be an S-point not contained in P ′ and let {x, yi, zi}, i ∈ I, denote
all the S-lines through x. Then the collection {fx, fyi , fzi}, i ∈ I, of V-lines is compatible
with respect to fx.

Proof. This is a consequence of Lemmas 4.8 and 4.13. �

5 Generalized octagons of order (2, 4) containing a

suboctagon of order (2, 1)

We continue with the notation introduced in Section 4. But we consider here the spe-
cial case t = 4. So, S = (P ,L, I) is a generalized octagon of order (2, 4) containing a
suboctagon S ′ = (P ′,L′, I′) of order (2, 1). We denote by Γ the collinearity graph of S.
Since the lines of S correspond to the maximal cliques of Γ, the generalized octagon S is
uniquely determined by its collinearity graph Γ. So, in order to prove that S is unique
(up to isomorphism), it suffices to prove that Γ is isomorphic to a certain specific graph
Γ∗. This graph Γ∗ will be defined here in terms of objects of the valuation geometry V .
To prove the isomorphism Γ ∼= Γ∗, we will proceed as follows.

(1) We show that the subgraph Γ0 of Γ induced on the S-points of Type C2, C5, C7,
D1 is isomorphic to some specific graph Γ∗0.
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(2) From the isomorphism Γ0
∼= Γ∗0, we then derive an isomorphism Γ ∼= Γ∗.

The graph Γ∗0 will be the collinearity graph of the geometry G whose points are the V-
points (i.e., the valuations of S ′) of Type C2, C5, C7, D1, whose lines are the V-lines of
Type B1C2C2, C2C5D1, C2C2C6, B1C5C7, with incidence being containment.

5.1 Proof of the isomorphism Γ0
∼= Γ∗0

We will say that a point x of S has line distribution X1Y1Z1 + X2Y2Z2 + · · · + X5Y5Z5

if the five S-lines L1, L2, . . . , L5 incident with x can be labeled such that Li has Type
XiYiZi. We will often shorten line distributions to expressions of the form n1×X1Y1Z1 +
n2 × X2Y2Z2 + · · · + nk × XkYkZk, where k ∈ N \ {0} and n1, n2, . . . , nk ∈ {1, 2, . . . , 5}
such that n1 + n2 + · · ·+ nk = 5.

In this subsection, we prove that the graphs Γ0 and Γ∗0 are isomorphic. We achieve
this goal in the following three steps:

Step 1: We reduce the set of 52 possible types for the lines of S to a set of only 9 possible
line types. From this set of 9 possible line types, it will follow that there can only
be 7 possible types for the points of S, namely A, B1, C2, C5, C6, C7 and D1.

Step 2: For each S-point x of Type T ∈ {A,B1, C2, C5, C6, C7, D1}, we determine the pos-
sible line distributions, taking into account that there can now only be 9 possible
line types. From this information, we are able to prove the nonexistence of one
additional line type.

Step 3: From the information about the point types, line types and line distributions, we
show that the map x 7→ fx defines an isomorphism between Γ0 and Γ∗0.

Step 1. From the information gathered so-far, we are now already able to exclude several
line types without further computer computations. Take for instance an S-point of Type
C7. From Lemma 4.10, we know that there are c(x) = 5 lines of Type BCC through
x. Since these are all the S-lines through x, we can conclude that there cannot be S-
lines of Type C7D2D2. In fact, the equality

∑
L∈Lx c(x, L) = N(x) and Lemmas 4.10, 4.14

(successively) applied to particular S-points allow to exclude several additional line types.
Since we were not able to exclude all lines types without additional help from a computer,
we have implemented a computer algorithm to exclude line types in an automatic fashion.

Suppose you have a set T of possible line types, for instance the 52 possible line types
mentioned in Table 2. To show the nonexistence of certain line types, we can proceed as
follows.

(1) Take a line type T1T2T3 contained in T .

(2) Consider a set R of representatives for the distinct G̃-orbits of V-lines of Type
T1T2T3. By Table 2, we know that |R| ∈ {1, 2}.
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(3) For each L1 = {f1, f2, f3} ∈ R and for each i ∈ {1, 2, 3}, consider all collections
L2, L3, L4, L5 of four not necessarily distinct V-lines through fi all whose types
belong to T .

(4) Verify whether at least one of the considered collections L1, L2, L3, L4, L5 is com-
patible with respect to fi. If this turns out not to be the case for at least one
i ∈ {1, 2, 3} for which fi is not classical, then by Lemma 4.15 we know that there
cannot exist an S-line whose corresponding V-line is equal to {f1, f2, f3}.

(5) Suppose Step 4 has shown that for each {f1, f2, f3} ∈ R, there cannot exist an S-line
whose corresponding V-line is {f1, f2, f3}. Then there cannot exist S-lines of Type
T1T2T3.

(6) Perform operations (2), (3), (4), (5) for each line type T1T2T3 contained in T . Collect
all line types whose nonexistence as an S-line type was obtained in Step 5. If the
found collection is empty, then we stop the procedure. If the collection is nonempty,
then we remove all “nonexisting line types” from the set T and go back to Step 1.

We have implemented the above reduction process [4] and applied it to the set of 52
possible line types. The original set of 52 possible line types could in this way be reduced
to only 9 possible line types (in the following sequence: 52 7→ 21 7→ 13 7→ 10 7→ 9 7→ 9).
Our conclusion was the following ([4]):

Lemma 5.1 Every line of S has Type AAA, AB1B1, B1C2C2, B1C5C7, B1C6C6, C2C2C6,
C2C5D1, C5C5C5 or C6C6C6.

Now, we put T ∗ := {AAA,AB1B1, B1C2C2, B1C5C7, B1C6C6, C2C2C6, C2C5D1, C5C5C5,
C6C6C6}. From Lemma 5.1, we immediately have:

Corollary 5.2 Every point of S has Type A, B1, C2, C5, C6, C7 or D1.

Step 2. Suppose T is one of the types B1, C2, C5, C6, C7, D1. To determine the possible
line distributions of the S-points of Type T , we can proceed as follows.

Take a valuation f of Type T and consider all collections L1, L2, L3, L4, L5

of admissible L-sets through f that are compatible with respect to f and all
whose types belong to T ∗. If Li = {f, gi, hi}, i ∈ {1, 2, 3, 4, 5}, and if Ui and
Vi denote the respective types of gi and hi, then TU1V1 + · · · + TU5V5 is a
possible line distribution (in the sense of Lemma 4.15).

In this way, we can collect all possible line distributions for S-points of Type T 6= A. The
implementation in GAP ([4]) to determine the possible line distributions for the points of
S produced the following results (hereby also taking into account Lemma 4.2(2)):

Lemma 5.3 (1) Every S-point of Type A has line distribution 2×AAA+ 3×AB1B1.
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(2) Every S-point of Type B1 has line distribution AB1B1 + 4 × B1C2C2 or AB1B1 +
2×B1C6C6 + 2×B1C5C7.

(3) Every S-point of Type C2 has line distribution 2×B1C2C2 + 2×C2C2C6 +C2C5D1.

(4) Every S-point of Type C5 has line distribution B1C5C7 + 4 × C2C5D1, B1C5C7 +
2× C5C5C5 + 2× C2C5D1 or B1C5C7 + 4× C5C5C5.

(5) Every S-point of Type C6 has line distribution B1C6C6 + 2×C2C2C6 + 2×C6C6C6.

(6) Every S-point of Type C7 has line distribution 5×B1C5C7.

(7) Every S-point of Type D1 has line distribution 5× C2C5D1.

From Lemma 5.3, we are now able to determine the number of points and lines of
each type, and to show the nonexistence of one additional line type. For every T ∈
{A,B1, C2, C5, C6, C7, D1}, let NT denote the total number of S-points of Type T . Let
N ′B1

(N ′′B1
) denote the total number of S-points of Type B1 that have line distribution

AB1B1 + 4×B1C2C2 (AB1B1 + 2×B1C6C6 + 2×B1C5C7). Let N ′C5
(N ′′C5

; N ′′′C5
) denote

the total number of S-points of Type C5 having line distribution B1C5C7 + 4× C2C5D1

(B1C5C7 + 2× C5C5C5 + 2× C2C5D1; B1C5C7 + 4× C5C5C5).

Lemma 5.4 (1) There are no S-lines of Type C5C5C5.

(2) We have NA = 45, NB1 = 270, NC2 = 720, NC5 = 180, NC6 = 360, NC7 = 36,
ND1 = 144 and N ′B1

= 180, N ′′B1
= 90, N ′C5

= 180, N ′′C5
= 0, N ′′′C5

= 0.

(3) Every S-point of Type C5 has line distribution B1C5C7 + 4× C2C5D1.

(4) Among the 2925 lines of S, 30 have Type AAA, |P ′| · 3 = 135 have Type AB1B1,
N ′B1
· 4 = 720 have Type B1C2C2, N ′′B1

· 2 = 180 have Type B1C5C7, N ′′B1
· 2 = 180

have Type B1C6C6, NC6 · 2 = 720 have Type C2C2C6, ND1 · 5 = 720 have Type
C2C5D1 and 1

3
·NC6 · 2 = 240 have Type C6C6C6.

Proof. We have NA = |P ′| = 45 and NB1 = |Γ1(P ′)| = |P ′| · 3 · 2 = 270. We also have

N ′B1
+N ′′B1

= NB1 = 270, 8 ·N ′B1
= 2 ·NC2 , 4 ·N ′′B1

= NC6 , 2 ·NC2 = 4 ·NC6 ,

where the first equation is trivial and the last three are obtained by means of double
counting relying on Claims (2), (3) and (5) of Lemma 5.3. The above system of equations
implies that N ′B1

= 180, N ′′B1
= 90, NC2 = 720 and NC6 = 360. Claims (3) and (7)

of Lemma 5.3 imply that NC2 = 5 · ND1 and hence that ND1 = 144. Claims (2) and
(6) of Lemma 5.3 imply that 2 · N ′′B1

= 5 · NC7 and hence that NC7 = 36. The fact that
NA+NB1+NC2+NC5+NC6+NC7+ND1 = |P| = 1755 then implies thatNC5 = 180. Claims
(4) and (7) of Lemma 5.3 imply that 720 = 5 ·ND1 = 4 ·N ′C5

+ 2 ·N ′′C5
+ 0 ·N ′′′C5

= 4 ·NC5 ,
implying thatN ′′C5

= N ′′′C5
= 0 and hence thatN ′C5

= NC5 = 180. So, we have proved Claim
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(2) of the lemma. Claims (1) and (3) follow directly from the fact that N ′′C5
= N ′′′C5

= 0
and Claim (4) follows from a straightforward double counting. �

Step 3. From the information gathered so-far, we are now going to establish an isomor-
phism between Γ0 and Γ∗0. The graph Γ∗0 can be implemented in GAP (package GRAPE)
and the following can then be verified ([4]):

Lemma 5.5 Γ∗0 is a connected graph.

Lemma 5.6 (1) Let f be a V-point whose type belongs to {A,C2, C5, C7, D1}. Then
there exists a unique S-point x such that f = fx.

(2) If {f1, f2, f3} is a V-line of Type AAA, B1C2C2, B1C5C7, C2C2C6 or C2C5D1, then
there exists a unique S-line {x1, x2, x3} such that {f1, f2, f3} = {fx1 , fx2 , fx3}.

(3) If f is a V-point of Type B1, then there are precisely three S-points x such that
f = fx. These three points are collinear with the same point of S ′.

(4) If f is a V-point of Type C6, then there are precisely two S-points x such that f = fx.

Proof. (1) If f is a V-point of Type A, then there exists a unique S-point x of Type A
such that f = fx. This point x is the unique element in the singleton Of .

Let A′ denote the point set of G (i.e. the vertex set of Γ∗0) and let A denote the set
of those points of S whose type is either C2, C5, C7 or D1. Consider the following map
θ : A → A′;x 7→ fx. By Table 3 and Lemmas 4.14, 5.3 and 5.4(3), θ defines a bijection
between x⊥ and θ(x)⊥ for every point x ∈ A. So, if x1 and x2 are two G-collinear points of
A′, then |θ−1(x1)| = |θ−1(x2)| (as this is equal to the number of pairs (y1, y2) of collinear
points of S for which fy1 = x1 and fy2 = x2). Since G is connected, this implies that
|θ−1(x)| is independent of the chosen point x ∈ A′. By Lemma 5.4(2) and Table 1, we
then find that if f is a valuation of S ′ of Type C2, C5, C7 or D1, then there exists a unique
point x of S such that f = fx.

(2) Claim (2) is a consequence of Claim (1), Lemmas 4.14, 5.3, 5.4(3) and Table 3.

(3) Let y be an arbitrary point of S ′. Since there are precisely 90 V-points of Type B1,
there are precisely two V-points f of Type B1 for which Of = {y}. If {y, z1, z2} is one of
the three S-lines through y not contained in P ′, then fz1 and fz2 are these two V-points
of Type B1. This implies that for every V-point f of Type B1, there are precisely three
S-points x such that f = fx. These three S-points are collinear with the unique point in
Of .

(4) The map x 7→ fx defines a bijection between the S-lines of Type C2C2C6 and the
V-lines of Type C2C2C6. Since there are precisely four V-lines of Type C2C2C6 through a
given V-point of Type C6, but only two S-lines of Type C2C2C6 through a given S-point
of Type C6, there exists for every valuation f of Type C6 of S ′ precisely two S-points x
of Type C6 such that f = fx. �
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The following is an immediate consequence of Lemma 5.3, Lemma 5.4(3) and Lemma
5.6(1)+(2).

Corollary 5.7 The map θ0 : x 7→ fx defines an isomorphism between Γ0 and Γ∗0.

Remark. In the special case that S ∼= RT(2, 4), we have denoted Γ0 earlier by Γ̃0.

Corollary 5.7 thus implies that Γ̃0
∼= Γ∗0. In fact, this fact was already clear from the

discussion in Subsection 3.3 (see Properties (3) and (4) there).

5.2 Proof of the isomorphism Γ ∼= Γ∗

Above, we defined the graph Γ0 as the subgraph of Γ induced on the set of S-points of
Type C2, C5, C7, D1. We now define a number of additional subgraphs of Γ:

• Γ1 is the subgraph of Γ induced on the set of S-points of Type C2, C5, C6, C7, D1.

• Γ2 is the subgraph of Γ induced on the set of S-points of Type B1, C2, C5, C6, C7,
D1, but with all edges between B1-vertices removed.

• Γ3 is the subgraph of Γ induced on the set of S-points of Type B1, C2, C5, C6, C7,
D1.

The graph Γ0 is thus the first graph in the sequence Γ0,Γ1,Γ2,Γ3,Γ of graphs, each of
which is a subgraph of the next one in the chain. Our intention now is to construct a
suitable sequence Γ∗0,Γ

∗
1,Γ

∗
2,Γ

∗
3,Γ

∗ of graphs, only defined in terms of objects of V (and not
of S), such that each graph is a subgraph of the graph that comes next in the chain. These
new graphs will be defined in such a way that the initial isomorphism θ0 : Γ0 → Γ∗0 can
(subsequently) be extended to isomorphisms θ1 : Γ1 → Γ∗1, θ2 : Γ2 → Γ∗2, θ3 : Γ3 → Γ∗3 and
θ∗ : Γ → Γ∗. The final conclusion will then be that we have established an isomorphism
between the collinearity graph Γ of S and a certain graph Γ∗ which is only defined in
terms of objects of V . This will allow us to conclude that S is unique as a generalized
octagon of order (2, 4) containing a suboctagon of order (2, 1).

Step 1: Definition of Γ∗1 and the isomorphism θ1 : Γ1 → Γ∗1

The definition of the map θ0 between the vertex sets of Γ0 and Γ∗0 was rather easy,
because of the fact that there exists a bijective correspondence between the set of S-
points of Type T ∈ {C2, C5, C7, D1} and the set of valuations of Type T . A similar
bijective correspondence no longer holds for the S-points of Type C6, see Lemma 5.6(4).
This will make the definition of the graph Γ∗1 and the isomorphism θ1 : Γ1 → Γ∗1 more
complicated. Still we will be able to establish a bijective correspondence between the set
of S-points of Type C6 and certain objects inside V , called C6-sets. Every S-point x of
Type C6 will induce such a C6-set Sx, see Lemma 5.11 below. Moreover, the bijective
correspondence x 7→ Sx will be bijective. In order to achieve these goals, we first need
some further information about S-points of Type B1 and C6.
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An S-point of Type B1 is said to be of Type B′1 if it has line distribution AB1B1 + 4 ×
B1C2C2 and it is said to have Type B′′1 if it has line distribution AB1B1 + 2×B1C6C6 +
2×B1C5C7. By Lemma 5.4, there are 180 points of Type B′1 and 90 points of Type B′′1 .

Lemma 5.8 Let f be a valuation of Type B1 of S ′. Then there exist two S-points x of
Type B′1 such that f = fx and a unique S-point y of Type B′′1 such that f = fy.

Proof. By Lemma 5.6, there are three S-points x of Type B1 such that f = fx. Since
the number of valuations of Type B1 equals the number of S-points of Type B′′1 , namely
90, it suffices to prove that for every valuation f of Type B1, there exists at least one
S-point y of Type B′′1 such that f = fy. Let fg1g2 be a V-line of Type B1C5C7 through
f . Let z1 be the unique S-point of Type C5 such that fz1 = g1, and suppose that yz1z2 is
the unique S-line of Type B1C5C7 through z1. Since fg1g2 is the unique V-line of Type
B1C5C7 through g1 (Table 3), we have fy = f and fz2 = g2. So, y is an S-point of Type
B′′1 for which fy = f . �

Lemma 5.9 Let f be a valuation of Type C6 of S ′ and let x1 and x2 be the two S-points
of Type C6 such that fx1 = fx2 = f . Then x1 and x2 lie at distance 2 from each other,
and the unique S-point y collinear with x1 and x2 has Type B′′1 . Moreover, the S-lines
yx1 and yx2 are precisely the two S-lines of Type B1C6C6 through y.

Proof. For every i ∈ {1, 2}, let {xi, yi, zi} be the unique S-line of Type B1C6C6 through
xi and suppose that yi has Type B′′1 . By Table 3, there exists a unique V-line {f, g, h}
through f = fx1 = fx2 such that g has Type B1. It follows that fy1 = fy2 = g. Hence,
y1 = y2 by Lemma 5.8. The claims of the lemma are now obvious. �

Lemma 5.10 Let x1y1z1 and x2y2z2 be two distinct S-lines of Type C6C2C2 such that
fx1 = fx2. Then the following hold.

(1) If x1 = x2, then any path of Γ0 connecting a vertex of {y1, z1} with a vertex of
{y2, z2} has length at least 6.

(2) If x1 6= x2, then any path of Γ0 connecting a vertex of {y1, z1} with a vertex of
{y2, z2} has length at least 4.

Proof. Let ui, i ∈ {1, 2}, be an arbitrary element of {yi, zi}.
If x1 = x2, then the S-points u1 and u2 lie at distance 2 from each other and their

unique common neighbor x1 = x2 has Type C6. Since every cycle of Γ has length at least
8, any path of Γ0 connecting u1 and u2 has length at least 6.

If x1 6= x2, then by Lemma 5.9, the S-points u1 and u2 lie at distance distance 4 from
each other. Indeed, if x′ is the unique common neighbor of x1 and x2 (of Type B′′1 ), then
u1, x1, x

′, x2, u2 is a geodesic path of length 4 connecting u1 and u2. �

Let f be a given valuation of Type C6. Suppose we have a collection of five V-lines
{f, gi, hi} (i ∈ {0, 1, . . . , 4}) which are compatible with respect to f and satisfy the fol-
lowing properties: (a) fg0h0 has Type C6C6B1; (b) fg1h1, fg2h2 have Type C6C2C2; (c)

25



fg3h3, fg4h4 have Type C6C6C6; (d) the distance between {g1, h1} and {g2, h2} in the
graph Γ∗0 is at least 6. Then we call S := {{f, gi, hi} | i ∈ {1, 2, 3, 4}} a C6-set, and we
define η(S) := f . We computed [4] that there are two collections of five V-lines through
f that are compatible with respect to f and satisfy (a), (b), (c) and (d) (disregarding
the ordering of the elements). Moreover, the two associated C6-sets partition the set of 8
V-lines through f that have Type C6C2C2 or C6C6C6 (Table 3). So, the total number of
C6-sets is equal to two times the number of V-points of Type C6, i.e. equal to 360.

Lemma 5.11 Let x be an S-point of Type C6 and let {x, yi, zi}, i ∈ {1, 2, 3, 4}, de-
note the four S-lines through x whose type is either C6C2C2 or C6C6C6. Then Sx :=
{{fx, fyi , fzi} | i ∈ {1, 2, 3, 4}} is a C6-set. Moreover, the map x 7→ Sx defines a bijection
between the set of 360 S-points of Type C6 and the 360 C6-sets.

Proof. The fact that Sx is a C6-set is a consequence of Lemma 4.15, Lemma 5.3(5),
Corollary 5.7 and Lemma 5.10. Since there are as many S-points of Type C6 as C6-sets,
namely 360, in order to show that the map x 7→ Sx is bijective, it suffices to show that
it is surjective. So, consider an arbitrary C6-set S and let fg1h1 be a V-line of Type
C6C2C2 contained in S. By Lemma 5.6(2), there exists a unique S-line xy1z1 such that
(fx, fy1 , fz1) = (f, g1, h1). But then the C6-set Sx contains {fx, fy1 , fz} and hence must
coincide with the unique C6-set containing {f, g1, h1}, which equals S. �

Since for every V-line {f1, f2, f3} of Type C6C6C6, there exists a unique C6-set S contain-
ing {f1, f2, f3} and satisfying η(S) = f1, we know that the following must hold.

Lemma 5.12 For every V-line {f1, f2, f3} of Type C6C6C6, there exists a unique S-line
{x1, x2, x3} such that {f1, f2, f3} = {fx1 , fx2 , fx3}.

Since we have established a bijective correspondence between the S-points of Type C6

and certain objects inside V , namely the C6-sets, we now understand how the vertex set
of the graph Γ∗1 should be defined, namely as the vertex set of Γ∗0, union the C6-sets. We
define θ1 then as the map which maps each vertex x of Γ0 to θ1(x) := θ0(x) = fx and each
S-point y of Type C6 to θ1(y) := Sy, where Sy is the C6-set as defined in Lemma 5.11.
The only thing that remains to be done is to extend the adjacency relation in Γ∗0 to an
adjacency relation in Γ∗1 such that θ1 : Γ1 → Γ∗1 is an isomorphism. In fact, at this stage
we already know how some of the extra adjacencies inside Γ∗1 should be defined.

• Suppose x is an S-point of Type C6 and y is a S-point of Type C2. The points x
and y are collinear in S if and only if one of the lines through x contains y. So, the
C6-set Sx and the valuation fy must be defined as adjacent in Γ∗1 if and only if one
of the four elements of Sx contains fy.

• Suppose x and y are two S-points of Type C6. These points can be incident with a
line of Type C6C6C6. In view of Lemma 5.12, the two C6-sets Sx and Sy should be
defined as adjacent if these sets have a V-line of Type C6C6C6 in common.
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The extra adjacency relations we have defined in Γ∗1 are not yet sufficient for θ1 to be an
isomorphism. Indeed, two distinct S-points x and y of Type C6 can also be incident with
a line of Type B1C6C6. With the above conventions, we would not yet have defined an
adjacency between Sx and Sy. That is now our intention. For every S-point x of Type
C6, there exists a unique S-point y 6= x which is contained in some line of Type B1C6C6

together with x. For this unique point y, we have that the valuations fx and fy are
contained in a V-line of Type B1C6C6. So, for every C6-set S, we should define one extra
adjacency between S and a certain other C6-set S ′. For this unique C6-set S ′, we should
moreover have that η(S) and η(S ′) are incident with some V-line of Type B1C6C6. So,

the extra adjacencies inside Γ∗1 should defined by a certain symmetric relation R̃ on the

C6-sets such that for every C6-set S, there will be a unique C6-set S ′ such that (S, S ′) ∈ R̃.

The motivation for the definition of R̃ that we will give follows from the following lemma.

Lemma 5.13 Let x be a point of Type B′′1 of S, let {x, y1, z1} and {x, y2, z2} be two S-
lines of Type B1C6C6 through x such that fy1 = fy2 and fz1 = fz2. Let X denote the set
of S-points of Type C2 collinear with z1 and let Xi, i ∈ {1, 2}, denote the set of S-points
of Type C2 collinear with yi. Then the following holds:

(1) any path of Γ0 connecting a vertex of X with a vertex of X1 has length at least 5;

(2) any path of Γ0 connecting a vertex of X with a vertex of X2 has length at least 4.

Proof. Let u be an arbitrary element of X and let ui, i ∈ {1, 2}, be an arbitrary
element of Xi. The S-points u and u1 are connected by the path u, z1, y1, u1 and hence
lie at distance 3 from each other. The S-points u and u2 are connected by the path
u, z1, x, y2, u2 and hence lie at distance 4 from each other. Observe that none of the points
z1, y1, x, y2 is a vertex of the graph Γ0. The claims of the lemma now follow from the fact
that every cycle in Γ has length at least 8. �

Suppose now that S is a given C6-set. Put f := η(S) and let f ′ 6= f be the unique
valuation of Type C6 of S ′ such that {f, f ′} is contained in a V-line of Type B1C6C6

(recall Table 3). Let S1 and S2 6= S1 be the two C6-sets such that η(S1) = η(S2) = f ′.
Let X denote the set of V-points of Type C2 contained in the elements of S and let Xi,
i ∈ {1, 2}, denote the set of V-points of Type C2 contained in an element of Si. We have
implemented the graph Γ∗0 in GAP (package GRAPE), see [4], and verified that there
exists a unique i∗ ∈ {1, 2} such that:

• The distance between X and Xi∗ in Γ∗0 is equal to 5.

• The distance between X and X3−i∗ in Γ∗0 is equal to 4.

By definition, Si∗ is the unique C6-set S ′ for which (S, S ′) ∈ R̃. Obviously, R̃ is a
symmetric relation. In view of Lemma 5.13, we have that two distinct S-points x and y
of Type C6 are incident with some line of Type B1C6C6 if and only if (Sx, Sy) ∈ R̃. So,

two C6-sets S1 and S2 should also be defined as adjacent in Γ∗1 if (S1, S2) ∈ R̃.
Above, we have thus explained how adjacencies in Γ∗1 should be defined in order for

θ1 to be an isomorphism. Summarizing, we thus have:
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Lemma 5.14 The map θ1 defines an isomorphism between the graphs Γ1 and Γ∗1.

In the special case that S ∼= RT(2, 4), we have denoted Γ1 earlier by Γ̃1 (see Subsection

3.3). Lemma 5.14 thus implies that Γ̃1
∼= Γ∗1. The graph Γ̃1 seems to have a much easier

computer implementation than the graph Γ∗1. It might therefore be more convenient to
replace computer computations that involve the graph Γ∗1 by its equivalent computations

in Γ̃1.

Step 2: Definition of Γ∗2 and the isomorphism θ2 : Γ2 → Γ∗2

Our next goal will be to define the graph Γ∗2 and to establish an isomorphism θ2 between
Γ2 and Γ∗2. To achieve this goal, we shall have to enlarge Γ∗1 with extra vertices that
are in bijective correspondence with the S-points of Type B1, and define some extra
adjacencies. The extra vertices that will be added are the 270 elements of a certain
set C and the alluded bijective correspondence will be achieved in Lemma 5.16 below.
The set C will be defined in terms of certain objects of Γ∗1. Before we can do that we
need to mention some properties of this graph. These properties directly follow from the
corresponding properties of the graph Γ1 in view of the isomorphism θ1 : Γ1 → Γ∗1 (if we

take S ∼= RT(2, 4), for instance, then θ1 : Γ̃1 → Γ∗1).

If x and y are two distinct adjacent vertices of Γ1, then x and y are contained in a unique
maximal clique of size 2 or 3. There are 1080 = NB1 · 4 cliques of size 2 in Γ1. If U is
a maximal clique of size 2 of Γ1, then we denote by φ1(U) the unique S-point of Type
B1 contained in the unique S-line through U . Observe that such a line of S has Type
B1C2C2, B1C5C7 or B1C6C6. If x is an S-point of Type B1, then there are precisely four
S-lines of Type BCC through x and hence there are precisely four cliques U of size two
of Γ1 such that x = φ1(U).

In view of the isomorphism θ1 : Γ1 → Γ∗1, we thus know that if x and y are two distinct
adjacent vertices of Γ∗1, then x and y are contained in a unique maximal clique of size 2
or 3. If U = {x, y} is such a maximal clique, then one of the following cases occurs.

(1) x and y are V-points that are collinear with a unique V-line of Type B1C5C7 or
B1C2C2. We denote by φ2(U) the unique V-point of Type B1 contained in this line.

(2) x and y are C6-sets for which (x, y) ∈ R̃. Then the V-points η(x) and η(y) of Type
C6 are contained in a unique V-line of Type B1C6C6. We denote by φ2(U) the
unique V-point of Type B1 contained in this line.

Let C denote the set of all 1080 cliques of size two of Γ∗1. For every valuation f of Type
B1, we denote by Cf the set of 1080

90
= 12 cliques U ∈ C for which φ2(U) = f .

Let f be one of the 90 valuations of Type B1. If U1 and U2 are two distinct cliques of
Cf , then using the computer model Γ̃1 of Γ∗1 implemented in [4], we found that dΓ∗1

(U1, U2)
is equal to either 4 or 6. We call U1 and U2 equivalent if dΓ∗1

(U1, U2) = 6. In [4], we also
found that this defines an equivalence relation on the set Cf . There are 3 equivalence
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classes of size 4. If U ∈ Cf , then we denote by U the equivalence class of size 4 containing
U and we put fU := f . We also put C := {U |U ∈ C}. Then |C| = 90 · 3 = 270.

In Lemma 5.16 below, we establish a bijection between the set of S-points of Type B1

and the set C. The proof of that lemma will rely on the following observation.

Lemma 5.15 (1) If U1 and U2 are two distinct cliques of size 2 of Γ1 such that φ1(U1) =
φ1(U2), then every path in Γ1 connecting a vertex of U1 with a vertex of U2 has length
at least 6.

(2) Let x and x′ be two distinct S-points of Type B1 such that fx = fx′. Let U and U ′

be two cliques of size 2 of Γ1 such that x = φ1(U) and x′ = φ1(U ′). Then any path
of Γ1 connecting a vertex of U with a vertex of U ′ has length at least 4.

Proof. (1) If y1 is a vertex of U1 and y2 is a vertex of U2, then y1 and y2 lie at distance 2
from each other in S and their unique common neighbor has Type B1. Claim (2) of the
lemma then follows from the fact that every cycle in Γ has length at least 8.

(2) If y is the unique point of Ofx = Ofx′ , then yx and yx′ are two distinct S-lines
through y. So, if z is a vertex of U and z′ is a vertex of U ′, then z, x, y, x′, z′ is a geodesic
path of length 4 in S and hence z and z′ lie at distance 4 from each other (in S). �

Lemma 5.16 Let x be an S-point of Type B1 and let {x, y1, y2}, {x, y3, y4}, {x, y5, y6}
and {x, y7, y8} be the four S-lines of Type BCC through x. Put f := fx. Then Ui :=
θ1({y2i−1, y2i}) ∈ Cf for every i ∈ {1, 2, 3, 4}. Moreover, Sx := {U1, U2, U3, U4} ∈ C,
fSx = f and the map x 7→ Sx defines a bijection between the set of 270 S-points of Type
B1 and C.

Proof. Since {y2i−1, y2i}, i ∈ {1, 2, 3, 4}, is a clique of Γ1 and θ1 is an isomorphism
from Γ1 to Γ∗1, we have that Ui ∈ C. Since {fx, fy2i−1

, fy2i} is a V-line we have that
Ui ∈ Cfx = Cf . By Lemma 5.15 and the fact that θ1 is an isomorphism from Γ1 to
Γ∗1, we have dΓ∗1

(Ui, Uj) ≥ 6 for all i, j ∈ {1, 2, 3, 4} with i 6= j. So, we have that

{U1, U2, U3, U4} ∈ C. Observe that by Lemma 5.3(2), there exists an i ∈ {1, 2, 3, 4} such
that Ui only consists of V-points of Type C2, C5 or C7. In view of Lemma 5.6(1), the
point x is thus uniquely determined by the set {U1, U2, U3, U4}. In conclusion, the map
x 7→ Sx is injective and thus defines a bijection between the set of 270 S-points of Type
B1 and C. �

Now, let Γ∗2 denote the graph whose vertex set consists of the vertices of Γ∗1, plus the 270
elements of C. Two vertices of Γ∗1 are adjacent in Γ∗2 whenever they are adjacent in Γ∗1.
Two vertices belonging to C are never adjacent, and a vertex γ ∈ C is Γ∗2-adjacent with a
vertex x of Γ∗1 if there exists a U ∈ γ such that x ∈ U .

Now, define the following map θ2 between the vertex sets of Γ2 and Γ∗2:

• if x is an S-point of Type C2, C5, C6, C7 and D1, then θ2(x) := θ1(x);

• if x is an S-point of Type B1 of S, then θ2(x) := Sx, where Sx is the set as defined
in Lemma 5.16.
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The following must then hold:

Lemma 5.17 The map θ2 defines an isomorphism between the graphs Γ2 and Γ∗2.

Step 3: Definition of Γ∗3 and the isomorphism θ3 : Γ3 → Γ∗3

In the previous step, we have enlarged the graph Γ∗1 to a graph Γ∗2 by adding objects
that bijectively correspond to the S-points of Type B1, namely the 270 elements of C.
Subsequently, we have explained how adjacencies between S-points of Type B1 and S-
points of Type T ∈ {C2, C6, C5, C7} should be recognized inside Γ∗2. What we have so
far failed to do is to give an interpretation of when two distinct S-points of Type B1 are
adjacent. Indeed, each S-point x of Type B1 is collinear with a unique other S-point y
of Type B1 (on the unique line through x meeting P ′). The question for which we need
to find an answer is thus how we can obtain the set Sy ∈ C from the set Sx ∈ C.

As Γ2 and Γ3 have the same vertices, the vertex graphs of Γ∗2 and Γ∗3 and the maps θ2

and θ3 should remain the same. Γ∗3 is obtained from Γ∗2 by adding extra edges between
the elements of C. In fact, every vertex belonging to C should be joined to precisely one
other vertex of C (later we will call these two vertices conjugate). Notice that if x and y
are two distinct collinear S-points of Type B1, then fy is the unique valuation f of Type
B1 of S ′ for which Of = Ofx and f 6= fy. The motivation for the definition of conjugate
elements will follow from the following lemma.

Lemma 5.18 Let x and y be two S-points of Type B1 such that Ofx = Ofy and fx 6= fy.
Let X (respectively, Y ) denote the set of S-points of Type C collinear with x (respectively,
y). Then the following hold:

(1) If x and y are two collinear points of S, then any path of Γ1 connecting a vertex of
X with a vertex of Y has length at least 5.

(2) If x and y are two noncollinear points of S (and so are collinear with the same point
of P ′), then any path in Γ1 connecting a vertex of X with a vertex of Y has length
at least 4.

Proof. Let x1 ∈ X and y1 ∈ Y . If x and y are collinear points of S, then x1 and y1 lie
at distance 3 from each other in S since x1, x, y, y1 is a path. If x and y are noncollinear
points of S, then x and y have a unique neighbor which is an S-point of Type A (namely
the unique point in the singleton Ofx = Ofy), implying that x1 and y1 lie at distance 4
from each other. The claims of the lemma now follow from the fact that every cycle in Γ
has length at least 8. �

Now, let γ be an arbitrary element of C. Put f1 := fγ and let f2 be the unique valuation
of Type B1 of S ′ such that f1 6= f2 and Of1 = Of2 . Then there are precisely three distinct
elements γ1, γ2, γ3 ∈ C such that f2 = fγ1 = fγ2 = fγ3 . Let X denote the set of vertices
of Γ∗2 adjacent to γ and for every i ∈ {1, 2, 3}, let Xi denote the set of vertices of Γ∗2
adjacent to γi. Then each of the sets X,X1, X2, X3 only consist of vertices of Γ∗1. Using
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the computer model Γ̃1 of Γ∗1 implemented in [4], we found that there exists a unique
i ∈ {1, 2, 3} such that
• the distance between X and Xi in Γ∗1 is equal to 5,
• for every j ∈ {1, 2, 3} \ {i}, the distance between X and Xj in Γ∗1 is equal to 4.

We will say that γ and γi are conjugate elements of C. By Lemma 5.18 it follows that if
x and y are two distinct collinear S-points of Type B1, then the corresponding elements
Sx and Sy of C are conjugate. So, we (should) define Γ∗3 as the graph obtained from Γ∗2
by adding edges between two conjugate vertices of C. Our conclusion is then as follows:

Lemma 5.19 The map θ3 := θ2 defines an isomorphism between Γ3 and Γ∗3.

Step 4: Definition of Γ∗ and the isomorphism θ∗ : Γ→ Γ∗

The graph Γ3 is already a good approximation of Γ. In order to find Γ from Γ3, we should
take the disjoint union of Γ3 and Γ′, the collinearity graph of S ′. For every vertex x of
Type B1 of S, we should then draw an extra edge between x and the unique point y in
Ofx . From this observation, we can see how Γ∗ and θ∗ should be defined.

Let Γ∗4 denote the disjoint union of the graphs Γ∗3 and Γ′. Let Γ∗ denote the graph obtained
from Γ∗4 by drawing for every γ ∈ C the extra edge between the vertices γ and xγ, where
xγ is the unique point contained in the singleton Ofγ . Consider the following map θ∗

between the vertices of Γ and Γ∗:

• if x is a point of S not contained in P ′, then we define θ∗(x) := θ3(x);

• if x is a point of P ′, then we define θ∗(x) := x.

The following thus holds:

Proposition 5.20 The map θ∗ defines an isomorphism between Γ and Γ∗.

So, the collinearity graph Γ of S is uniquely determined. Γ is isomorphic to a graph Γ∗

which can be completely described in terms of certain objects of S ′. Since the general-
ized octagon S is isomorphic to the point-line geometry whose points and lines are the
vertices and maximal cliques of Γ∗, with incident being containment, there can be, up to
isomorphism, at most one generalized octagon of order (2, 4) that contains a suboctagon
of order (2, 1). We conclude:

Theorem 5.21 The generalized octagon S is isomorphic to the Ree-Tits octagon RT(2, 4)
of order (2, 4).
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