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Abstract

Let F and F′ be two fields such that F′ is a quadratic Galois extension of F.
If |F| ≥ 3, then we provide sufficient conditions for a hyperplane of the Hermitian
dual polar space DH(5,F′) to arise from the Grassmann embedding. We use this to
give an alternative proof for the fact that all hyperplanes of DH(5, q2), q 6= 2, arise
from the Grassmann embedding, and to show that every hyperplane of DH(5,F′)
that contains a quad Q is either classical or the extension of a non-classical ovoid
of Q. We will also give a classification of the hyperplanes of DH(5,F′) that contain
a quad and arise from the Grassmann embedding.
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1 Introduction

1.1 Motivation and framework

In this subsection, we briefly discuss the wider framework in which the results of the
present paper should be seen. The detailed discussion of the main results is postponed
till Section 1.3. These results are rather technical and several definitions and notations
need to be given in order to fully understand them. The relevant notions and notations
will be introduced in Section 1.2.

This paper is about hyperplanes of Hermitian dual polar spaces of rank 3. A hyperplane
of a general point-line geometry S is a set of points meeting each line in either a singleton
or the whole line. If S admits a full projective embedding, then there is a standard way
to construct hyperplanes of S, namely by intersecting an embedded copy of S with a
hyperplane of the ambient projective space. Hyperplanes that can be obtained in this
way are said to be classical. A number of problems now naturally arise:

• For a given point-line geometry S, classify all its hyperplanes, or if this goal is too
ambitious, classify all hyperplanes under suitable additional restrictions.
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• For a given fully embeddable point-line geometry S, determine whether all its hy-
perplanes are classical. If that is not the case, is it then possible to give (necessary
and) sufficient conditions that guarantee that a hyperplane is classical?

The above problems have already been considered in the literature for several point-line
geometries. In the present paper, we consider these problems for so-called Hermitian dual
polar spaces of rank 3.

All hyperplanes of finite Hermitian dual polar spaces of rank 3 have been classified
in [9, 10]. For infinite dual polar spaces however, it seems not possible to classify all
hyperplanes due to the possibility to construct hyperplanes via a process that invokes
transfinite recursion. In the present paper, we will be able to obtain a classification of the
hyperplanes under the additional restriction that there are deep quads, see Theorems 1.2
and 1.3 and the accompanying discussion.

With exception of DH(5, 4), all classical hyperplanes of Hermitian dual polar spaces of
rank 3 must arise from the so-called Grassmann embedding ([8, Corollary 1.4(ii)]). In the
present paper, we also give sufficient conditions for hyperplanes of rank 3 Hermitian dual
polar spaces to arise from that embedding, see Theorem 1.1. This technical theorem can
be used to give an alternative proof for the fact that all hyperplanes of finite Hermitian
dual polar spaces of rank 3 are classical (a result originally obtained in [10]). In fact, also
the classification of all hyperplanes containing a deep quad will rely on that result.

1.2 Definitions and notations

Throughout this paper, F and F′ denote two fields such that F′ is a quadratic Galois
extension of F, and ψ denotes the unique nontrivial element of the Galois group Gal(F′/F).
For every n ≥ 2, let V ′n be an n-dimensional vector space over F′. After having chosen
a fixed basis Bn in V ′n, the set Vn of all F-linear combinations of the elements of Bn

can naturally be regarded as an n-dimensional vector space over F. For every vector
v̄ =

∑
b̄∈Bn λb̄ · b̄ of V ′n, we define v̄ψ :=

∑
b̄∈Bn λ

ψ

b̄
· b̄. Clearly, v̄ψ = v̄ if and only if v̄ ∈ Vn.

If L is a line of PG(V ′n) through two distinct points 〈v̄1〉 and 〈v̄2〉 of PG(V ′n), then the
set {〈λ1v̄1 + λ2v̄2〉 | (λ1, λ2) ∈ F2 \ {(0, 0)}} is a so-called Baer-F-subline of L. Suppose H
is Hermitian variety of PG(V ′n) defined by a ψ-Hermitian form of V ′n. Then any line L of
PG(V ′n) not contained in H that contains at least two points of H will intersect H in a
Baer-F-subline of L. We call such a line of PG(V ′n) a hyperbolic line of H.

Let n ∈ N \ {0, 1}. Then let f ′n denote a nondegenerate alternating bilinear form
on V ′2n such that f ′n(x̄, ȳ) ∈ F for all x̄, ȳ ∈ V2n. The form f ′n induces a nondegenerate
alternating bilinear form fn on V2n. For all x̄, ȳ ∈ V ′2n, we put hn(x̄, ȳ) := f ′n(x̄, ȳψ). Then
h′n is a nondegenerate skew-Hermitian form on V ′2n. The set of all points 〈x̄〉 of PG(V ′2n)
for which hn(x̄, x̄) = 0 is a nonsingular Hermitian variety H(2n − 1,F′) of Witt index
n of PG(V ′2n) which contains all points of PG(V2n). We denote by DH(2n − 1,F′) the
corresponding Hermitian dual polar space of rank n. The points of DH(2n − 1,F′) are
the subspaces of dimension n − 1 of H(2n − 1,F′) and the lines of DH(2n − 1,F′) are
certain subsets of such (n− 1)-dimensional subspaces, with incidence being containment.
Specifically, there exists a bijective correspondence between the lines of DH(2n − 1,F′)
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and the (n− 2)-dimensional subspaces of H(2n− 1,F′), with each line of DH(2n− 1,F′)
consisting of all the (n − 1)-dimensional subspaces of H(2n − 1,F′) containing a given
(n−2)-dimensional subspace of H(2n−1,F′). The isomorphism class of H(2n−1,F′) and
DH(2n− 1,F′) are not necessarily uniquely determined by n and F′, but can also depend
on the subfield F of F′. In the finite case, we have F ∼= Fq and F′ ∼= Fq2 for some prime
power q, and H(2n−1,F′) and DH(2n−1,F′) are then also denoted by H(2n−1, q2) and
DH(2n− 1, q2), respectively. Notice that if L is a line of PG(V ′2n), then L∩H(2n− 1,F′)
is either empty, a singleton, the whole point set of L or a Baer-F-subline of L. In the
latter case, L is a hyperbolic line of H(2n − 1,F′). The dual polar space DH(3,F′) is
a generalized quadrangle (GQ) isomorphic to the GQ Q(5,F) defined by the points and
lines lying on a nonsingular quadric of Witt index 2 of PG(5,F) which becomes a quadric
of Witt index 3 over the extension field F′ of F.

Distances d(·, ·) in the dual polar space DH(2n − 1,F′) will always be measured in
its collinearity graph. The maximal distance between two points of DH(2n − 1,F′) is
equal to n, in which case the two points are said to be opposite. The dual polar space
DH(2n−1,F′) is an example of a near polygon, meaning that for every point x and every
line L, there exists a unique point on L nearest to x. If x is a point of DH(2n − 1,F′)
and i ∈ N, then Γi(x) denotes the set of all points at distance i from x. If i ∈ N and X
is a nonempty set of points of DH(2n − 1,F′), then Γi(X) denotes the set of points at
distance i from X, i.e. the set of all points y for which min{d(y, x) |x ∈ X} = i.

If x1 and x2 are two points of DH(5,F′) at distance 2 from each other, then the
smallest convex subspace Q(x1, x2) of DH(5,F′) containing x1 and x2 is called a quad.
There exists a bijective correspondence between the quads Q of DH(5,F′) and the points
xQ of H(5,F′): the quad Q consists of all planes of H(5,F′) that contain the point xQ.
The points and lines of DH(5,F′) that are contained in a given quad Q define a point-line

geometry Q̃ isomorphic toDH(3,F′) ∼= Q(5,F). If L1 and L2 are two distinct lines through
the same point, then L1 and L2 are contained in a unique quad, which we will denote by
Q(L1, L2). Any two distinct quads of DH(5,F′) through the same point intersect in a
line. If Q is a quad of DH(5,F′) and x is a point not contained in Q, then x is collinear
with a unique point πQ(x) of Q. If Q1 and Q2 are two disjoint quads of DH(5,F′), then

the map Q1 → Q2;x 7→ πQ2(x) defines an isomorphism between Q̃1 and Q̃2.
A hyperplane of DH(2n − 1,F′) is a set H of points, distinct from the whole point

set, such that each line has either one or all of its points in H. A set Π of hyperplanes of
DH(2n− 1,F′) is called a pencil of hyperplanes if every point is contained in either 1 or
all elements of Π. Every hyperplane of Q(5,F) is either an ovoid, a singular hyperplane
or a Q(4,F)-subquadrangle (see also Section 3.1). Here, an ovoid is a set of points having
a unique point in common with each line, a singular hyperplane consists of all points
collinear with or equal to a given point, and a Q(4,F)-subquadrangle is a subquadrangle
on which the induced geometry is isomorphic to the GQ Q(4,F) defined by the points and
lines lying on a nonsingular quadric of Witt index 2 of PG(4,F). Ovoids in Q(5,F) can

only exist if F is infinite. If Q is a quad of DH(5,F′) and σ is a hyperplane of Q̃ ∼= Q(5,F),
then Q∪ {x ∈ Γ1(Q) |πQ(x) ∈ σ} is a hyperplane of DH(5,F′), called the extension of σ.

A full projective embedding of DH(2n− 1,F′) is an injective mapping ε from its point-
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set Pn to the set of points of a projective space Σ satisfying: (i) 〈ε(Pn)〉Σ = Σ; (ii) ε maps
every line ofDH(2n−1,F′) to a (full) line of Σ. If ε : DH(2n−1,F′)→ Σ is a full projective
embedding of DH(2n− 1,F′) and U is a hyperplane of Σ, then HU := ε−1(ε(Pn)∩U) is a
hyperplane of DH(2n−1,F′). We say that the hyperplane HU arises from the embedding ε.
Since hyperplanes of thick dual polar spaces are maximal proper subspaces ([1, Theorem
7.3], [17, Lemma 6.1]), we must have U = 〈ε(HU)〉Σ, and so there exists a bijective
correspondence between the hyperplanes of Σ and the hyperplanes of DH(2n − 1,F′)
arising from ε. A hyperplane of DH(2n − 1,F′) is called classical if it arises from some
projective embedding. By [3, Proposition 5.1] and [4, Proposition 5.2], the dual polar
space DH(2n − 1,F′) admits a nice full projective embedding in PG(

(
2n
n

)
− 1,F), the

so-called Grassmann embedding of DH(2n− 1,F′).
If L is a hyperbolic line of H(5,F′), then we denote by ΩL the set of all quads Q of

DH(5,F′) for which xQ ∈ L. The set ΩL is a set of mutually disjoint quads satisfying the
following properties:

(H1) every line of DH(5,F′) meeting two distinct quads of ΩL meets every quad of ΩL;

(H2) M =
⋃
Q∈ΩL

(Q ∩M) for every line M of DH(5,F′) meeting all quads of ΩL.

The set ΩL is called a hyperbolic set of quads of DH(5,F′). Every two disjoint quads Q1

and Q2 of DH(5,F′) are contained in a unique hyperbolic set of quads which we denote
by Ω(Q1, Q2).

1.3 The main results

By [10] and [15, Corollary 2, p. 180], we know that all hyperplanes of the finite Hermitian
dual polar space DH(5, q2) are classical, and that they even all arise from the Grassmann
embedding if q ≥ 3. These conclusions are no longer valid in the infinite case, due to
the possibility to construct hyperplanes by means of transfinite recursion. The following
theorem will be useful to show that certain hyperplanes of DH(5,F′) arise from the
Grassmann embedding. We will prove it in Section 4.

Theorem 1.1 Suppose |F| ≥ 3. Let Ω be a hyperbolic set of quads of DH(5,F′) and let
Q be the set of all quads of DH(5,F′) which either belong to Ω or intersect each quad of

Ω in a line. For every Q ∈ Q, let CQ be a set of classical hyperplanes of Q̃ such that the
following hold:

(1) If Q1 and Q2 are two disjoint quads of Q, then πQ2(σ1) ∈ CQ2 for every σ1 ∈ CQ1.

(2) If Q ∈ Q and σ1, σ2 are two distinct elements of CQ, then there exists a unique pencil

Π of classical hyperplanes of Q̃ such that σ1, σ2 ∈ Π.

Suppose H is a hyperplane of DH(5,F′) such that H ∩Q ∈ CQ for every quad Q ∈ Q not
contained in H. Then H arises from the Grassmann embedding of DH(5,F′).
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We will now discuss two applications of Theorem 1.1.

Application 1. Suppose F = Fq with q ≥ 2 a prime power. Let Ω and Q be sets of quads
of DH(5, q2) as in Theorem 1.1. For every quad Q ∈ Q, let CQ denote the set of all hyper-

planes of Q̃. Note that since Q̃ ∼= Q(5, q) does not have ovoids ([14, 1.8.3] or [16, Theorem
5.1]), all its hyperplanes are either singular hyperplanes or Q(4, q)-subquadrangles and
hence classical. The condition (1) of Theorem 1.1 is trivially fulfilled. Condition (2) is
satisfied by Lemma 4.4 of [10]. So, Theorem 1.1 implies that all hyperplanes of DH(5, q2),
q ≥ 3, arise from the Grassmann embedding. Observe also that the condition |F| ≥ 3
in Theorem 1.1 cannot be omitted, since DH(5, 4) has hyperplanes not arising from the
Grassmann embedding, see [9].

The proof of Theorem 1.1 that we will give thus offers an alternative proof for the
fact that all hyperplanes of DH(5, q2), q ≥ 3, arise from the Grassmann embedding. This
result was originally proved in [10], where it was obtained after a lengthy treatment (also
yielding a complete classification of the hyperplanes) that relied on some classification
results of certain sets of points in PG(2, q2) due to Tallini-Scafati [18, 19] and a charac-
terization result for classical unitals independently obtained by Faina & Korchmáros [11]
and Lefèvre-Percsy [13].

Application 2. Suppose |F| ≥ 3. Consider two disjoint quads Q1 and Q2 of DH(5,F′)
and put Ω := Ω(Q1, Q2). Let Q be as in Theorem 1.1 and let σ1 be a given classical

hyperplane of Q̃1. For every quad Q ∈ Ω, define CQ := {πQ(σ1)}, and for every quad Q

meeting Q1 and Q2 in lines, let CQ denote the set of (classical) hyperplanes of Q̃ containing
Q ∩ Q2. Then the condition (1) of Theorem 1.1 is fulfilled. In Lemma 3.5, we will show
that also condition (2) is fulfilled. Theorem 1.1 thus implies that all hyperplanes H of
DH(5,F′) for which Q2 ⊆ H and H ∩Q1 = σ1 arise from the Grassmann embedding.

The result mentioned at the end of Application 2 will be employed in Section 4.2 to prove
the following.

Theorem 1.2 Suppose |F| ≥ 3 and H is a hyperplane of DH(5,F′) containing a quad Q.
Then H either arises from the Grassmann embedding of DH(5,F′) or is the extension of

a non-classical ovoid of Q̃.

Observe that the conclusion of Theorem 1.2 does not hold if |F| = 2. Indeed, the dual
polar space DH(5, 4)1 has (classical) hyperplanes containing quads that do not arise from
the Grassmann embedding, see [9]. A result, similar to the one mentioned in Theorem
1.2, was obtained for symplectic dual polar spaces in [7]. In [7, Section 4.2], it was also
shown that if H is a hyperplane of DW (5,F) arising from the Grassmann embedding
and containing a quad, then there exists a point x that is deep with respect to H, that
means that x⊥ := {x} ∪ Γ1(x) is contained in H. This conclusion is no longer valid for
Hermitian dual polar spaces. In [10], a class of counter examples can be found for each
finite dual polar space DH(5, q2) (the so-called hyperplanes of Type V). These examples

1Recall that the quads of DH(5, 4), which are isomorphic to Q(5, 2), do not have ovoids.
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belong to the infinite family of hyperplanes of Hermitian dual polar spaces discussed in
[6]. The hyperplanes of DH(5,F′) belonging to this infinite family all contain a glued
near hexagon of type Q(5,F)⊗ Q(5,F). For this reason, these hyperplanes of DH(5,F′)
are said to be of glued type. In Section 5, we also prove the following.

Theorem 1.3 Suppose H is a hyperplane of DH(5,F′) arising from the Grassmann em-
bedding and containing a quad. Then either H contains a deep point or H is of glued
type.

If H is a hyperplane of DH(5,F′) arising from the Grassmann embedding containing a
quad and a deep point, then we will also show in Section 5 that H is either a singular
hyperplane (consisting of all points at distance at most 2 from a given point), the extension
of a classical ovoid of a quad, the extension of a Q(4,F)-subquadrangle of a quad or a
certain hyperplane related to a unital of PG(V ′3) defined by a nondegenerate ψ-Hermitian
form of Witt index 1 of V ′3 . We discuss the latter hyperplane in more detail now.

Let x and y be two opposite points of DH(5,F′) corresponding to the respective
planes PG(Wx) and PG(Wy) of H(5,F′). Let U denote a unital of PG(Wx) defined by a
nondegenerate ψ-Hermitian form of Witt index 1 of Wx. For every u ∈ U , there exists a
unique line Lu in PG(Wy) such that 〈u, Lu〉 is a plane contained in H(5,F′). We denote
by L′ the set of all lines of PG(Wy) obtained in this way, and by L the set of lines of
DH(5,F′) through y corresponding to the elements of L′. Put X := x⊥ ∪ (

⋃
L∈L)L. If

ε∗ is the Grassmann embedding of DH(5,F′) in Σ∗ ∼= PG(19,F), then U := 〈ε∗(X)〉Σ∗
is a hyperplane of Σ∗ (see Lemma 3.10 and Proposition 3.13) and HU is a hyperplane of
DH(5,F′) having x as deep point. The lines through y contained in HU are precisely the
lines of L. The quads through x contained in HU are precisely the quads meeting a line
of L, or equivalently, the quads Q for which xQ ∈ U .

2 Some generation problems

If X is a set of points of a point-line geometry S, then the intersection of all subspaces
of S containing X is the smallest subspace of S that contains the set X. This subspace
is denoted by 〈X〉S and is called the subspace of S generated by X. If 〈X〉S coincides
with the whole point set of S, then we say that X generates S or that X is a generating
set of S. If no confusion is possible, we will also write 〈X〉 instead of 〈X〉S . The aim
of this section is to determine generating sets of certain geometries related to Hermitian
varieties. These generating sets will play a crucial role in the proof of Theorem 1.1.

2.1 Generation problems for some geometries related to unitals

We continue with the notation of Section 1. Consider the projective plane PG(V ′3). Recall
that if v̄1 and v̄2 are two linearly independent vectors of V ′3 , then {〈λ1v̄1 +λ2v̄2〉 | (λ1, λ2) ∈
F2 \ {(0, 0)}} is a Baer-F-subline of the line of PG(V ′3) corresponding to 〈v̄1, v̄2〉. In this
section, we will use the notion Baer subline as an abbreviation of Baer-F-subline. Observe
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that any two distinct Baer sublines of a given line of PG(V ′3) intersect in at most two
points. A set L of lines through a given point p of PG(V ′3) is called a Baer pencil with
center p if for some line (and hence all lines) M not containing p, the set

⋃
L∈LM ∩ L is

a Baer subline of M .
Suppose U is a unital (that means a nonempty nonsingular Hermitian curve) of PG(V ′3)

defined by a nondegenerate skew-ψ-Hermitian form h of Witt index 1 of V ′3 . If L is a
hyperbolic line of U , then L denotes the Baer subline L ∩ U of L. If L is a hyperbolic
line of U and p is a point of U not belonging to L, then BP(p, L) denotes the Baer pencil
consisting of all lines that join p with a point of L.

Lemma 2.1 Let L be a line of PG(V ′3) and x1, x2, . . . , xk a collection of k ∈ N mutually
distinct points of L. If F is infinite then L \ {x1, x2, . . . , xk} cannot be covered by a finite
number of Baer sublines. If F ∼= Fq for some prime power q, then the number of Baer

sublines necessary to cover L \ {x1, x2, . . . , xk} is at least q2+1−k
q+1

.

Proof. If F = Fq for some prime power q, then the number of Baer sublines necessary to

cover A := L \ {x1, x2, . . . , xk} is at least |A|
q+1

= q2+1−k
q+1

.

Suppose now that F is infinite and that A := L \ {x1, x2, . . . , xk} is covered by the
elements of a finite set B of Baer sublines. Take two distinct points x and y of A. Then x
and y are contained in exactly |F|+ 1 Baer sublines and hence there exists a Baer subline
B through x and y not belonging to B. Notice that |B ∩ B′| ≤ 2 for every B′ ∈ B. If
A would be covered by the elements of B, then also A′ := B \ {x1, x2, . . . , xk} would be
covered by the elements of B, and so we would have |A′| ≤ 2 · |B|, which is impossible as
A′ is infinite and B is finite. �

The following is an immediate consequence of Lemma 2.1.

Corollary 2.2 Let p be a point of PG(V ′3), let Lp denote the set of all lines through p
and let L1, L2, . . . , Lk be a collection of k ∈ N mutually distinct elements of Lp. If F is
infinite, then Lp \ {L1, L2, . . . , Lk} cannot be covered by a finite number of Baer pencils
with center p. If F ∼= Fq for some prime power q, then the number of Baer pencils with

center p necessary to cover Lp \ {L1, L2, . . . , Lk} is at least q2+1−k
q+1

.

Lemma 2.3 Let p1, p2 and p3 be three points of U not on the same line. Then every
point p ∈ p1p3 \ {p3} is contained in a unique hyperbolic line M distinct from pp3 = p1p3

for which BP(p3,M) = BP(p3, p1p2).

Proof. We can choose an ordered basis (ē1, ē2, ē3) in V ′3 such that p1 = 〈ē1〉, p2 = 〈ē2〉,
p3 = 〈ē3〉 and such that the matrix describing h with respect to (ē1, ē2, ē3) is equal to 0 1 1

−1 0 λ
−1 −λψ 0

 ,
where λ ∈ F′. Since h is nondegenerate, the determinant λψ − λ of this matrix should
be nonzero, implying that λ ∈ F′ \ F. Suppose p = 〈ē1 + l1ē3〉 for some l1 ∈ F′. Then
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l1 ∈ F since p ∈ U . If M is a hyperbolic line through p distinct from pp3 = p1p3 such
that BP(p3,M) = BP(p3, p1p2), then M ∩ p2p3 ∈ U \ {p3}. Now, a general point r of
p2p3 \ {p3} has the form 〈ē2 + l2

λψ
ē3〉 where l2 ∈ F. A general point r′ of p1p2 \ {p2} has

the form 〈ē1 + kē2〉 where k ∈ F. The intersection of the lines p3r
′ and pr is the point

〈ē1 + kē2 + (l1 + kl2
λψ

)ē3〉. It follows that the line M = pr satisfies the required condition
if and only if

h
(
ē1 + kē2 + (l1 +

kl2
λψ

)ē3, ē1 + kē2 + (l1 +
kl2
λψ

)ē3

)
= 0

for all k ∈ F. The latter equation is equivalent with

kl2(λψ − λ)

λψ+1
+ kl1(λ− λψ) = 0.

So, we see that there is only one possibility for l2, namely l2 = l1λ
ψ+1. So, r and M = pr

are uniquely determined. �

The following is an immediate consequence of Lemma 2.3.

Corollary 2.4 Suppose p1 and p2 are two distinct points of U . Then there cannot exist
two hyperbolic lines K and L through p2 such that K,L, p2p1 are mutually distinct and
BP(p1, K) = BP(p1, L).

Lemma 2.5 Let p1, p2 and p3 be three points of U not on the same line, let Ti, i ∈
{1, 2, 3}, denote the unique line through pi tangent to U , and let L∗ denote the unique
Baer pencil with center p3 containing p3p1, p3p2 and T3. Then BP(p3, pp2) ∩ BP(p3, p

′p2)
= {p3p1, p3p2} for any two distinct points p, p′ of A := p1p3 \ {p3}. Moreover, the
set

⋃
p∈A BP(p3, pp2) consists of all lines through p3, except for those contained in L∗ \

{p3p1, p3p2}.

Proof. Clearly, {p3p1, p3p2} is a subset of BP(p3, pp2) ∩ BP(p3, p
′p2). If |BP(p3, pp2) ∩

BP(p3, p
′p2)| ≥ 3, then we would have BP(p3, pp2) = BP(p3, p

′p2), in contradiction with
Corollary 2.4. Hence, BP(p3, pp2) ∩ BP(p3, p

′p2) = {p3p1, p3p2}.
As before, we can choose a basis (ē1, ē2, ē3) in V ′3 such that p1 = 〈ē1〉, p2 = 〈ē2〉,

p3 = 〈ē3〉 and such that the matrix describing h with respect to (ē1, ē2, ē3) is equal to 0 1 1
−1 0 λ
−1 −λψ 0

 ,
where λ ∈ F′ \ F (as h is nondegenerate). The tangent line T3 through the point p3 is
equal to 〈ē3,−λē1 + ē2〉. So, L∗ consists of all lines connecting p3 with a point of the form
〈µ1ē1 + µ2λ

ψē2〉 where (µ1, µ2) ∈ F2 \ {(0, 0)}.
Now, a point of A has the form 〈ē1 + kē3〉 with k ∈ F. The points of U \ {p2} on the

line through 〈ē1 + kē3〉 (k ∈ F) and 〈ē2〉 are of the form 〈ē1 + kē3 + (k′− kk′λψ)ē2〉 where
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k′ ∈ F. Now, k′ − kk′λψ can take all values in F′ except those of the form k′′λψ with
k′′ ∈ F \ {0}. The validity of the lemma is now easily seen. �

Definition. If X  U , then S ′X denotes the point-line geometry with point set U \ X
whose lines are all the hyperbolic lines of U disjoint from X (natural incidence).

Lemma 2.6 Suppose |F| ≥ 3. Let L be a hyperbolic line of U and let p1, p2, p3 be three
points of U \L not on the same line such that p3p1 ∩L and p3p2 ∩L are not contained in
U . Then {p1, p2, p3} is a generating set of the point-line geometry S ′

L
.

Proof. The proof we present here only works if |F| ≥ 9. With the aid of the computer
algebra system GAP [12], we have however verified that the result also holds if F = Fq
with q ∈ {3, 4, 5, 7, 8}. The code we have used to verify this can be found in the appendix
at the end of this paper.

Since p2p3 ∈ BP(p2, p1p3) and p2p3 6∈ BP(p2, L), we have |BP(p2, p1p3)∩BP(p2, L)| ≤ 2.
Let A1 denote the set of all points p of p1p3 for which pp2 ∈ BP(p2, p1p3)∩BP(p2, L). Then
|A1| ≤ 2 and A1 ⊆ A := p1p3 \ {p3}. Let L∗1 denote the unique Baer pencil with center p3

containing p3p1, p3p2 and the unique line through p3 tangent to U . Put L∗2 := BP(p3, L).
For every p ∈ A, put Lp := B(p3, pp2). If p ∈ A \ A1, then all points of pp2 belong to

the subspace 〈p1, p2, p3〉 of S ′
L

generated by {p1, p2, p3}. If p ∈ A \ A1 and r ∈ pp2 such
that p3r 6∈ L∗2, then also all points of p3r belong to 〈p1, p2, p3〉.

By Lemma 2.5, it follows that all points of U \ L are contained in 〈p1, p2, p3〉, except

possibly those contained in a line of L∗1 ∪ L∗2 ∪
(⋃

a∈A1
La
)

.

Now, suppose p is a point of U \ L contained on a line of L∗1 ∪ L∗2 ∪
(⋃

a∈A1
La
)

, but

not on p3p1 ∪ p3p2. Since |A1| ≤ 2 and |F| ≥ 9, the number of (nontangent) lines through

p3 not contained in L∗1 ∪L∗2 ∪
(⋃

a∈A1
La
)

is at least 2 by Corollary 2.2. So, by Corollary

2.4, there exists a hyperbolic line M through p3 not contained in L∗1 ∪ L∗2 ∪
(⋃

a∈A1
La
)

such that BP(p,M) 6= BP(p, L). So, |BP(p,M) ∩ BP(p, L)| ≤ 2 and there exists a point
p′ ∈ M \ {p3} such that the line pp′ does not belong to BP(p, L). Since M = p3p

′ is

not contained in L∗1 ∪ L∗2 ∪
(⋃

a∈A1
La
)

, the Baer pencil BP(p3, p
′p) intersects the set

L∗1 ∪ L∗2 ∪
(⋃

a∈A1
La
)

in at most 8 elements. Since |F|+ 1 ≥ 10, the Baer subline p′p of

p′p contains at least two elements of 〈p1, p2, p3〉. Since p′p ∩ L is not contained in U , the
point p should be contained in 〈p1, p2, p3〉. �

Lemma 2.7 Suppose |F| ≥ 3. Let L be a hyperbolic line of U and let p1, p2, p3 be three
mutually distinct points of U \ L such that p3p1 6= p3p2 and p1p3 ∩ L is not contained in
U . Then (p3p1 ∪ p3p2) \ L generates the point-line geometry S ′

L
.

Proof. Put L1 := BP(p1, p2p3) and L2 := BP(p1, L). Since p1p3 ∈ L1 \ L2, we have
|L1 ∩L2| ≤ 2 and so there exists a K ∈ L1 \L2 distinct from p1p3. Put {p′2} := K ∩ p2p3.
Since p1p3 and p1p

′
2 are disjoint from L, Lemma 2.6 implies that {p1, p

′
2, p3} generates the

point-line geometry S ′
L
. Hence, also (p3p1 ∪ p3p2) \ L generates S ′

L
. �
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Proposition 2.8 Suppose |F| ≥ 3. Let X ⊆ U be empty or a singleton. If p1, p2, p3 are
three points of U \X not on the same line, then {p1, p2, p3} generates S ′X .

Proof. Let p∗ be a point of U \ {p1, p2, p3} such that X = {p∗} if |X| = 1. Since
p1p2 ∩ p1p3 ∩ p2p3 = ∅, we may without loss of generality suppose that p∗ 6∈ p3p1 ∪ p3p2.
Put Li := B(p∗, pip3), i ∈ {1, 2}. By Corollary 2.2 and the fact that |F| 6= 2, there exists
a hyperbolic line L through p∗ not contained in L1 ∪ L2. By Lemma 2.6, it follows that
every point of U \ L is contained in 〈p1, p2, p3〉. Now, every point p of L \X is contained
in a hyperbolic line L′ distinct from L and every point of L′ \ {p} belongs to 〈p1, p2, p3〉,
showing that also p belongs to 〈p1, p2, p3〉. �

Proposition 2.9 Suppose |F| ≥ 3. Let L be a hyperbolic line of U and let p1, p2, p3 be
three points of U \L not on the same line. Then (p3p1 ∪ p3p2) \L generates the point-line
geometry S ′

L
.

Proof. Let p′i, i ∈ {1, 2}, denote the unique point in the intersection of the lines p3pi and
L. If at least one of p′1, p

′
2 does not belong to U , then the claim follows from Lemma 2.7.

So, we will suppose that p′1 and p′2 belong to U . Corollary 2.4 implies that BP(p1, p2p3) 6=
BP(p1, L). Denote by K an arbitrary line of BP(p1, p2p3) \BP(p1, L). Then K belongs to
the subspace of S ′

L
generated by (p3p1∪p3p2)\L. As (K ∪p1p3)\L generates S ′

L
(Lemma

2.7), the set (p3p1 ∪ p3p2) \ L should also generate S ′
L
. �

2.2 Generation problems for some geometries related to H(3,F′)
We continue with the notation introduced in Section 1. We put Σ = PG(V4) and Σ′ =
PG(V ′4) and we denote by H the Hermitian variety H(3,F′) of Σ′. Notice that Σ ⊆ H.
The Hermitian polarity of Σ′ associated with H is denoted by ζ. If α is a subspace of Σ′,
then we define α := α ∩H. If p is a point and L is a hyperbolic line of H not containing
p, then similarly as before we denote by BP(p, L) the Baer pencil with center p obtained
by joining p with all points of L = L ∩H.

If p = 〈x̄〉 is a point of Σ′, then we define pψ := 〈x̄ψ〉. We have p = pψ if and only if
p ∈ Σ. If p 6= pψ, then ppψ is the unique line through p intersecting Σ in a Baer subline.
For every set X of points of PG(V ′4), we define Xψ := {pψ | p ∈ X}. The map p 7→ pψ

defines an isomorphism of Σ′. If α is a subspace of Σ′, then α ∩ αψ is a subspace of Σ′

and α ∩ αψ ∩ Σ is a subspace of Σ. Moreover, dimΣ′(α ∩ αψ) = dimΣ(α ∩ αψ ∩ Σ).
If α is a plane of Σ′, then α is either a tangent plane with tangent point αζ , or a

nontangent plane intersecting H in a unital of α.

Lemma 2.10 If p ∈ Σ ⊆ H and α = pζ, then α = αψ.

Proof. Put p = 〈x̄〉 for some x̄ ∈ V4 \ {ō}. Since the set U = {ȳ ∈ V4 | f2(x̄, ȳ) = 0} is
a hyperplane of V4, it generates a hyperplane U ′ of V ′4 which corresponds to a plane α of
Σ′ for which α = αψ. Since h2(ȳ, x̄) = f ′2(ȳ, x̄) = 0 for all ȳ ∈ U ′, we have that α = pζ . �

Lemma 2.11 If p ∈ H \ Σ, then ppψ is contained in H and hence the tangent plane pζ

contains ppψ.
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Proof. Put p = 〈x̄〉, where x̄ ∈ V ′4 \ {ō}. Since h2(x̄, x̄) = 0, h2(x̄, x̄ψ) = f ′2(x̄, x̄) = 0 and
h2(x̄ψ, x̄ψ) = f ′2(x̄ψ, x̄) = −f ′2(x̄, x̄ψ) = −h2(x̄, x̄) = 0, we have that h2(µ1x̄+ µ2x̄

ψ, µ1x̄+
µ2x̄

ψ) = 0 for all µ1, µ2 ∈ F′. Hence, the line ppψ is contained in H. �

Lemma 2.12 One of the following cases occurs for a plane α of Σ′:

(1) α = αψ and α is a tangent plane whose tangent point belongs to Σ;

(2) α∩αψ is a hyperbolic line Lα, α is a nontangent plane and α∩Σ is a Baer subline
of Lα equal to Lα ∩H;

(3) α ∩ αψ is a line Lα which is contained in H, α is a tangent plane whose tangent
point p belongs to Lα \ Σ, Lα = ppψ and α ∩ Σ is a Baer subline of Lα.

Proof. Either α = αψ or α ∩ αψ is a line Lα.

(1) Suppose first that α = αψ. Then α is generated by three vectors v̄1, v̄2 and v̄3 of V4.
Let U denote the 3-space of V4 generated by v̄1, v̄2 and v̄3. Then there exists a nonzero
vector v̄∗ ∈ U (uniquely determined, up to a nonzero factor) such that f2(v̄∗, ū) = 0,
∀ū ∈ U . Since h2(ū, v̄∗) = f2(ū, v̄∗) = 0, ∀ū ∈ U , we have that α must be a tangent plane
whose tangent point 〈v̄∗〉 belongs to Σ.

(2) Suppose that α ∩ αψ is a line Lα. Then Lα is generated by two points of V4 and
hence Lα ∩ Σ is a Baer subline of Lα. Since every point of α ∩ Σ is also contained in
αψ, we have that α ∩ Σ = Lα ∩ Σ. Notice also that α ∩ Σ = Lα ∩ Σ ⊆ Lα ∩ H. If
α is a nontangent plane, then Lα cannot be contained in H, and so we must then have
that α ∩ Σ = Lα ∩ Σ = Lα ∩ H. Suppose now that α is a tangent plane with tangent
point p = αζ . By Lemma 2.10, p 6∈ Σ. Lemma 2.11 then implies that ppψ ⊆ α. Hence,
ppψ = (ppψ)ψ ⊆ αψ and ppψ ⊆ α ∩ αψ = Lα, i.e. Lα = ppψ. By Lemma 2.11, Lα = ppζ is
contained in H. �

Definition. If X  H, then we denote by SX the point-line geometry whose points are
the elements of H \ X and whose lines are the hyperbolic lines of H disjoint from X
(natural incidence). The geometry S∅ is called the geometry of the hyperbolic lines of H.

Proposition 2.13 Suppose |F| ≥ 3. Then the point-line geometry S∅ can be generated
by four points.

Let α be a nontangent plane of Σ′, and put U := α = α ∩ H. Let p1, p2 and p3 be three
distinct points of U not contained in the same line. Then 〈p1, p2, p3〉 consists of all points
of U by Proposition 2.8. Now, let M denote a hyperbolic line through p3 not contained
in α, and let p4 be any point of M \ {p3}. We show that 〈p1, p2, p3, p4〉 = H. Note that
M ⊆ 〈p1, p2, p3, p4〉.

There are |F|+ 1 tangent planes through M , namely the |F|+ 1 planes 〈M,x〉, where
x ∈ M ζ . Denote these |F| + 1 tangent planes by αi, i ∈ I, for some index set I of size
|F| + 1. We denote by α∗ the unique plane through M intersecting α in a line that has
only the point p3 in common with U . Then α∗ 6∈ {αi | i ∈ I}. If β is a (nontangent) plane
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through M distinct from α∗ and all αi’s, then 〈M ∪ (β ∩ α)〉 = β by Proposition 2.8. So,

every point of H not contained in
(⋃

i∈I αi

)
∪ α∗ belongs to 〈p1, p2, p3, p4〉.

Suppose x is a point of
(⋃

i∈I αi

)
∪α∗ not contained in M ∪M ζ . Then there exists a

point x′ ∈M such that xx′ is a hyperbolic line. Let β be a nontangent plane through xx′

that is distinct from α∗ if x ∈ α∗. Then M is not contained in β and {β ∩ αi | i ∈ I} is a
Baer pencil of β with center x′. There exist two hyperbolic lines M1 and M2 through x′

contained in β not belonging to this Baer pencil and also distinct from the line β∩α∗. As
M1∪M2 is contained in 〈p1, p2, p3, p4〉, we must have that β ⊆ 〈p1, p2, p3, p4〉 by Proposition
2.8. In particular, we have x ∈ 〈p1, p2, p3, p4〉.

Now, let x be a point of M ζ and consider a hyperbolic line M ′ through x distinct
from M ζ . As M ′ \ {x} is contained in 〈p1, p2, p3, p4〉, we must have that x itself is also
contained in 〈p1, p2, p3, p4〉. We conclude that every point of H belongs to 〈p1, p2, p3, p4〉.
�

We wish to notice that Proposition 2.13 is not new. This result was already proved (in a
different way) in [8, Lemma 3.3]. However, the arguments given above will be recycled in
the proofs of the following two propositions.

Proposition 2.14 Suppose |F| ≥ 3. If L is a totally isotropic line of H, then SL can be
generated by four points.

Proof. Let α be a nontangent plane of Σ′. Then α has precisely one point in common
with L. Put U := α. Let p1, p2 and p3 be three distinct points of U \ L not contained on
the same line. Then 〈p1, p2, p3〉 consists of all points of U \ L by Proposition 2.8. Now,
let M denote a hyperbolic line through p3 not contained in α ∪ 〈p3, L〉 and let p4 be any
point of M \ {p3}. We show that 〈p1, p2, p3, p4〉 = H. Note that M ⊆ 〈p1, p2, p3, p4〉.

There are |F|+ 1 tangent planes through M , namely the |F|+ 1 planes 〈M,x〉, where
x ∈ M ζ . We denote these |F| + 1 tangent planes by αi, i ∈ I, for some index set I of
size |F| + 1. We denote by α∗ the unique plane through M intersecting α in a line that
has only the point p3 in common with U . Then α∗ 6∈ {αi | i ∈ I}. If β is a (nontangent)
plane through M distinct from α∗ and all αi’s, then β intersects L in precisely one point
and hence 〈(M ∪ (β ∩ α)) \ L〉 = β \ L by Proposition 2.8. So, every point of H \ L not

contained in
(⋃

i∈I αi

)
∪ α∗ belongs to 〈p1, p2, p3, p4〉.

Suppose x is a point of
(⋃

i∈I αi

)
∪α∗, not contained in M∪M ζ∪L. Then there exists

a point x′ ∈ M such that xx′ is a hyperbolic line. Let β be a nontangent plane through
xx′ that is distinct from α∗ if x ∈ α∗. Then M is not contained in β and {β ∩ αi | i ∈ I}
is a Baer pencil of β with center x′. There exist two hyperbolic lines M1 and M2 through
x′ contained in β not belonging to this Baer pencil and also distinct from the line β ∩α∗.
As (M1 ∪M2) \ L is contained in 〈p1, p2, p3, p4〉, we must have β \ L ⊆ 〈p1, p2, p3, p4〉 by
Proposition 2.8. In particular, we have x ∈ 〈p1, p2, p3, p4〉.

Finally, let x be a point of M ζ \L and consider a hyperbolic line M ′ through x distinct
from M ζ and not meeting L. As M ′ \ {x} is contained in 〈p1, p2, p3, p4〉, we must have

12



that x itself is also contained in 〈p1, p2, p3, p4〉. We conclude that every point of H \ L
belongs to 〈p1, p2, p3, p4〉. �

Proposition 2.15 Suppose |F| ≥ 3. Then the point-line geometry SΣ can be generated
by four points.

Proof. Let α be a nontangent plane of Σ′. By Lemma 2.12, Lα = α ∩ αψ is a line and
Lα ∩ H is a Baer subline of Lα equal to α ∩ Σ. Put U := α = α ∩ H. Let p1, p2 and p3

be three points of U \ Lα not contained on the same line such that p3p1 and p3p2 do not
belong to BP(p3, Lα). Then 〈p1, p2, p3〉 consists of all points of U \ Lα by Lemma 2.6.

As p3 6∈ Σ, we have pψ3 6= p3. The line p3p
ψ
3 is contained in H by Lemma 2.11. So,

the plane pζ3 contains p3p
ψ
3 and intersects α in a line L∗. Let L∗ denote the set of lines

through p3 contained in H. We have p3p
ψ
3 ∈ L∗ and L∗ 6∈ L∗.

Let α′ be a nontangent plane through p3 distinct from α. Then α′ intersects Σ in a
Baer subline of Lα′ = α′ ∩ (α′)ψ such that p3 6∈ Lα′ and hence there exists a hyperbolic
line M ⊆ α′ through p3 disjoint from Σ and distinct from α ∩ α′. Let p4 be a point
of M distinct from p3. We will show the subspace 〈p1, p2, p3, p4〉 of SΣ generated by
{p1, p2, p3, p4} coincides with the whole point set H \ Σ of SΣ.

We first show that every point of H \ Σ that is not contained in pζ3 belongs to
〈p1, p2, p3, p4〉, or equivalently, that K \ Σ is contained in 〈p1, p2, p3, p4〉 for every hy-
perbolic line K through p3. This is certainly true if K = M since the hyperbolic line
M = p3p4 is disjoint from Σ. Observe also that if K is a hyperbolic line through p3, then
the tangent planes through K are precisely the planes 〈K,L〉 where L ∈ L∗.

Suppose K is a hyperbolic line through p3 distinct from M such that the plane β =
〈K,M〉 intersects pζ3 in a line that is not contained in L∗ ∪ {L∗}. Since β contains no
line of L∗, it must be a nontangent plane. Since L∗ is not contained in β, β ∩ α must be
a hyperbolic line. So, M and β ∩ α are two distinct hyperbolic lines through p3. Since
β ∩ α \ Σ and M are contained in 〈p1, p2, p3, p4〉, Proposition 2.9 implies that also β \ Σ
is contained in 〈p1, p2, p3, p4〉. In particular, K \ Σ is contained in 〈p1, p2, p3, p4〉.

Suppose K is a hyperbolic line through p3 distinct from M such that the plane β =
〈K,M〉 intersects pζ3 in a line that is contained in L∗ ∪ {L∗}. Let β1 be a (nontangent)
plane through M that intersects pζ3 in a line K ′ that does not belong to L∗ ∪ {L∗}. Then
β1 does not contain K. By the previous paragraph, we know that β1 \ Σ is contained
in 〈p1, p2, p3, p4〉. Let β2 be a plane through K that intersects pζ3 in a line that does not
belong to L∗ ∪ {L∗, K ′} and which does not contain the line β1 ∩ α. Since β2 contains
no line of L∗, it is a nontangent plane. Since β2 does not contain the line L∗, the line
β2 ∩ α is a hyperbolic line through p3. Since K ′ is the unique line through p3 contained
in β1 that is tangent to H, the fact that K ′ is not contained in β2 implies that β1 ∩ β2 is
a hyperbolic line through p3. If the hyperbolic lines β1 ∩ β2 and α ∩ β2 would coincide,
then the line β1 ∩α would be contained in β2, which is impossible. So, β1 ∩ β2 and β2 ∩α
are two distinct hyperbolic lines through p3. Since β1 \ Σ is contained in 〈p1, p2, p3, p4〉,
every point of β1 ∩ β2 \Σ belongs to 〈p1, p2, p3, p4〉. Since also every point of β2 ∩ α \Σ is
contained in 〈p1, p2, p3, p4〉, we have that every point of β2\Σ is contained in 〈p1, p2, p3, p4〉
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by Proposition 2.9. In particular, every point of K \ Σ belongs to 〈p1, p2, p3, p4〉. We
conclude that every point of H \ Σ that is not contained in pζ3 belongs to 〈p1, p2, p3, p4〉.

Now, let x be an arbitrary point of pζ3 \ p3p
ψ
3 , and let x′ be an arbitrary point of

p3p
ψ
3 ∩ Σ. Then x′ 6= p3 and xx′ is a hyperbolic line. We denote by γ a nontangent plane

through xx′. Since Lpζ3
= p3p

ψ
3 , we have x 6∈ Σ and so the line Lγ is distinct from xx′.

Hence, Lγ and xx′ are two distinct hyperbolic lines of γ through the point x′. Now, let p′3
be an arbitrary point of γ \ (Lγ∪xx′), and let M ′

1,M
′
2 be two distinct hyperbolic lines of γ

through p′3, not contained in BP(p′3, Lγ). For every i ∈ {1, 2}, let p′i be a point of M ′
i \{p′3}

not contained in xx′. By the above, we know that p′1, p′2 and p′3 belong to 〈p1, p2, p3, p4〉.
Lemma 2.6 now implies that every point of γ \ Lγ belongs to 〈p′1, p′2, p′3〉 and hence also

to 〈p1, p2, p3, p4〉. We conclude that every point of H \ Σ that is not contained in p3p
ψ
3

belongs to 〈p1, p2, p3, p4〉.
Now, let x be an arbitrary point of p3p

ψ
3 \Σ. Let α′ be a nontangent plane through x and

let M be a hyperbolic line of α′ through x not contained in BP(x, Lα′). Since Σ∩α′ = Lα′ ,
M ∩ Σ = ∅. By the above, every point of M \ {x} is contained in 〈p1, p2, p3, p4〉. Hence,
also the point x belongs to 〈p1, p2, p3, p4〉. We conclude that every point of H\Σ belongs
to 〈p1, p2, p3, p4〉. �

3 Some useful results

In this section, we prove a number of results that will be useful during the proofs of the
main theorems. These results regard hyperplanes of general thick dual polar spaces of
rank 3, some geometries associated with hyperplanes of Q(5,F), pencils of hyperplanes,
regular spreads of Q(5,F) and the Grassmann embedding of DH(5,F′).

3.1 A few results regarding hyperplanes of general thick dual
polar spaces of rank 3

In this subsection, we discuss some results regarding hyperplanes of DH(5,F′) that will
be useful later when we prove the main results of this paper. The properties of DH(5,F′)
that will be relevant during the proofs of these results also hold for general thick dual
polar spaces of rank 3. So, we see no reason why we should restrict our discussion here
only to the dual polar space DH(5,F′). Before we can state (and prove) the results,
we need to give some extra definitions and properties regarding general thick dual polar
spaces of rank 3.

Suppose ∆ is a thick dual polar space of rank 3. If x is a point of ∆, then the set Hx

of points at distance at most 2 from x is a hyperplane, called the singular hyperplane with
deepest point x. If x is a point of ∆, and O is a set of points at distance 3 from x such
that every line at distance 2 from x has a unique point in common with O, then the set
x⊥ ∪O is a hyperplane of ∆, called a semi-singular hyperplane with deep point x.

If H is a hyperplane of ∆ and Q is a quad, then either Q ⊆ H or Q∩H is a hyperplane
of Q̃. If Q ⊆ H, then Q is called a deep quad. If Q ∩H = x⊥ ∩Q for some point x ∈ Q,

14



then Q is called singular (with respect to H) and x is called the deep point of Q. The
quad Q is called ovoidal (respectively, subquadrangular) with respect to H if Q ∩H is an

ovoid (respectively, a subquadrangle) of Q̃. Since every hyperplane of a thick generalized
quadrangle is either a singular hyperplane, an ovoid or a subquadrangle ([14, 2.3.1]), every
quad is either deep, singular, ovoidal or subquadrangular with respect to H. If H is a
hyperplane of DH(5,F′) and Q is a quad that is subquadrangular with respect to H,

then the subquadrangle Q̃ ∩H of Q̃ is isomorphic to Q(4,F). Indeed, the intersection
Q ∩H contains two disjoint lines and hence also the grid G generated by them. Since G
is no hyperplane of Q̃, there exists a point x ∈ Q ∩H not contained in G. There exists a
Q(4,K)-subquadrangle σ of Q̃ containing G and x. Since G is a maximal subspace of σ,

the hyperplane Q∩H of Q̃ contains σ. Since σ itself is also a maximal subspace of Q̃, we
necessarily have that Q ∩H coincides with σ.

The following proposition was proved in [7, Lemma 4.1] for the symplectic dual polar
space DW (5,F), but the proof given in [7] automatically extends to arbitrary thick dual
polar spaces of rank 3.

Proposition 3.1 ([7]) Let ∆ be a thick dual polar space of rank 3, Q a quad of ∆ and H
a hyperplane containing Q. If every quad disjoint from Q is deep or ovoidal with respect
to H, then H is the extension of an ovoid of Q̃.

Proposition 3.2 Suppose ∆ is a thick dual polar space of rank 3 and let H be a hyper-
plane of ∆ having a deep point x∗. Let D∗ denote the set of deep quads through x∗.

(1) If Γ3(x∗) ∩H = ∅, then H is the singular hyperplane with deepest point x∗.

(2) If D∗ = ∅, then H is a semi-singular hyperplane of ∆ with deep point x∗.

(3) Suppose there exists a deep quad Q∗ through x∗ and a set L∗ of lines through x∗

contained in Q∗ such that the deep quads through x∗ distinct from Q∗ are precisely
the quads distinct from Q∗ containing a (necessarily unique) line of L∗. Then H is

the extension of a hyperplane of Q̃∗.

Proof. Note that since (x∗)⊥ ⊆ H, every quad through x∗ is either deep or singular with
respect to H.

(1) The hyperplane Hx∗ with deepest point x∗ contains H and hence equals H since
hyperplanes of thick dual polar spaces are maximal proper subspaces.

(2) Since there are no deep quads through x∗, we have Γ2(x∗)∩H = ∅. So, H = (x∗)⊥∪O,
where O = Γ3(x∗) ∩ H. If L is a line at distance 2 from x∗, then L ∩ Γ2(x∗) ∩ H = ∅
implies that L ∩ H is a singleton contained in O. So, every line at distance 2 from x∗

meets O in a singleton, showing that H = (x∗)⊥ ∪O is a semi-singular hyperplane.

(3) We first show that if x is a point of Q∗, then x⊥∩H is either x⊥ or x⊥∩Q∗. Obviously,
this is true if x = x∗. By considering all quads through xx∗, which are either deep or
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singular with deep point x∗, we see that the claim is also valid if x ∈ Γ1(x∗)∩Q∗. In fact,
if xx∗ ∈ L∗, then x⊥ ∩H = x⊥. If xx∗ 6∈ L∗, then x⊥ ∩H = x⊥ ∩Q∗.

Suppose now that x ∈ Γ2(x∗). Suppose also that x⊥ ∩ H contains a point u that is
not contained in Q∗. Then the line xu is contained in H. Let Q be an arbitrary quad
through xu, and let v denote the unique point on the line Q ∩Q∗ at distance 1 from x∗.
Since v⊥ ∩H is either v⊥ ∩Q∗ or v⊥, we have that v⊥ ∩H ∩Q is either Q∩Q∗ or v⊥ ∩Q.
So, Q is singular or deep. Since xu and Q∩Q∗ are two distinct lines through x contained
in H, we have that x⊥ ∩ Q ⊆ H. Since Q was an arbitrary quad through xu, we must
have that x⊥ ⊆ H.

Let σ denote the set of all points x of Q∗ for which x⊥ ⊆ H. Then H = Q∗ ∪ {x ∈
Γ1(Q∗) |πQ∗(x) ∈ σ}. If Q is a quad disjoint from Q∗, then H∩Q = πQ(σ) is a hyperplane

of Q̃ and hence σ must be a hyperplane of Q̃∗, showing that H is the extension of the
hyperplane σ of Q̃∗. �

Since every hyperplane of a thick generalized quadrangle is either a singular hyperplane,
an ovoid or a subquadrangle, Proposition 3.2 implies the following.

Corollary 3.3 Suppose ∆ is a thick dual polar space of rank 3 and let H be a hyperplane
of ∆ having a deep point x∗. Suppose also there exists a deep quad Q∗ through x∗ and a
set L∗ of lines through x∗ contained in Q∗ such that the deep quads through x∗ distinct
from Q∗ are precisely the quads distinct from Q∗ containing a (necessarily unique) line of
L∗. Then precisely one of the following cases occurs:

(1) L∗ = ∅. Then H is the extension of an ovoid O of Q̃∗. Moreover, x∗ ∈ O.

(2) L∗ is a singleton {L}. Then H is a singular hyperplane of ∆ whose deepest point
belongs to L \ {x∗}.

(3) Suppose |L∗| ≥ 2 and L∗ 6= LQ∗, where LQ∗ denotes the set of lines through x∗

contained in Q∗. Then there exists a subquadrangle σ of Q̃∗ containing x∗ such that:

• L∗ consists of all lines through x∗ contained in σ;

• σ is a hyperplane of Q̃∗ and H is the extension of σ.

(4) Suppose L∗ = LQ∗. Then H is the singular hyperplane with deepest point x∗.

3.2 Hyperplanes of DH(3,F′) ∼= Q(5,F) and associated geometries

Let Q be a generalized quadrangle isomorphic to the generalized quadrangle DH(3,F′) ∼=
Q(5,F) defined in Section 1.

Suppose L1 and L2 are two disjoint lines of Q. Then L1 and L2 are contained in
a unique full subgrid GL1,L2 . We denote by {L1, L2}⊥ the set of all lines meeting L1

and L2, and by {L1, L2}⊥⊥ the set of all lines meeting every line of {L1, L2}⊥. Then
{L1, L2}⊥ ∪ {L1, L2}⊥⊥ is the line set of GL1,L2 . If X is a set of points of Q, distinct from
the whole point set, then AX denotes the following point-line geometry:
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• the points of AX are the lines of Q not contained in X;

• the lines of AX are are the sets {L1, L2}⊥⊥, where L1 and L2 are two disjoint lines
such that no line of {L1, L2}⊥⊥ is contained in X;

• incidence is containment.

The geometry A∅ is isomorphic to the geometry of the hyperbolic lines of H(3,F′), that is,
the geometry whose points are the points of H(3,F′) and whose lines are the hyperbolic
lines of H(3,F′) (natural incidence).

We consider the three possible types of hyperplanes of Q.
• Suppose σ is an ovoid of Q. Then every line of Q is a point of Aσ and every set

of the form {L1, L2}⊥⊥, with L1 and L2 two disjoint lines of Q, is a line of Aσ. The
point-line geometry Aσ is isomorphic to the geometry of the hyperbolic lines of H(3,F′).
• Suppose σ is a singular hyperplane of Q. There exists up to isomorphism a unique

such hyperplane. If x denotes the deep point of σ, then the points of Aσ are those lines
of Q not containing x and the lines of Aσ are those sets of the form {L1, L2}⊥⊥, where L1

and L2 are two disjoint lines of Q such that x is in no line of {L1, L2}⊥⊥. The geometry
Aσ is isomorphic to the geometry considered in Proposition 2.14.
• Suppose σ is a Q(4,F)-subquadrangle of Q ∼= Q(5,F). Up to isomorphism, there

exists a unique such hyperplane. Since Q(4,F) ∼= DW (3,F), every Q(4,F)-subquadrangle
defines an isometric full embedding of DW (3,F) into DH(3,F′). These embeddings have
been studied in [5]. From [5], it follows that the geometryAσ is isomorphic to the geometry
considered in Proposition 2.15.

By Propositions 2.13, 2.14 and 2.15, we thus have:

Proposition 3.4 Suppose |F| ≥ 3 and let σ be a hyperplane of DH(3,F′) ∼= Q(5,F).
Then the point-line geometry Aσ can be generated by a set of four points.

3.3 Pencils of hyperplanes

Lemma 3.5 Suppose σ1 and σ2 are two distinct hyperplanes of Q(5,F) containing a line
L. Then through every point x not contained in σ1 ∪ σ2, there exists a unique hyperplane
σx such that σ1 ∩ σ2 = σ1 ∩ σx = σ2 ∩ σx. As a consequence, σ1 and σ2 are contained in
a unique pencil Π of hyperplanes of Q(5,F). Either 0, 1 or all elements of Π are singular
hyperplanes. If none of the elements of Π is a singular hyperplane, then σ1 ∩ σ2 is a full
subgrid.

Proof. Since σi, i ∈ {1, 2}, contains L, it is either a singular hyperplane or a Q(4,F)-
subquadrangle. If σ is a hyperplane of Q(5,F) satisfying σ1 ∩ σ2 = σ1 ∩ σ = σ2 ∩ σ,
then σ contains L and hence σ is also a singular hyperplane or a Q(4,F)-subquadrangle.
Precisely one of the following three cases occurs.

(1) Suppose σ1 and σ2 are singular hyperplanes. Then the deep points of σ1 and σ2

lie on L and σ1 ∩ σ2 = L. Any hyperplane σ satisfying L = σ1 ∩ σ2 = σ1 ∩ σ = σ2 ∩ σ
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necessarily is a singular hyperplane. So, σx must be the singular hyperplane whose deep
point is the unique point of L collinear with x. In this case, all hyperplanes of Π are
singular hyperplanes.

(2) Suppose at least one of σ1, σ2 is aQ(4,F)-subquadrangle and σ1∩σ2 is a full subgrid.
Any hyperplane σ satisfying σ1 ∩ σ2 = σ1 ∩ σ = σ2 ∩ σ is a Q(4,F)-subquadrangle. So, σx
must be the unique Q(4,F)-subquadrangle containing the point x and the grid σ1 ∩ σ2.
In this case, all elements of Π are Q(4,F)-subquadrangles.

(3) Suppose at least one of σ1, σ2 is a Q(4,F)-subquadrangle, say σ1, and σ1 ∩ σ2 =
σ1 ∩ u⊥ for some point u ∈ σ1. If x ∼ u, then σx must be the singular hyperplane with
deep point u. If x 6∼ u, then σx must be the unique Q(4,F)-subquadrangle containing
u⊥ ∩ σ1 and x. In this case, precisely one element of Π is a singular hyperplane. �

Let Ω be a hyperbolic set of quads of ∆ = DH(5,F′). Let PΩ denote the set of all quads of
∆ that meet each quad of Ω (necessarily in a line). If R1 and R2 are two disjoint elements
of PΩ, then Ω(R1, R2) ⊆ PΩ. Put LΩ := {Ω(R1, R2) |R1, R2 ∈ PΩ and R1 ∩ R2 = ∅}
and let SΩ be the point-line geometry with point set PΩ, line set LΩ and containment as
incidence relation.

Lemma 3.6 Suppose Ω is a hyperbolic set of quads of ∆ = DH(5,F′). Then:

(1) SΩ is isomorphic to the geometry of the hyperbolic lines of H(3,F′).

(2)
⋃
Q∈PΩ

Q is the whole point set of ∆. Moreover, every point of ∆ not contained in⋃
Q∈ΩQ is contained in a unique element of PΩ.

(3) If Q1 and Q2 are two distinct elements of Ω and if H is a hyperplane of ∆ such that

H ∩Q1 and πQ1(H ∩Q2) are distinct hyperplanes of Q̃1, then {πQ1(H ∩Q) |Q ∈ Ω}
is a pencil of hyperplanes of Q̃1.

Proof. Consider the quad Q1 of Ω. Then Q̃1
∼= Q(5,F) ∼= DH(3,F′). If X  Q1, then

let AX denote the point-line geometry as defined in Section 3.2. If x ∈
⋃
Q∈Ω Q, then Lx

denotes the unique line through x meeting all quads of Ω.

(1) The map from PΩ to the set of lines of Q̃1 defined by R 7→ R ∩ Q1 defines an
isomorphism between the geometries SΩ and A∅. Hence, SΩ is isomorphic to the geometry
of the hyperbolic lines of H(3,F′).

(2) If x ∈
⋃
Q∈Ω Q, then every quad through Lx contains x and belongs to PΩ. If x 6∈⋃

Q∈Ω Q, then the lines xπQ1(x) and LπQ1
(x) are distinct and the quad Q(xπQ1(x), LπQ1

(x))
is the unique quad of PΩ containing x.

(3) This follows by considering all lines meeting each quad of Ω. Each such line has either
one or all its points in H. �
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3.4 Regular spreads of Q(5,F)

The set of all points 〈x̄〉 ∈ PG(V ′4) for which h2(x̄, x̄) = 0 is a nonsingular Hermitian
variety H(3,F′) of Witt index 2 and hence a GQ. The point-line dual of this GQ is
isomorphic to Q(5,F).

Now, suppose that θ is an isomorphism between Q(5,F) and the point-line dual of
H(3,F′). Any two disjoint lines L1 and L2 of Q(5,F) are contained in a unique full
subgrid GL1,L2 and we denote by LL1,L2 the set of lines of GL1,L2 parallel to L1 and L2.
Then

LθL1,L2
= Lθ1L

θ
2 ∩H(3,F′). (1)

A spread of Q(5,F) is a set of lines partitioning its point set. If S is a spread of Q(5,F),
then Sθ is an ovoid of H(3,F′). If Sθ is a classical ovoid (i.e., is obtained by intersecting
H(3,F′) with a nontangent plane), then S is called a classical spread of Q(5,F). A spread
S of Q(5,F) is called regular if LL1,L2 ⊆ S for any two distinct lines L1 and L2 of S. By
(1), every classical spread of Q(5,F) is regular. Also the converse is true.

Proposition 3.7 Every regular spread of Q(5,F) is classical.

Proof. Suppose S is a regular spread of Q(5,F). Let L1 and L2 be two distinct lines of S,
put G := GL1,L2 and let σ be an arbitrary Q(4,F)-subquadrangle containing G. For every
point x of σ, let Lx denote the unique line of S containing x. Then S = LL1,L2 ∪{Lx |x ∈
σ \ G}. Let x∗ be a fixed point of σ \ G and put L3 := Lx∗ . For every i ∈ {1, 2, 3}, put
xi := Lθi . As L3 6∈ LL1,L2 , we have x3 6∈ x1x2 and hence α = 〈x1, x2, x3〉 is a plane.

We show that Sθ ⊆ α. As LθL1,L2
= x1x2∩H(3,F′) ⊆ α, it suffices to prove that Lθx ∈ α

for every point x of σ \ G. Observe that x3 = Lθ3 = Lθx∗ ∈ α. So, by the connectedness
of σ \ G it suffices to show that if y1, y2 are two distinct collinear points of σ \ G, then
Lθy1
∈ α implies that Lθy2

∈ α. Let K denote the unique line of σ through y1, y2 and let L4

denote the unique line of LL1,L2 containing the unique point of K belonging to G. Then
Ly2 ∈ LLy1 ,L4 as S is regular. Since Lθy1

and Lθ4 belong to α and Lθy2
∈ Lθy1

Lθ4, we have

that also Lθy2
belongs to α.

So, we have that Sθ ⊆ α. Since S is a set of mutually disjoint lines, Sθ is a set of
points that are mutually noncollinear on H(3,F′). Since Sθ contains the Baer-F-subline
LθL1,L2

and the extra point Lθ3, the plane α should be a nontangent plane. But then

S ′ = (α ∩ H(3,F′))θ−1
is a set of mutually disjoint lines of Q(5,F′). Since S ⊆ S ′, we

should have S = S ′, i.e. Sθ = α ∩H(3,F′). This implies that S is a classical spread. �

3.5 The Grassmann embedding of DH(5,F′)
Let ε∗ denote the Grassmann embedding of ∆ = DH(5,F′) into Σ∗ ∼= PG(19,F). If Q

is a quad of ∆, then the embedding of Q̃ ∼= Q(5,F) induced by ε∗ is isomorphic to the

Grassmann embedding of Q̃ ∼= Q(5,F) in PG(5,F). So, 〈ε∗(Q)〉 is 5-dimensional. If Q1

and Q2 are two disjoint quads of ∆, then 〈ε∗(Q1)〉 and 〈ε∗(Q2)〉 are two disjoint subspaces
of Σ∗.
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For every hyperbolic set Ω of quads of ∆, let SΩ denote the point-line geometry with
point set PΩ and line set LΩ as defined in Section 3.3. If |F| ≥ 3, then by Proposition
2.13 and Lemma 3.6(1), SΩ can be generated by four points.

Lemma 3.8 Suppose |F| ≥ 3 and Q1, Q2 are two disjoint quads of DH(5,F′). Let
x1, x2, . . . , x6 be six points of Q1 such that 〈ε∗(x1), ε∗(x2), . . . , ε∗(x6)〉 = 〈ε∗(Q1)〉 and
y1, y2, . . . , y6 be six points of Q2 such that 〈ε∗(y1), ε∗(y2), . . . , ε∗(y6)〉 = 〈ε∗(Q2)〉. Put Ω :=
Ω(Q1, Q2) and let R1, R2, R3, R4 be four quads of PΩ forming a generating set of points
of the geometry SΩ. For every i ∈ {1, 2, 3, 4}, let zi and z′i be two points of Ri \

⋃
Q∈Ω Q

such that z′i is not contained in the subspace of Ri generated by zi, Ri ∩Q1 and Ri ∩Q2.
Then the 20 points ε∗(x1), ε∗(x2), . . . , ε∗(x6), ε∗(y1), ε∗(y2), . . . , ε∗(y6), ε∗(z1), ε∗(z′1), ε∗(z2),
ε∗(z′2), ε∗(z3), ε∗(z′3), ε∗(z4), ε∗(z′4) form a basis of Σ∗ ∼= PG(19,F).

Proof. It suffices to prove that the subspace Σ generated by these twenty points coincides
with Σ∗. Put X := ε∗−1(ε∗(P)∩Σ) where P denotes the point set of DH(5,F′). Then X
is a subspace of DH(5,F′) containing Q1, Q2 and {z1, z

′
1, z2, z

′
2, z3, z

′
3, z4, z

′
4}. If S1 and S2

are two disjoint quads of DH(5,F′) and S ∈ Ω(S1, S2), then the points of S are covered
by the lines meeting S1 and S2. This implies the following:

(∗) If S1 and S2 are two disjoint quads contained in X, then also every S ∈ Ω(S1, S2)
is contained in X.

By Property (∗), every Q ∈ Ω = Ω(Q1, Q2) is contained in X. Now, for every i ∈
{1, 2, 3, 4}, let Gi be the set of points of Ri contained in a quad of Ω. Then Gi is a full

subgrid of R̃i. We denote by σi the Q(4,F)-subquadrangle of R̃i generated by σi and zi.
Then z′i ∈ Ri \σi and so Ri is generated by σi and z′i. Since Gi ⊆ X, we have σi ⊆ X and
hence Ri ⊆ X. Since {R1, R2, R3, R4} is a generating set of the point-line geometry SΩ,
every point of SΩ is contained in X by Property (∗). Lemma 3.6(2) now implies that X
coincides with the whole point set of DH(5,F′). So, Σ = Σ∗. �

Lemma 3.9 If Q1 and Q2 are two disjoint quads of ∆, and R1, R2, R3 are three mutually
disjoint quads meeting Q1 and Q2 in lines such that R3 is disjoint from any quad of
Ω(R1, R2), then 〈ε∗(R1), ε∗(R2), ε∗(R3)〉 is 17-dimensional.

Proof. Put Li = Ri ∩ Q1, i ∈ {1, 2, 3}. If θ is an isomorphism between the point-line

dual of Q̃1 and H(3,F′), then Lθ1, L
θ
2, L

θ
3 are three points of H(3,F′) which generate a

plane intersecting H(3,F′) in a unital. By Proposition 3.7, L1, L2, L3 are contained in a
unique regular spread S. Let A denote the set of all quads A meeting Q1 and Q2 such
that A ∩ Q1 ∈ S, and let B be the collection of all sets Ω(A1, A2), where A1 and A2

are two distinct elements of A. Then (A,B) determines a linear space, isomorphic to
a linear space induced on a unital by its hyperbolic lines. If |F| ≥ 3, then Proposition
2.8 implies that {R1, R2, R3} generates the point-line geometry determined by (A,B). In
fact, the latter claim is still valid if |F| = 2. Indeed, if |F| = 2, then the linear space is
isomorphic to an affine plane of order 3, and AG(2, 3) is generated by any three of its
points, not on the same line. So, we see that if Z is the union of all quads in A, then
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〈ε∗(Z)〉 = 〈ε∗(R1), ε∗(R2), ε∗(R3)〉. So, 〈ε∗(Z)〉 has dimension at most 17. The point-line

geometry Z̃ induced on Z is a so-called glued near hexagon of type Q(5,F) ⊗ Q(5,F).
From [10, Corollary 4.29], it can be deduced that 〈ε∗(Z)〉 is 17-dimensional if F is finite.
In fact, by relying on Lemma 3.8 we can see that the latter claim is still valid if F is
infinite. If |F| ≥ 3, then by Section 2 (see proof of Proposition 2.13), we know that
there exists a line L4 in Q1 such that {Lθ1, Lθ2, Lθ3, Lθ4} is a generating set of H(3,F′).
We denote by R4 the unique quad through L4 meeting Q2. So, if Ω = Ω(Q1, Q2), then
{R1, R2, R3, R4} is a generating set of the point-line geometry SΩ. By Lemma 3.8, there
exist two points z4, z

′
4 ∈ R4 such that Σ∗ = 〈ε∗(R1), ε∗(R2), ε∗(R3), ε∗(z4), ε∗(z′4)〉. This

implies that 〈ε∗(R1), ε∗(R2), ε∗(R3)〉 has dimension at least 17, and hence precisely 17. �

Recall that the set of all points 〈x̄〉 ∈ PG(V ′6) for which h3(x̄, x̄) = 0 is a nonsingular
Hermitian variety H(5,F′) of PG(V ′6), and that ∆ = DH(5,F′) is the associated dual
polar space.

Suppose x is a point of ∆, i.e. a plane α of PG(V ′6) contained in H(5,F′). Then there
exist natural bijective correspondences between the points of α and the quads of ∆ through
x on the one hand, and the lines of α and the lines of ∆ through x on the other hand. So,
the lines and quads of ∆ through x define a projective plane Res(x) ∼= PG(2,F′). Now,
choose vectors ē1, ē2, ē3 ∈ V ′6 such that α = 〈ē1, ē2, ē3〉. If (a1, a2, a3) ∈ F′3 \ {(0, 0, 0)},
then the set of all points 〈u1ē1 + u2ē2 + u3ē3〉 of α for which a1u1 + a2u2 + a3u3 = 0 is a
line L(a1, a2, a3) of α.

Suppose now that aij with i, j ∈ {1, 2, 3} are elements of F′ satisfying aψij = aji
for all i, j ∈ {1, 2, 3}. Then the set of all points 〈u1ē1 + u2ē2 + u3ē3〉 of α satisfying∑

1≤i,j≤3 aijuiu
ψ
j = 0 is a Hermitian curve of α (possibly coinciding with α if aij = 0,

∀i, j ∈ {1, 2, 3}), which corresponds to a set of quads through x. We denote by Υq(x) the
set of all sets of quads of ∆ through x that can be obtained in this way. The set of all
lines L(u1, u2, u3) of α satisfying

∑
1≤i,j≤3 aijuiu

ψ
j = 0 is a Hermitian curve of the dual

plane of α (possibly coinciding with the whole set of lines of α if aij = 0, ∀i, j ∈ {1, 2, 3}),
which corresponds to a set of lines through x. We denote by Υl(x) the set of all sets of
lines of ∆ through x that can be obtained in this way.

Lemma 3.10 Let x and y be two opposite points of ∆. Let Q be a set of quads through
x and L a collection of lines through y such that a quad Q through x belongs to Q if and
only if the unique line through y meeting Q belongs to L. Then Q ∈ Υq(x) if and only if
L ∈ Υl(x).

Proof. Let α and β be the planes of PG(V ′6) corresponding to x and y, respectively. Let
(ē1, f̄1, ē2, f̄2, ē3, f̄3) be a basis of V ′6 such that α = 〈ē1, ē2, ē3〉, β = 〈f̄1, f̄2, f̄3〉, h3(ēi, ēj) =
h3(f̄i, f̄j) = 0 and h3(ēi, f̄j) = δij for all i, j ∈ {1, 2, 3}. If Q is a quad through x for
which 〈u1ē1 +u2ē2 +u3ē3〉 is the corresponding point of α, if L is the unique line through
y meeting Q and if L′ is the unique line of β corresponding to L, then L′ consists of all
points 〈x1f̄1 + x2f̄2 + x3f̄3〉 for which uψ1 x1 + uψ2 x2 + uψ3 x3 = 0. The lemma then follows
from the fact that a point 〈u1ē1 + u2ē2 + u3ē3〉 of α belongs to a Hermitian curve defined
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by a ψ-Hermitian form of 〈ē1, ē2, ē3〉 if and only if the point 〈uψ1 f̄1 + uψ2 f̄2 + uψ3 f̄3〉 of β
belongs to a Hermitian curve defined by a ψ-Hermitian form of 〈f̄1, f̄2, f̄3〉. �

If H is a hyperplane of ∆ and x ∈ H, then ΛH(x) denotes the set of lines through x
contained in H. The following was proved in [2, Section 3.4].

Proposition 3.11 Suppose H is a hyperplane of ∆ arising from its Grassmann embed-
ding and let x ∈ H. Then ΛH(x) ∈ Υl(x).

The following proposition can easily be deduced from Lemma 3.10 and Proposition 3.11.

Proposition 3.12 Suppose H is a hyperplane of ∆ arising from the Grassmann em-
bedding containing a deep point x. Then the set D of deep quads through x belongs to
Υq(x).

Proof. Suppose first that Γ3(x)∩H = ∅. Then H is contained in the singular hyperplane
Hx with deepest point x, and hence coincides with Hx since hyperplanes of thick dual
polar spaces are maximal proper subspaces. It follows that D consists of all quads through
x. Hence, D ∈ Υq(x).

Suppose y ∈ Γ3(x) ∩H. Then ΛH(y) ∈ Υl(y). Since every quad through x is deep or
singular, a line L through y belongs to ΛH(y) if and only if the unique quad through x
meeting L belongs to D. The corollary then follows from Lemma 3.10. �

If x and y are two opposite points of ∆, then the subspaces Σx := 〈ε∗(x⊥)〉 and Σy :=
〈ε∗(y⊥)〉 are two disjoint 9-dimensional subspaces of Σ∗. Let δ be an arbitrary element of
F′ \ F.

Proposition 3.13 Let x and y be two opposite points of ∆, and let L be a set of lines
through y defining a nonempty nonsingular Hermitian curve of Res(y) belonging to Υl(y).
Then 〈ε∗(

⋃
L∈L L)〉 is a hyperplane of Σy and there exists a unique hyperplane H of ∆

arising from ε∗ such that x is a deep point, y ∈ H and ΛH(y) = L.

Proof. Let V ∗ be a 20-dimensional vector space over F such that Σ∗ = PG(V ∗). Let Vx
and Vy be the 10-dimensional subspaces of V ∗ such that Σx = PG(Vx) and Σy = PG(Vy).
Then V ∗ = Vx ⊕ Vy by [2, Corollary 3.3].

Let α be the plane of H(5,F′) corresponding to y and let U be the 3-space of V ′6
corresponding to α. We choose an ordered basis B = (f̄1, f̄2, f̄3) in U , and we shall denote
by (X1, X2, X3) the coordinates of a vector of U with respect to this basis. We also choose
an ordered basis B′ = (ḡ1, ḡ2, . . . , ḡ10) in Vy such that 〈ḡ10〉 = ε∗(y), and we shall denote
by (Y1, Y2, . . . , Y10) the coordinates of a vector of Vy with respect to this basis.

If W is a subspace of co-dimension at most 1 of Vy containing ε∗(y), then we denote by
LW the set of lines of ∆ through y that are mapped by ε∗ into PG(W ). Then LW ∈ Υl(y)
by Proposition 3.11. From [2, Section 3.4], we know that the bases B and B′ can be
chosen in such a way that if W has equation a11Y1 +a22Y2 +a33Y3 +(a12 +aψ12)Y4 +(δa12 +
δψaψ12)Y5 + (a13 + aψ13)Y6 + (δa13 + δψaψ13)Y7 + (a23 + aψ23)Y8 + (δa23 + δψaψ23)Y9 = 0 for some
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a11, a22, a33 ∈ F and some a12, a13, a23 ∈ F′, then LW consists of all lines described by
equations u1X1 +u2X2 +u3X3 = 0 for which the coefficients u1, u2, u3 satisfy the equation∑

1≤i,j≤3 aijuiu
ψ
j = 0, where a21 = aψ12, a31 = aψ13 and a32 = aψ23.

Now, if
∑

1≤i,j≤3 aijuiu
ψ
j = 0, with aji = aψij for all i, j ∈ {1, 2, 3}, describes a nonsin-

gular nonempty Hermitian curve, then the coefficients aij are uniquely determined by the
Hermitian curve, up to a factor in F \ {0}. So, there must exist a unique hyperplane W ∗

in Vy containing ε∗(y) such that LW ∗ = L. If U is the hyperplane of Σ∗ generated by Σx

and PG(W ∗), then we see that HU is a hyperplane of ∆ such that x is a deep point and
ΛHU (y) = L. Moreover, HU has to be the unique hyperplane of ∆ arising from ε∗ having
these properties.

We still need to show that 〈ε∗(
⋃
L∈L L)〉 is a hyperplane of Σy. Suppose that this is not

the case, then besides PG(W ∗) there exists another hyperplane PG(W1) containing this
subspace. But then L = LW ∗ would be properly contained in LW1 , which is impossible
since both these sets are Hermitian curves of Res(y) with the former one being nonsingular
and nonempty and the latter one being distinct from the whole point set of Res(y). �

4 Proofs of Theorems 1.1 and 1.2

4.1 Proof of Theorem 1.1 in the case not every quad of Ω is deep

Suppose |F| ≥ 3. Let Ω be a hyperbolic set of quads of ∆ = DH(5,F′) and let Q be the
set of all quads of ∆ which either belong to Ω or intersect each quad of Ω in a line. For
every Q ∈ Q, let CQ be a set of classical hyperplanes of Q̃ such that the conditions (1)
and (2) of Theorem 1.1 are satisfied. Let C denote the set of all hyperplanes H of ∆ such
that H ∩Q ∈ CQ for every quad Q ∈ Q not contained in H.

Let Z denote the union of all quads Q of Ω, and let Z̃ denote the point-line geometry
induced on Z (by those lines of ∆ that are completely contained in Z). Let εZ denote the

embedding of Z̃ induced by the Grassmann embedding ε∗ : ∆→ Σ∗ of ∆ = DH(5,F′).
We will first prove Theorem 1.1 in the case the hyperplane H ∈ C does not contain Z.

Let Q1 and Q2 be two disjoint quads of Ω such that:

If H contains a (necessarily unique) member of Ω, then this element of Ω is
equal to Q1.

Put Σ1 = 〈ε∗(Q1)〉 and Σ2 = 〈ε∗(Q2)〉. Then 〈Σ1,Σ2〉 is the co-domain of εZ . Now, put
σi = H ∩ Qi, i ∈ {1, 2}. Then σ2 6= Q2. If σi 6= Qi, then σi is a classical hyperplane of

Q̃i and hence 〈ε∗(σi)〉 is a hyperplane of Σi. For every point x of Q1, let Lx denote the

unique line through x meeting Q2. Let H∗Z denote the hyperplane H ∩ Z of Z̃.

Lemma 4.1 The hyperplane H∗Z arises from the embedding εZ.

Proof. We distinguish two cases.

• Suppose first that Q1 ⊆ H. Then H∗Z = Q1 ∪
(⋃

Q∈Ω\{Q1} πQ(σ2)
)

. On the other

hand, let U denote the hyperplane of 〈Σ1,Σ2〉 generated by Σ1 and 〈ε∗(σ2)〉, and put
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HZ = ε∗−1(ε∗(Z) ∩ U). Then Q1 ⊆ HZ and HZ ∩ Q2 = σ2. Hence, also HZ = Q1 ∪(⋃
Q∈Ω\{Q1} πQ(σ2)

)
. It follows that HZ = H∗Z . Hence, H∗Z arises from the embedding

εZ .
• Next, suppose that Q1 6⊆ H. We show that σ1 6= πQ1(σ2). Suppose σ1 = πQ1(σ2).

Let u be a point of Q1 \ σ1, v the unique point of Lu contained in H and Q′ the unique

element of Ω containing v. Then the hyperplane Q′∩H of Q̃′ would contain {v}∪πQ′(σ1),

which is impossible since the hyperplane πQ′(σ1) of Q̃′ is a maximal proper subspace.

So, σ1 and πQ1(σ2) are two distinct hyperplanes of Q̃1 belonging to CQ1 . Let Π denote

the unique pencil of classical hyperplanes of Q̃1 containing σ1 and πQ1(σ2). By Lemma
3.6(3), we must have that

Π = {πQ1(H ∩Q) |Q ∈ Ω}. (2)

Indeed, since H ∩ Q ∈ CQ is a classical hyperplane of Q̃, also πQ1(H ∩ Q) is a classical

hyperplane of Q̃1. Moreover, the set {πQ1(H∩Q) |Q ∈ Ω} contains σ1 and πQ1(σ2). Now,

σ1 and πQ1(σ2) are two distinct hyperplanes of Q̃1, each of which is a singular hyperplane,
an ovoid or a Q(4,K)-subquadrangle. Considering all mutual positions of σ1 and πQ1(σ2)
immediately reveals that there must exist a line L in Q1 that intersects σ1 and πQ1(σ2)
in two distinct singletons. Let x be a point of L not contained in σ1 ∪ πQ1(σ2), and let
y denote the unique point of H contained on the line Lx. Let U denote the hyperplane
of 〈Σ1,Σ2〉 generated by ε∗(σ1), ε∗(σ2) and e(y). Put HZ := ε∗−1(ε∗(Z) ∩ U). By Lemma
3.6(3), we again have

Π = {πQ1(HZ ∩Q) |Q ∈ Ω}. (3)

(Indeed, since HZ ∩ Q is a classical hyperplane of Q̃, also πQ1(HZ ∩ Q) is a classical

hyperplane of Q̃1. Moreover, the set {πQ1(HZ ∩ Q) |Q ∈ Ω} contains σ1 and πQ1(σ2).)
Now, let QL denote the unique quad through L meeting Q2 in a line. We denote by GL

the full subgrid QL ∩Z. Let u denote the unique point in L∩H, let v denote the unique
point in πQ2(L) ∩ H. Then u, v and y are contained in HZ ∩ H∗Z . Since both HZ ∩ QL

and H∗Z ∩QL are classical hyperplanes of Q̃L, and GL is neither contained in HZ , nor in
H∗Z , we have

HZ ∩GL = H∗Z ∩GL. (4)

Note that HZ ∩ GL = H∗Z ∩ GL is an ovoid of the point-line geometry G̃L induced on

GL, i.e., every line of G̃L intersects HZ ∩ GL = H∗Z ∩ GL in a singleton. The conditions
(2), (3) and (4) now imply that HZ = H∗Z . Indeed, for this to be valid, we need to show
that HZ ∩ Q3 = H∗Z ∩ Q3 for every Q3 ∈ Ω. If w denotes the unique point of the ovoid

HZ ∩GL = H∗Z ∩GL of G̃L contained in Q3 ∩QL, and if σ denotes the unique member of
Π containing πQ1(w), then (2) and (3) imply that HZ ∩ Q3 = πQ3(σ) = H∗Z ∩ Q3. Since
we now know that HZ = H∗Z , the hyperplane H∗Z must arise from the embedding εZ . �

Let PΩ and LΩ be as defined in Section 3.3. For every proper subset X of Q2, let
AX denote the point-line geometry whose points are those quads Q ∈ PΩ for which
the line Q ∩ Q2 is not contained in X and whose lines are those elements Ω′ ∈ LΩ
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with the property that Q ∩ Q2 is not contained in X for every Q ∈ Ω′. The incidence
relation is containment. By Proposition 3.4 and invoking the isomorphism described
in Lemma 3.6(1), we know that there exists a subset {R1, R2, R3, R4} of size 4 of PΩ

generating the geometry Aσ2 . For every i ∈ {1, 2, 3, 4}, let Gi be the full subgrid Ri ∩ Z.

Then H ∩ Gi is a certain hyperplane of G̃i. For every i ∈ {1, 2, 3, 4}, H ∩ Ri is a

classical hyperplane of R̃i and hence there exist two points yi and zi of (H ∩ Ri) \ Gi

such that 〈ε∗(H ∩ Ri)〉 = 〈ε∗(H ∩Gi), ε
∗(yi), ε

∗(zi)〉. By Lemma 3.8, we know that W =
〈ε∗(H∗Z), ε∗(y1), ε∗(z1), ε∗(y2), ε∗(z2), ε∗(y3), ε∗(z3), ε∗(y4), ε∗(z4)〉 is a hyperplane of Σ∗. Let
H∗ denote the set of all points of DH(5,F′) that are mapped by ε∗ into W . Then H∗

is a hyperplane arising from the Grassmann embedding. Our aim will be to show that
H = H∗. Since 〈ε∗(Z), ε∗(y1), ε∗(z1), ε∗(y2), ε∗(z2), ε∗(y3), ε∗(z3), ε∗(y4), ε∗(z4)〉 = Σ∗, we
have that H∗ ∩Z = H ∩Z. We call a quad R ∈ PΩ good if R ∩H = R ∩H∗. By Lemma
3.6(2), in order to show that H = H∗, it suffices to prove that all quads of PΩ are good.
By construction of the hyperplane H∗, the quads R1, R2, R3 and R4 are good.

Lemma 4.2 If Ω′ ∈ LΩ is a line of Aσ2 containing two good quads, then all quads of Ω′

are good.

Proof. Let G denote the full subgrid of Q2 containing all lines Q2 ∩Q, Q ∈ Ω′. Suppose
S1 and S2 are two distinct good quads of Ω′. Since Ω′ is a line of Aσ2 , the intersection

G ∩ H is an ovoid O of G̃. So, S1 ∩ H and πS1(S2 ∩ H) are two distinct hyperplanes of

CS1 . Let Π denote the unique pencil of classical hyperplanes of S̃1 containing S1 ∩H and
πS1(S2 ∩ H). By Lemma 3.6(3), Π = {πS1(S ∩ H) |S ∈ Ω′}2. On the other hand, since
S2∩H∗ = S2∩H and S1∩H∗ = S1∩H, also {πS1(S∩H∗) |S ∈ Ω′} is a pencil of classical

hyperplanes of S̃1 containing S1 ∩H and πS1(S2 ∩H). It follows that

{πS1(S ∩H) |S ∈ Ω′} = {πS1(S ∩H∗) |S ∈ Ω′}.

Now, let S3 be an arbitrary element of Ω′ \ {S1, S2}, and let u denote the unique element
of O ∩ (S3 ∩Q2). Since u ∈ H ∩H∗, we would have

S3 ∩H = πS3(σ) = S3 ∩H∗,

where σ is the unique element of Π containing πS1(u). Hence, every quad of Ω′ is good. �

For every line L contained in Q2, let QL denote the unique quad through L meeting Q1.
Since {R1, R2, R3, R4} is a generating set of the geometry Aσ2 , and the quads R1, R2, R3,
R4 are good, Lemma 4.2 implies the following:

If L is a line of Q2 not contained in σ2, then the quad QL is good.

In order to show that all quads of PΩ are good, it remains to show that every quad QL is
good, where L is a line of Q2 contained in σ2. Let G be a full subgrid of Q2 containing L,

2Indeed, since S ∩H ∈ CS is a classical hyperplane of S̃, πS1
(S ∩H) is a classical hyperplane of S̃1.

Moreover, the set {πS1
(S ∩H) |S ∈ Ω′} contains S1 ∩H and πS1

(S2 ∩H).
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but not contained in σ2, and let L denote the set of lines of G̃ parallel with or equal to L.
Put Ω′ = {QL′ |L′ ∈ L}. Then Ω′ is a hyperbolic set of quads. Every line of L \ {L} is
not contained in σ2, and hence all quads of Ω′ \ {QL} are good. By considering all lines
meeting all quads of Ω′ and using the fact that each such line has either one or all of its
points3 in H, we see that the fact that H ∩ Q = H∗ ∩ Q, ∀Q ∈ Ω′ \ {QL}, implies that
H ∩QL = H∗ ∩QL as well.

4.2 Proof of Theorem 1.2 and proof of Theorem 1.1 in case all
quads of Ω are deep

Proposition 4.3 Suppose |F| ≥ 3. Let Q1 and Q2 be two disjoint quads of DH(5,F′)
and suppose H is a hyperplane of DH(5,F′) such that Q1 ⊆ H and Q2 ∩H is a classical

hyperplane of Q̃2. Then H arises from the Grassmann embedding of DH(5,F′).

Proof. Put Ω := Ω(Q1, Q2) and let R denote the set of all quads of DH(5,F′) meeting
every quad of Ω in a line. For every quad Q ∈ Ω, put CQ := {πQ(Q2∩H)}. For every quad

R ∈ R, let CR denote the set of all (classical) hyperplanes σ of R̃ such that R ∩Q1 ⊆ σ.
Then Q = Ω ∪R satisfies the conditions of Theorem 1.1 by Lemma 3.5. Since not every
quad of Ω is contained in H and H ∩Q ∈ CQ for every quad Q ∈ Q not contained in H,
the hyperplane H must arise from the Grassmann embedding by Section 4.1. �

Proposition 4.4 The extension H of a classical ovoid O of a quad Q of DH(5,F′) arises
from the Grassmann embedding of DH(5,F′).

Proof. Since Q(5, q) does not have ovoids for every prime power q, the field F should
be infinite. Take a quad Q′ disjoint from Q. Since the map Q → Q′;x 7→ πQ′(x) defines

an isomorphism between Q̃ and Q̃′, the set Q′ ∩ H = πQ′(O) necessarily is a classical

ovoid of Q̃′. Proposition 4.3 now implies that H arises from the Grassmann embedding
of DH(5,F′). �

Since Q(4,F)-subquadrangles and singular hyperplanes of Q(4,F) are classical hyper-
planes, Propositions 3.1, 4.3 and 4.4 imply Theorem 1.2:

Corollary 4.5 Suppose |F| ≥ 3 and H is a hyperplane of DH(5,F′) containing a quad
Q. Then H either arises from the Grassmann embedding of DH(5,F′) or is the extension

of a non-classical ovoid of Q̃.

Observe that the extension of a non-classical ovoid of a quad of DH(5,F′) cannot arise
from a projective embedding.

Corollary 4.5 has the following consequence, which shows the validity of Theorem 1.1 in
the special case all quads of Ω are deep.

3If you know for all but one of the points of a line L whether they belong to H or not, then you also
know that for the remaining point of L.
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Corollary 4.6 Suppose |F| ≥ 3. If H is a hyperplane of DH(5,F′) containing two dis-
joint quads, then H arises from the Grassmann embedding of DH(5,F′).

5 Proof of Theorem 1.3

In this section, we suppose that H is a hyperplane of ∆ = DH(5,F′) arising from the
Grassmann embedding and containing a quad Q.

Suppose first that there is some deep point x. Then every quad through x is either
deep or singular. If Γ3(x) ∩ H = ∅, then by Proposition 3.2(1), H must be the singular
hyperplane with deepest point x. Suppose therefore that there exists a point y ∈ Γ3(x)∩H.
Then the deep quads through x are precisely the quads through x meeting a line of ΛH(y).
If ΛH(y) = ∅, then by Proposition 3.2(2), H must be a semi-singular hyperplane, in
contradiction with the existence of deep quads. Therefore, ΛH(y) must be a nonempty
Hermitian curve of Res(y) by Proposition 3.11. If this Hermitian curve is singular, then
Proposition 3.2(3) implies that H is either a singular hyperplane, the extension of a
Q(4,F)-subquadrangle of a quad, or the extension of a (necessarily classical) ovoid of a
quad. If the Hermitian curve is nonsingular, then H must be a hyperplane as described
in Proposition 3.13. So, we know what the hyperplane H is in case there exists a deep
point. In the rest of this section, we will therefore make the following assumption:

Assumption: There are no deep points.

By Proposition 3.11, we know that for every point x ∈ H, the set ΛH(x) is a possibly
degenerate Hermitian curve of Res(x). Since Q ⊆ H, this implies that for every point
x ∈ Q, ΛH(x) is either a line or a Baer pencil of Res(x). If ΛH(x) is a Baer pencil of
Res(x), then there exists a unique line L through x (corresponding with the center of
the Baer pencil) having the property that every quad through L is deep or singular with
respect to H. Every quad through x not containing L is subquadrangular with respect to
H.

Lemma 5.1 For every point x of Q, ΛH(x) is a Baer pencil of Res(x).

Proof. Suppose that this is not the case. Then there exists a point x∗ ∈ Q such that
ΛH(x∗) is a line of Res(x∗). So, the lines through x∗ contained in H are precisely the lines
through x∗ contained in Q.

We show that for every y ∈ Γ1(x∗) ∩ Q, ΛH(y) is a Baer pencil of Res(y) with center
x∗y. Let R be a quad through x∗y distinct from Q. Since (x∗)⊥ ∩H ∩R = R ∩Q = x∗y,
the quad R is singular and its deepest point z belongs to x∗y \ {x∗}. Since ΛH(z) cannot
be a line of Res(z), it must be a Baer pencil with center x∗y = x∗z (since every quad
through x∗y distinct from Q is singular). Let L1 be a line of Q through x∗ distinct from
x∗y and let L2 be a line of Q through z distinct from x∗y. Then L1 and L2 are disjoint.
Let Si, i ∈ {1, 2}, be a quad through Li distinct from Q and let S3 be the unique element
of Ω(S1, S2) containing the point y. The quad S1 is singular with respect to H since
S1∩H ∩ (x∗)⊥ = S1∩Q. The quad S2 on the other hand is subquadrangular with respect
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to H as it does not contain the line x∗y. Now, Π = {πS3(S∩H) |S ∈ Ω(S1, S2)} is a pencil

of hyperplanes of S̃3, each of which contains the line S3 ∩ Q. Since the pencil contains
a singular hyperplane (namely πS3(S1 ∩H)) and a subquadrangular hyperplane (namely
πS3(S2 ∩H)), precisely one hyperplane of Π must be singular by Lemma 3.5. This shows

that the hyperplane S3 ∩H of S̃3 is subquadrangular. This implies that ΛH(y) is a Baer
pencil of Res(y). The center of the Baer pencil must be x∗y, since every quad through
x∗y distinct from Q is singular.

We show that every quad R intersecting Q in a line L not containing x∗ is subquad-
rangular. Let y denote the unique point of L collinear with x∗. Then ΛH(y) is a Baer
pencil of Res(y) with center x∗y. The quads through x∗y corresponding to the lines of this
Baer pencil each intersect R in a line which is contained in H. Every other quad through
x∗y intersects R in a line which is not contained in H. So, R must be a subquadrangular
quad.

Now, let y be a point of Q not collinear with x∗. Then every quad through y distinct
from Q is subquadrangular. But that is not possible, since ΛH(y) is either a line or a
Baer pencil of Res(y). �

Now, let S denote the set of all lines L ⊆ Q having the property that every quad
through L is either deep or singular. By Lemma 5.1, every point of Q is contained in a
unique element of S, i.e. S is a spread of Q̃.

Lemma 5.2 Every line L ∈ S is contained in a unique deep quad distinct from Q.

Proof. Let x1 and x2 be two distinct points of L. For every i ∈ {1, 2}, let Li be a line of
Q through xi distinct from L and let Ri be a quad such that Ri ∩Q = Li. Then R1 and
R2 are disjoint and every quad of Ω(R1, R2) is subquadrangular, since none of these quads
contains the line L ∈ S. This implies by Lemma 3.5 and 3.6(3) that (H∩R1)∩πR1(H∩R2)
is a full subgrid. Let M denote the line of this full subgrid that contains x1 but is distinct
from L1. Then 〈L,M〉 is the unique quad through L distinct from Q that intersects each
quad of Ω(R1, R2) in a line that is contained in H. Since every quad through L is either
singular or deep, 〈L,M〉 must be a deep quad. In fact, one can even say more. The quad
〈L,M〉 must be the unique deep quad through L distinct from Q. �

Lemma 5.3 Let Q′ be a deep quad disjoint from Q and let L ∈ S. Then the unique deep
quad through L distinct from Q is equal to the unique quad R through L meeting Q′.

Proof. The quad R is singular or deep, but as R∩H contains two disjoint lines, namely
R ∩Q and R ∩Q′, it must be deep. �

Lemma 5.4 The spread S is regular.

Proof. Let L1 and L2 be two disjoint lines of S. For every i ∈ {1, 2}, let Ri denote
the unique deep quad through Li distinct from Q. Then R1 and R2 are disjoint. Now,
every quad of Ω(R1, R2) is deep and intersects Q in a line, necessarily belonging to S.
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The set of lines of Q̃ obtained by intersecting Q with the elements of Ω(R1, R2) is equal
to {L1, L2}⊥⊥, showing that S is regular. �

Now, let Q1 be the set of all deep quads intersecting Q in a line. Let Q′ be a given quad
of Q1 and let Q2 denote the set of all deep quads intersecting Q′ in a line. Then the
following holds:

(1) Qi, i ∈ {1, 2}, is a set of mutually disjoint quads;

(2) every quad of Q1 intersects every quad of Q2 in a line (by Lemma 5.3);

(3) if Q ∈ Qi, i ∈ {1, 2}, then the set of lines of Q̃ obtained by intersecting Q with the

elements of Q3−i is a regular spread of Q̃;

(4) if Q1 and Q2 are two distinct quads of Qi, i ∈ {1, 2}, then Ω(Q1, Q2) ⊆ Qi.

For every i ∈ {1, 2}, let Xi denote the set of points of H(5,F′) corresponding to the quads
of Qi, i.e. Xi = {xR |R ∈ Qi}.

Lemma 5.5 For every i ∈ {1, 2}, there exists a plane πi in PG(V ′6) such that πi∩H(5,F′)
is a unital of πi equal to Xi. Moreover, if ζ denotes the Hermitian variety of PG(V ′6)
associated with H(5,F′), then π1 = πζ2.

Proof. Let u and v be two distinct points of X2 and let Qu and Qv denote the quads
corresponding to u and v, respectively. Since Qu and Qv are disjoint, the points u and
v are noncollinear on H(5,F′) and so the points and lines contained in {u, v}⊥ define
a generalized quadrangle S isomorphic to H(3,F′). The points of S are obtained by
intersecting H(5,F′) with the 3-space α = (uv)ζ . The quads meeting Qu and Qv are in

bijective correspondence with the points of S and with the lines of Q̃u (by considering
the intersections with Qu). So, there exists a bijective correspondence between the points

of S and the lines of Q̃u. This bijective correspondence defines an isomorphism between
S ∼= H(3,F′) and the point-line dual of Q̃u = Q(5,F). Now, the quads of Q1 meeting Qu

and Qv, intersect Qu in lines which determine a regular spread. By Proposition 3.7, there
must exist a plane π1 in α such that π1∩H(5,F′) is a unital and equal to X1. In a similar
way, one proves that there exists a plane π2 in PG(V ′6) such that π2 ∩H(5,F′) is a unital
of π2 equal to X2. Since every quad of Q1 intersects every quad of Q2 in a line, we must
have π1 = πζ2. �

If we denote by G the union of all quads of Q1, then G ⊆ H. The set G is also equal to
the union of all quads of Q2. The point-line geometry G̃ induced on G by those lines of ∆
that are contained in G is a glued near hexagon of type Q(5,F)⊗Q(5,F). If Q1, Q2 and
Q3 are three mutually distinct quads of Q1 such that Q3 does not belong to Ω(Q1, Q2),
then 〈ε∗(G)〉 = 〈ε∗(Q1), ε∗(Q2), ε∗(Q3)〉 is 17-dimensional by Lemma 3.9. It follows from
[6, Section 3] that H belongs to one of the two classes of hyperplanes discussed in that
paper.
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A Some GAP code

In this appendix, we list the GAP code we used to verify Lemma 2.6 in case the prime
power q belongs to {3, 4, 5, 7, 8}.

Suppose U is a unital in PG(2, q2). The hyperbolic lines define a linear space AU on
the set U . Observe that PΓL(3, q2) acts transitively on the set of hyperbolic lines. Let L
be a particular hyperbolic line of U . Then X := L ∩ U is a line of AU . Let S ′X be the
geometry as considered in Lemma 2.6. The following GAP code implements models for
the geometries AU and S ′X . The point set of AU equals {1, 2, . . . , q3 + 1} and its line set
is equal to lines1. The set line is a particular line of AU . The point set of S ′X is equal
to points2 and its line set is equal to lines2.

if q=3 then N:=5; fi; if q=4 then N:=5; fi; if q=5 then N:=6; fi;

if q=7 then N:=2; fi; if q=8 then N:=9; fi;

g:=AllPrimitiveGroups(DegreeOperation,q^3+1)[N];

h:=Stabilizer(g,[1,2],OnSets);

oo1:=Orbits(h,[1..q^3+1]);

oo2:=Filtered(oo1,x->Size(x) in [2,q-1]);

line:=Union(oo2[1],oo2[2]);

lines1:=Orbit(g,line,OnSets);

points2:=Difference([1..q^3+1],line);

lines2:=Filtered(lines1,x->Intersection(x,line)=[]);

If Y is a set of points of S ′X , then Generate(Y) denotes the set of points of S ′X generated
by Y.

Generate:=function(X)

local Status,Y,i;

Y:=ShallowCopy(X); Status := true;

while Status do

Status:=false;

for i in [1..Size(lines2)] do

if Size(Intersection(Y,lines2[i])) in [2..q] then

Y:=Union(Y,lines2[i]); Status:=true;

fi;

od;

od;

return Y;

end;

The stabilizer of L (in PΓL(3, q2)) acts transitively on the points of S ′X . So, in order to
verify Lemma 2.6, we may choose for p3 a particular point of S ′X . Lemma 2.6 will then
be valid if L1 ∪ L2 is a generating set of S ′X for any pair {L1, L2} of two distinct lines of
S ′X through p3. We have verified this with the following GAP code. Lemma 2.6 is valid
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for the considered prime power q ∈ {3, 4, 5, 7, 8} if the final value of Status is equal to
true (which indeed turned out to be the case).

Status:=true;

lines3:=Filtered(lines2,x -> points2[1] in x); s:=Size(lines3);

for i in [1..s] do for j in [i+1..s] do

if Generate(Union(lines3[i],lines3[j])) <> points2 then Status:=false; fi;

od; od;
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