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Abstract

A two-character set is a set of points of a finite projective space
that has two intersection numbers with respect to hyperplanes. Two-
character sets are related to strongly regular graphs and two-weight
codes. In the literature, there are plenty of constructions for (non-
trivial) two-character sets by considering suitable subsets of quadrics
and Hermitian varieties. Such constructions exist for the quadrics
Q+(2n − 1, q) ⊆ PG(2n − 1, q), Q−(2n + 1, q) ⊆ PG(2n + 1, q) and
the Hermitian varieties H(2n− 1, q2) ⊆ PG(2n− 1, q2), H(2n, q2) ⊆
PG(2n, q2). In this note we show that every two-character set of
PG(2n, q) that is contained in a given nonsingular parabolic quadric
Q(2n, q) ⊆ PG(2n, q) is a subspace of PG(2n, q). This offers some
explanation for the absence of the parabolic quadrics in the above-
mentioned constructions.
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1 Motivation and main result

A set X of points of the projective space PG(k − 1, q) is called a two-
character set with intersection numbers h1 and h2 if every hyperplane of
PG(k−1, q) intersectsX in either h1 or h2 points. With every two-character
set, there is associated a two-weight code and a strongly regular graph, see
Delsarte [12] and Calderbank & Kantor [6]. A nonempty proper subspace
of PG(k − 1, q) is an example of a (trivial) two-character set.

Many of the known constructions for two-character sets are related to
finite polar spaces. In this note, we are interested in sets of points of
finite polar spaces that are two-character sets of their ambient projective
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spaces. In the literature, there are plenty of constructions for obtaining
such two-character sets. In the overview we give below, P denotes one of
the following polar spaces of rank n ≥ 2: • Q(2n, q); • Q+(2n − 1, q); •
Q−(2n+ 1, q); • H(2n− 1, q) with q a square; • H(2n, q) with q a square.

An m-ovoid of P is a set of points intersecting each maximal subspace
of P in precisely m points. Examples of m-ovoids arise from the so-called
m′-systems of P. These nice sets of m′-dimensional subspaces of P were
introduced by Shult and Thas [23]. In [23], it was proved, among other

things, that the union of the subspaces of an m′-ovoid of P is a qm′+1−1
q−1 -

ovoid of P. If P is one of the polar spaces H(2n, q), Q−(2n + 1, q), then
every m-ovoid of P is a two-character set of the ambient projective space
Σ, see Bamberg, Kelly, Law & Penttila [1] and Bamberg, Law & Penttila
[2]. In particular, the union of the subspaces of an m′-system of P is a
two-character set of Σ.

The q+1
2 -ovoids of Q−(5, q), q odd, are also known as hemisystems.

They were first studied by Segre [22]. Constructions of hemisystems can
be found in the papers [10, 11, 22].

If X is a set of points of P, then the total number of ordered pairs of
distinct collinear points of P is at most λ−1

q · |X| · (
|X|
λ + (q − 1)), with λ

denoting the total number of points contained in a given maximal subspace
of P. If equality holds, then X is called a tight. Tight sets were introduced
by Payne [21] for generalized quadrangles and by Drudge [13] for arbitrary
polar spaces. If P is one of the polar spaces H(2n−1, q), Q+(2n−1, q), then
every tight set of P is a two-character set of the ambient projective space,
see Bamberg, Kelly, Law & Penttila [1] and Bamberg, Law & Penttila [2].

The tight sets of the hyperbolic quadric Q+(5, q) are related to the
so-called Cameron-Liebler line classes of PG(3, q). Recall that a spread
of PG(3, q) is a set of lines partitioning its point set. A set L of lines of
PG(3, q) is said to be a Cameron-Liebler line class if the number |L ∩ S|
is independent of the spread S of PG(3, q). Sets of lines satisfying this
property were first studied by Cameron and Liebler in [7]. By Drudge [13],
the Cameron-Liebler line classes correspond via the Klein correspondence
to the tight sets of Q+(5, q). Nontrivial examples of Cameron-Liebler line
classes of PG(3, q) can be found in [5, 14, 15].

Further constructions of tight sets of the polar spaces Q+(2n − 1, q),
H(2n− 1, q), and of m-ovoids or m′-systems of the polar spaces H(2n, q),
Q−(2n + 1, q) can be found in the papers [1, 4, 9, 16, 17, 18, 23]. By a
procedure referred to as “field-reduction” in Kelly [20], tight sets and m-
ovoids of these polar spaces will give rise to further examples of tight sets
and m-ovoids and (hence) also to further examples of two-character sets.

The above discussion shows that there are plenty of constructions for two-
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character sets that appear as subsets of quadrics or Hermitian varieties of
finite projective spaces. An attentive reader might have noticed that none of
the above constructions involves a parabolic quadric Q(2n, q) ⊆ PG(2n, q).
This is not a coincidence. The following theorem, which is the main result
of this note, gives an explanation for this fact.

Theorem 1.1 Let X be a set of points of Q(2n, q), n ≥ 2, which is a two-
character set of the ambient projective space PG(2n, q) of Q(2n, q). Then
X is the set of points of a subspace of Q(2n, q).

So, in future attempts to construct new two-character sets related to polar
spaces, one should not spent any energy in those sets of points that can
occur as subsets of nonsingular parabolic quadrics. Other nonexistence re-
sults for certain classes of two-character sets can be found in the literature,
see e.g. the papers [3] and [8].

2 Proof of Theorem 1.1

Let Q(2n, q) be a nonsingular parabolic quadric of PG(2n, q), n ≥ 2. The
quadric Q(2n, q) contains ψ(2n, q) = q2n−1

q−1 points. There are three pos-
sibilities for a hyperplane α of PG(2n, q), see e.g. Hirschfeld and Thas
[19].

(1) α is a tangent hyperplane. If α is tangent to Q(2n, q) at the point
x, then α∩Q(2n, q) is a cone of the form xQ(2n− 2, q), where Q(2n− 2, q)
is a nonsingular parabolic quadric of a hyperplane of α not containing x.
Observe that |α ∩Q(2n, q)| = |xQ(2n− 2, q)| = q2n−1−1

q−1 .

(2) α is a non-tangent hyperplane of type Q+(2n − 1, q), or shortly a
Q+(2n − 1, q)-hyperplane. This means that α ∩ Q(2n, q) is a nonsingular
hyperbolic quadric of α. Observe that |α ∩ Q(2n, q)| is equal to ψ+(2n −
1, q) := |Q+(2n− 1, q)| = q2n−1−1

q−1 + qn−1 = (qn−1)(qn−1+1)
q−1 .

(3) α is a non-tangent hyperplane of type Q−(2n − 1, q), or shortly a
Q−(2n − 1, q)-hyperplane. This means that α ∩ Q(2n, q) is a nonsingular
elliptic quadric of α. Observe that |α∩Q(2n, q)| is equal to ψ−(2n−1, q) :=
|Q−(2n− 1, q)| = q2n−1−1

q−1 − qn−1 = (qn+1)(qn−1−1)
q−1 .

So, Q(2n, q) itself is not a two-character set since there are three possible
intersection sizes with hyperplanes. In the proof of Theorem 1.1, we have
to make use of the following lemma.
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Lemma 2.1 (1) There are precisely q2n+qn

2 non-tangent hyperplanes of
type Q+(2n − 1, q) and q2n−qn

2 non-tangent hyperplanes of type Q−(2n −
1, q).

(2) Through every point of Q(2n, q), there are precisely qn(qn−1+1)
2 non-

tangents hyperplanes of type Q+(2n− 1, q) and qn(qn−1−1)
2 non-tangent hy-

perplanes of type Q−(2n− 1, q).
(3) Through every two distinct collinear points of Q(2n, q), there are

precisely qn(qn−2+1)
2 non-tangent hyperplanes of type Q+(2n − 1, q) and

qn(qn−2−1)
2 non-tangent hyperplanes of type Q−(2n− 1, q).

(4) Through every two non-collinear points of Q(2n, q), there are precisely
qn−1(qn−1+1)

2 non-tangent hyperplanes of type Q+(2n−1, q) and qn−1(qn−1−1)
2

non-tangent hyperplanes of type Q−(2n− 1, q).

Proof. This can easily be verified by means of double counting, taking
into account some elementary properties of quadrics and the precise val-
ues of the numbers ψ(2n, q), ψ+(2n − 1, q) and ψ−(2n − 1, q). For Claim
(1), see e.g. Hirschfeld and Thas [19, Section 22.8]. Claims (2), (3) and
(4) follow from Claim (1) and the fact that the group of collineations of
PG(2n, q) stabilizing Q(2n, q) acts transitively on the points of Q(2n, q),
the ordered pairs of distinct collinear points of Q(2n, q) and the ordered
pairs of noncollinear points of Q(2n, q). �

Now, let X be a set of points of Q(2n, q) that is a two-character set of
the projective space PG(2n, q). Let h1 and h2 denote the two intersection
numbers. Let N1 denote the total number of ordered pairs of distinct
collinear points of X. For every hyperplane α of PG(2n, q), we define

tα := |X ∩ α|.

Summing over all hyperplanes α of PG(2n, q), we find by Lemma 2.1 that

∑
α

1 =
q2n+1 − 1
q − 1

,

∑
α

tα = |X| · q
2n − 1
q − 1

,

∑
α

tα(tα − 1) = |X| ·
(
|X| − 1) · q

2n−1 − 1
q − 1

,

∑
α

t2α = |X|2 · q
2n−1 − 1
q − 1

+ |X| · q2n−1.
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Putting
∑
α(tα − h1)(tα − h2) equal to 0, we find

|X|2 · q
2n−1 − 1
q − 1

+|X|·q2n−1−|X|· q
2n − 1
q − 1

·(h1+h2)+
q2n+1 − 1
q − 1

·h1h2 = 0.

(1)
Summing over allQ+(2n−1, q)-hyperplanes of PG(2n, q), we find by Lemma
2.1 that ∑

α

1 =
q2n + qn

2
,

∑
α

tα = |X| · q
n(qn−1 + 1)

2
,

∑
α

tα(tα − 1) = N1 ·
qn(qn−2 + 1)

2
+
(
|X| · (|X| − 1)−N1

)
· q

n−1(qn−1 + 1)
2

= N1 ·
qn − qn−1

2
+ |X|2 · q

n−1(qn−1 + 1)
2

− |X| · q
n−1(qn−1 + 1)

2
,∑

α

t2α = N1 ·
qn − qn−1

2
+ |X|2 · q

n−1(qn−1 + 1)
2

+ |X| · (qn−1 + 1)(qn − qn−1)
2

.

Putting
∑
α(tα − h1)(tα − h2) equal to 0, we find

N1 · (q − 1) + |X|2 · (qn−1 + 1) + |X| · (qn−1 + 1)(q − 1)
− |X| · (qn + q) · (h1 + h2) + (qn+1 + q) · h1h2 = 0. (2)

Summing over all Q−(2n − 1, q)-hyperplanes α of PG(2n, q), we find by
Lemma 2.1 that∑

α

1 =
q2n − qn

2
,

∑
α

tα = |X| · q
n(qn−1 − 1)

2
,

∑
α

tα(tα − 1) = N1 ·
qn(qn−2 − 1)

2
+
(
|X| · (|X| − 1)−N1

)
· q

n−1(qn−1 − 1)
2
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= −N1 ·
qn − qn−1

2
+ |X|2 · q

n−1(qn−1 − 1)
2

− |X| · q
n−1(qn−1 − 1)

2
,∑

α

t2α = −N1 ·
qn − qn−1

2
+ |X|2 · q

n−1(qn−1 − 1)
2

+ |X| · (qn−1 − 1)(qn − qn−1)
2

.

Putting
∑
α(tα − h1)(tα − h2) equal to 0, we find

−N1 · (q − 1) + |X|2 · (qn−1 − 1) + |X| · (qn−1 − 1)(q − 1)
− |X| · (qn − q) · (h1 + h2) + (qn+1 − q) · h1h2 = 0. (3)

Eliminating N1 from equations (2) and (3), we find

|X|2 + |X| · (q − 1)− |X| · q · (h1 + h2) + q2 · h1h2 = 0. (4)

From (1) and (4), we find

h1 + h2 =
(q + 1) · |X| − 1

q
, h1h2 =

|X|2 − |X|
q

(5)

and hence

{h1, h2} = {|X|, |X| − 1
q
}. (6)

Combining (3) and (5), we can calculate N1. We find

N1 = |X| · (|X| − 1). (7)

By (7), every two distinct points of X are collinear on Q(2n, q). Hence,
< X > is a subspace of Q(2n, q). Put k := dim < X >. By (6), every
hyperplane of < X > contains precisely |X|−1

q points. Counting in two
different ways the number of pairs (x, U), where x ∈ X and U a hyperplane
of < X > containing x, we find

qk+1 − 1
q − 1

· |X| − 1
q

= |X| · q
k − 1
q − 1

.

It follows that

|X| = qk+1 − 1
q − 1

.

Hence, X is the whole set of points of the subspace < X > of Q(2n, q).
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