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Abstract

We consider two families of point sets in (not necessarily finite) projective planes,
one of which consists of the Hermitian curves, and give a common characterization
of the point sets in both families. One of the properties we use to characterize them
will be the existence of a certain configuration of Baer sublines.
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1 Introduction

A unital of the finite projective plane PG(2, q2) (with q a prime power) is a set of q3 + 1
points meeting each line in either 1 or q + 1 points. A line intersecting the unital in
precisely q + 1 points is called a secant line, and such a secant line is called a Baer
secant line if the intersection is a Baer subline. The standard examples of unitals are
the Hermitian curves (also called classical unitals), and these have the property that all
secant lines are Baer secant lines. Lefèvre-Percsy [7] and Faina-Korchmáros [6] proved
that this property is sufficient to characterize Hermitian curves. They showed that every
unital for which all secant lines are Baer secant lines necessarily is classical. A natural
question which then arises is to ask how many Baer secant lines are really necessary to
conclude that a unital must be classical. In the literature, one can find several results in
this direction. The original results of [6, 7] were improved by Barwick [2]. The best result
in the literature however seems to be the result which states that a unital U in PG(2, q2)
is classical as soon as there exists a point x ∈ U through which all secant lines are Baer
secant lines and for which there exists one additional Baer secant line (not containing x).
The proof of the latter result was established in the papers [3, 5, 8] and uses a deep result
of Brown [4] regarding ovoids in the projective space PG(3, q). Important to mention is
also the characterization result of Ball, Blokhuis and O’Keefe [1] which states that if q is
a prime, then a unital in PG(2, q2) is classical as soon as there are (q2 − 2)q Baer secant
lines.
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In the present paper, we give a characterization of Hermitian curves as certain sets
of points that contain sufficiently many Baer secant lines (see condition (U1) below).
We do no longer require in advance that the set is a unital as the earlier-mentioned
characterization results do, but instead we require another condition (see condition (U3)
below). The obtained characterization result will moreover be valid in the infinite case. In
fact, the properties (U1), (U2) and (U3) below not only allow to characterize Hermitian
curves but also the members of another family of point sets.

2 The main result

Let V be a 3-dimensional vector space over a field F, and denote by PG(V ) the projective
plane associated with V .

Suppose X is a set of points of PG(V ). A line L of PG(V ) is called an exterior line if
L ∩X = ∅, a tangent line if |L ∩X| = 1 and a secant line if |L ∩X| ≥ 2.

Suppose K is a subfield of index 2 of F. If v̄1 and v̄2 are two linearly independent vectors
of V , then the set of all points of the form 〈λ1v̄1 + λ2v̄2〉, (λ1, λ2) ∈ (K × K) \ {(0, 0)}
is called a Baer-K-subline of PG(V ). If v̄1, v̄2 and v̄3 are three linearly independent
vectors of V , then the set of all points of the form 〈λ1v̄1 + λ2v̄2 + λ3v̄3〉, (λ1, λ2, λ3) ∈
(K×K×K) \ {(0, 0, 0)} is called a Baer-K-subplane of PG(V ).

Suppose K is a subfield of F such that F is a separable quadratic extension of K, and
denote by ψ the unique nontrivial automorphism of F fixing K elementwise. We call a set
of points of PG(V ) a K-Hermitian curve if it has equation Xψ+1

0 +X1X
ψ
2 +X2X

ψ
1 = 0 with

respect to a certain reference system. Every point of a K-Hermitian curve is contained in
a unique tangent line. If U is a K-Hermitian curve and L a line of PG(V ), then L ∩ U
is either empty, a singleton or a Baer-K-subline. Moreover, if L ∩ U is a Baer-K-subline,
then there exists a unique point l such that lx is a tangent line for every x ∈ L ∩ U . In
fact, l = Lβ where β is the unitary polarity associated with U .

Suppose again that K is a subfield of index 2 of F. If X is a set of points of PG(V )
and x1, x2 are two distinct points of X, then we say that X satisfies Property (∗) with
respect to (K, x1, x2) if the following conditions are satisfied:

(U1) Any secant line through x1 or x2 intersects X in a Baer-K-subline.

(U2) X \ x1x2 6= ∅.

(U3) There exists a point l ∈ PG(V ) \ x1x2 such that lx is a tangent line for every point
x ∈ x1x2 ∩X.

We say that X satisfies Property (∗) with respect to K if there exist two distinct points
x1, x2 ∈ X such that X satisfies Property (∗) with respect to (K, x1, x2). We will prove
the following result.

Theorem 2.1 (1) If F is a separable quadratic extension of the field K, then the sets
of points of PG(V ) satisfying Property (∗) with respect to K are precisely the K-
Hermitian curves of PG(V ).
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(2) If F is an inseparable quadratic extension of the field K, then the sets of points
of PG(V ) satisfying Property (∗) with respect to K are precisely the sets of points
described by a condition of the form “λX2

0 + X1X2 ∈ K”, where λ ∈ F \ K and
(X0, X1, X2) denote the homogeneous coordinates with respect to a fixed reference
system.

Note that if F is an inseparable quadratic extension of K, then the characteristic of F is
2 and F2 := {x2 |x ∈ F} ⊆ K. This implies that the condition λX2

0 + X1X2 ∈ K is well-
defined: if (X0, X1, X2) satisfies this condition, then also (λX0, λX1, λX2) with λ ∈ F∗
satisfies the condition.

In Theorem 2.1, we characterized two families of sets (among which the K-Hermitian
curves) as sets of points satisfying the three properties (U1), (U2) and (U3). With the aid
of a few examples, we now show that each of these conditions is in some sense necessary.

Examples. (a) Suppose X is a Baer-K-subline, x1, x2 are two distinct points of X and l is
any point of PG(V ) \ x1x2. Then X satisfies Properties (U1) and (U3), but not Property
(U2).

(b) Suppose X is a Baer-K-subplane of PG(V ) and x1, x2 are two distinct points of
X. Then X satisfies the Properties (U1) and (U2), but not (U3). Indeed, every point of
PG(V ) \X is then contained in a unique secant line.

(c) Let L denote a collection of lines through a point l and L a line not containing l
such that {x ∈ L |xl ∈ L} is a Baer-K-subline L′. Let x1 ∈ L′, let L′′ denote a Baer-K-
subline of L such that L′ ∩L′′ = {x1} and let x2 ∈ L′′ \L′. Let Y denote the set of points
of PG(V ) contained on a line of L, and put X := (Y \ (lx1 ∪ L′)) ∪ L′′. Then X satisfies
Properties (U2) and (U3), but not Property (U1) if |F| > 4. However, it is still true that
every secant line through x1 intersects X in a Baer-K-subline (as well as one line through
x2, namely x1x2).

3 (F,K)-sets

Proposition 3.1 Suppose F is a separable quadratic extension of the field K, and let ψ
denote the unique nontrivial element of Gal(F/K). Let a0, a1, a2 ∈ F∗ such that a1

a2
6∈ K.

Then the K-Hermitian curve U of PG(V ) having equation

a2a
ψ
1 − a1a

ψ
2

aψ+1
0

Xψ+1
0 +X1X

ψ
2 −X2X

ψ
1 = 0

with respect to some ordered basis (ē0, ē1, ē2) of V consists of all points of the form

〈λ1ē1 + λ2ē2〉,

where (λ1, λ2) ∈ (K×K) \ {(0, 0)}, and all points of the form

〈a0ē0 + (λ1a1 + λ2a2)ē1 + (µ1a1 + µ2a2)ē2〉,
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where λ1, λ2, µ1, µ2 ∈ K with

∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1.

Proof. Let p = (X0, X1, X2) be a point of PG(V ).
If X0 = 0, then p ∈ U if and only if X1X

ψ
2 −X2X

ψ
1 = 0, i.e. if and only if p is of the

form 〈λ1ē1 + λ2ē2〉, where (λ1, λ2) ∈ (K×K) \ {(0, 0)}.
If X0 6= 0, then we may suppose that X0 = a0. Since a1, a2 are linearly independent

over K, we have X1 = λ1a1 + λ2a2 and X2 = µ1a1 + µ2a2 for certain λ1, λ2, µ1, µ2 ∈ K.
The point p belongs to U if and only if

−(a1a
ψ
2 − a2a

ψ
1 ) + (λ1a1 + λ2a2)(µ1a

ψ
1 + µ2a

ψ
2 )− (µ1a1 + µ2a2)(λ1a

ψ
1 + λ2a

ψ
2 )

= (λ1µ2 − µ1λ2 − 1) · (a1a
ψ
2 − a2a

ψ
1 ) = 0.

Since a1a
ψ
2 − a2a

ψ
1 6= 0, this is equivalent with demanding that

∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1. �

Remark. The K-Hermitian curves of PG(V ) are also the sets of points described by
equations of the form λXψ+1

0 +X1X
ψ
2 −X2X

ψ
1 = 0, where λ ∈ F∗ such that λψ = −λ. If

a0, a1, a2 ∈ F∗ with a1
a2
6∈ K, then λ :=

a2a
ψ
1−a1a

ψ
2

aψ+1
0

satisfies λ 6= 0 and λψ = −λ. Conversely,

every λ ∈ F∗ for which λψ = −λ is of the form
a2a

ψ
1−a1a

ψ
2

aψ+1
0

for certain a0, a1, a2 ∈ F∗ with

a1
a2
6∈ K. Indeed, take a0 = a1 = 1 and a2 = λη

η−ηψ where η ∈ F \K.

Proposition 3.2 Suppose F is an inseparable quadratic extension of the field K. Let
a0, a1, a2 ∈ F∗ such that a1

a2
6∈ K. Then the set X of points described by the condition

a1a2

a2
0

X2
0 +X1X2 ∈ K,

where (X0, X1, X2) denote the homogeneous coordinates with respect to some ordered basis
(ē0, ē1, ē2) of V , consists of all points of the form

〈λ1ē1 + λ2ē2〉,

where (λ1, λ2) ∈ (K×K) \ {(0, 0)}, and all points of the form

〈a0ē0 + (λ1a1 + λ2a2)ē1 + (µ1a1 + µ2a2)ē2〉,

where λ1, λ2, µ1, µ2 ∈ K with

∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1.

Proof. Let p = (X0, X1, X2) be an arbitrary point of PG(V ).
If X0 = 0, then p ∈ X if and only if X1X2 ∈ K. If X2 6= 0, then since F2 ⊆ K, the

condition X1X2 ∈ K is equivalent with X1

X2
∈ K. So, if X0 = 0, then p ∈ X if and only if

p is of the form 〈λ1ē1 + λ2ē2〉, where (λ1, λ2) ∈ (K×K) \ {(0, 0)}.
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If X0 6= 0, then we may suppose that X0 = a0. Since a1, a2 are linearly independent
over K, we have X1 = λ1a1 + λ2a2 and X2 = µ1a1 + µ2a2 for certain λ1, λ2, µ1, µ2 ∈ K.
The point p belongs to X if and only if

a1a2 + (λ1a1 + λ2a2)(µ1a1 + µ2a2)

= (λ1µ1a
2
1 + λ2µ2a

2
2) + a1a2(1 + λ1µ2 + λ2µ1) ∈ K.

Since a2
1, a

2
2 ∈ K, we have λ1µ1a

2
1 + λ2µ2a

2
2 ∈ K, and since a1

a2
6∈ K, we also have a1a2 6∈ K.

So, the point p belongs to X if and only if 1 + λ1µ2 + λ2µ1 = 0, i.e. if and only if∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1.

�

Remark. Suppose F is an inseparable quadratic extension of the field K. If a0, a1, a2 ∈ F∗
such that a1

a2
6∈ K, then a2

0 ∈ K∗ and a1a2 6∈ K∗ and hence a1a2
a20
6∈ K. Conversely, if

λ ∈ F \K, then λ = a1a2
a20

for certain a0, a1, a2 ∈ F∗ such that a1
a2
6∈ K. Indeed, we can take

a0 = 1, a1 = 1 and a2 = λ.

We introduce a common terminology for the sets of points occurring in Propositions 3.1
and 3.2. Suppose K is a subfield of index 2 of F. A set X of points of PG(V ) is called an
(F,K)-set with respect to some line L of PG(V ) if there exist a0, a1, a2 ∈ F∗ with a1

a2
6∈ K

and an ordered basis (ē0, ē1, ē2) of V such that L = 〈ē1, ē2〉 and X consists of all points
of the form 〈λ1ē1 + λ2ē2〉, where (λ1, λ2) ∈ (K×K) \ {(0, 0)}, and all points of the form

〈a0ē0 + (λ1a1 + λ2a2)ē1 + (µ1a1 + µ2a2)ē2〉, where λ1, λ2, µ1, µ2 ∈ K with

∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1.

So, we have the following.

Corollary 3.3 (a) If F is a separable quadratic extension of the field K, then the (F,K)-
sets are precisely the K-Hermitian curves of PG(V ).

(b) If F is an inseparable quadratic extension of the field K, then the (F,K)-sets are
precisely the sets of points described by a condition of the form “λX2

0 +X1X2 ∈ K”,
where λ ∈ F \K and (X0, X1, X2) denote the homogeneous coordinates of the points
with respect to a fixed reference system.

We prove the following property of (F,K)-sets.

Proposition 3.4 Suppose F is a quadratic extension of the field K. If X is an (F,K)-
set and x1, x2 are two distinct points of X, then X satisfies Property (∗) with respect to
(K, x1, x2). Moreover, every point of X is contained in a unique tangent line.
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Proof. If F is a separable quadratic extension of K, then X is a K-Hermitian curve, and
we already know then that X must satisfy Property (K, x1, x2) and that every point of X
is contained in a unique tangent line.

Suppose therefore that F is an inseparable quadratic extension of K. Then take an
ordered basis (ē0, ē1, ē2) of V and a λ ∈ F \K such that X is described by the condition

λX2
0 +X1X2 ∈ K.

Put l := 〈ē0〉. Then l 6∈ X since λ 6∈ K. To prove the proposition, it suffices to show the
following:

(†) For every point x ∈ X, the line lx is a tangent line and every other line
through x intersects X in a Baer-K-subline.

Now, consider the quadratic form q : V → F defined by

q(X0ē0 +X1ē1 +X2ē2) = λX2
0 +X1X2,

and denote by f : V × V → F the associated bilinear form, i.e. f(v̄, w̄) = q(v̄ + w̄) −
q(v̄) − q(w̄), ∀v̄, w̄ ∈ V . Then f is a degenerate alternating bilinear form with radical
〈ē0〉.

We show the validity of (†). Let v̄ ∈ V such that x = 〈v̄〉 and let L be a line through
x. Then L is determined by a 2-space 〈v̄, w̄〉 of V . Every point of L \ {x} has the form
〈µv̄+ w̄〉 where µ ∈ F. Note that q(µv̄+ w̄) = µ2 ·q(v̄)+µ ·f(v̄, w̄)+q(w̄) and µ2q(v̄) ∈ K.

If f(v̄, w̄) 6= 0, then 〈µv̄ + w̄〉 ∈ X if and only if µ is of the form k−q(w̄)
f(v̄,w̄)

where k ∈ K,

and it is straightforward to verify that for such values of µ, the points 〈v̄〉, 〈µv̄+ w̄〉 form
a Baer-K-subline of L.

If f(v̄, w̄) = 0, then 〈v̄, w̄〉 = 〈v̄, ē0〉 and without loss of generality, we may suppose
that w̄ = ē0. Then q(µv̄+ w̄) = µ2 ·q(v̄)+λ 6∈ K for all µ ∈ K. In this case, L is a tangent
line. �

4 Proof of Theorem 2.1

In this section, we suppose that F is a quadratic extension of the field K. We also suppose
that X is a set of points of PG(V ) satisfying Property (∗) with respect to (K, x1, x2), where
x1 and x2 are two distinct points of X. Put L := x1x2. Then L∩X is a Baer-K-subline of
L. Let l be a point of PG(V ) \L such that lx is a tangent line for every point x ∈ L∩X.
We choose an ordered basis (ē0, ē1, ē2) of V such that l = 〈ē0〉, x1 = 〈ē1〉, x2 = 〈ē2〉 and
L∩X consists of all points of the form 〈λ1ē1 + λ2ē2〉, where (λ1, λ2) ∈ (K×K) \ {(0, 0)}.

Lemma 4.1 If X \ L contains a point y = 〈a0ē0 + a1ē1 + a2ē2〉 with a0, a1, a2 ∈ F, then
a1, a2 are linearly independent over K. Hence, a0, a1, a2 6∈ F∗ and a1

a2
6∈ K.

Proof. Since y 6= l, we have (a1, a2) 6= (0, 0). If a1, a2 were linearly dependent over K,
then x = 〈a1ē1 + a2ē2〉 were a point of L ∩X and y ∈ lx, an obvious contradiction. �
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Lemma 4.2 Suppose X\L contains the point y = 〈a0ē0+a1ē1+a2ē2〉. Then for all λ ∈ K,
the set X also contains the points 〈a0ē0+(a1+λa2)ē1+a2ē2〉 and 〈a0ē0+a1ē1+(a2+λa1)ē2〉.

Proof. Consider the unique Baer-K-subplane B containing the Baer-K-sublines x1y ∩X
and x1x2 ∩X. Through the point l, there exists a line M such that M ∩ B is a Baer-K-
subline. As M meets L ∩ X, it is a tangent line. As M ∩ x1y and M ∩ x1x2 define two
points of X contained in this tangent line, we have M ∩ x1y = M ∩ x1x2, i.e. M = lx1.
So, the unique intersection point 〈a0ē0 + a1ē1〉 of the lines lx1 and yx2 must belong to B.
Hence, the unique intersection point 〈a0ē0 + (a1 + λa2)ē1 + a2ē2〉 of the line x1y with the
unique line through 〈a0ē0 + a1ē1〉 and 〈λē1 + ē2〉 is contained in B and hence also in X.

By symmetry, we should also have that 〈a0ē0 + a1ē1 + (a2 + λa1)ē2〉 belongs to X \L.
�

By successive application of Lemma 4.2, we find:

Corollary 4.3 Suppose X \ L contains the point y = 〈a0ē0 + a1ē1 + a2ē2〉. Then X \ L
contains all points of the form

〈a0ē0 + (λ1a1 + λ2a2)ē1 + (µ1a1 + µ2a2)ē2〉,

where λ1, λ2, µ1, µ2 ∈ K with

∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1.

Now, let Y denote the (F,K)-set consisting of all points of the form 〈λ1ē1 + λ2ē2〉, where
(λ1, λ2) ∈ (K×K) \ {(0, 0)}, and all points of the form 〈a0ē0 + (λ1a1 + λ2a2)ē1 + (µ1a1 +

µ2a2)ē2〉, where λ1, λ2, µ1, µ2 ∈ K with

∣∣∣∣ λ1 λ2

µ1 µ2

∣∣∣∣ = 1. Then Y ⊆ X by Corollary 4.3.

The following proposition, in combination with Corollary 3.3 and Proposition 3.4, finishes
the proof of Theorem 2.1.

Proposition 4.4 The set X coincides with the (F,K)-set Y .

Proof. Since Y ⊆ X, the unique line through x1 tangent to Y necessarily coincides with
lx1 and is also the unique line through x1 tangent to X. Suppose Y is properly contained
in X, and denote by x an arbitrary point of X \ Y . Then xx1 is not tangent to X and
hence also not to Y . Now, X ∩ x1x and Y ∩ x1x are two Baer-K-sublines of x1x and
Y ∩ x1x would be properly contained in X ∩ x1x (since x ∈ (X ∩ x1x) \ (Y ∩ x1x)). This
is clearly impossible. �
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