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Abstract

Let V be a 4-dimensional vector space over a field F equipped with a nondegen-
erate alternating bilinear form f , and let Sp(V, f) ∼= Sp(4,F) denote the symplectic
group associated with (V, f). We consider a 16-dimensional submodule W16 of the
24-dimensional Sp(V, f)-module V ⊗

∧2 V , and show that this Sp(V, f)-module is
irreducible if and only if char(F) 6= 5. If char(F) = 5, then there is a unique non-
trivial submodule, and the dimension of this submodule is equal to 4. These results
will have some consequences to full projective embeddings of generalized octagons.
The projective space PG(W16) admits a full projective embedding for the general-
ized octagon which arises as flag geometry of the symplectic quadrangle associated
with (V, f). We show that this embedding is polarized and also homogeneous, un-
less |F| > 2 and F is a perfect field of characteristic 2. Other properties of this
embedding will also be investigated.
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1 Introduction

Let V be a 4-dimensional vector space over a field F equipped with a nondegenerate
alternating bilinear from f . An ordered basis (ē1, f̄1, ē2, f̄2) of V is called a hyperbolic basis
of (V, f) if f(ē1, f̄1) = f(ē2, f̄2) = 1 and f(ē1, ē2) = f(ē1, f̄2) = f(f̄1, ē2) = f(f̄1, f̄2) = 0.
We denote by Sp(V, f) ∼= Sp(4,F) the symplectic group associated with (V, f), i.e. the
subgroup of GL(V ) consisting of all θ ∈ GL(V ) such that f(v̄θ1, v̄

θ
2) = f(v̄1, v̄2) for all

v̄1, v̄2 ∈ V . The group Sp(V, f) consists of precisely those elements of GL(V ) that map
hyperbolic basis of (V, f) to hyperbolic basis of (V, f). Now, put

W24 := V ⊗
∧2

V,

where
∧2 V is the second exterior power of V . Then W24 is a 24-dimensional vector

space over F. For every θ ∈ GL(V ), there exists a unique θ̃ ∈ GL(W24) such that
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(v̄1 ⊗ v̄2 ∧ v̄3)θ̃ = v̄θ1 ⊗ v̄θ2 ∧ v̄θ3 for all v̄1, v̄2, v̄3 ∈ V . By abuse of notation, we will denote

θ̃ also by θ. By looking at the subgroup Sp(V, f) of GL(V ), we thus see that the vector
space W24 can be regarded as an Sp(V, f)-module.

Let (ē1, f̄1, ē2, f̄2) be a hyperbolic basis of (V, f) and let W16 denote the 16-dimensional
subspace of W24 generated by the following 16 vectors:

χ1 := ē1 ⊗ ē1 ∧ ē2, χ2 := ē1 ⊗ ē1 ∧ f̄2, χ3 := f̄1 ⊗ f̄1 ∧ ē2, χ4 := f̄1 ⊗ f̄1 ∧ f̄2,

χ5 := ē2 ⊗ ē2 ∧ ē1, χ6 := ē2 ⊗ ē2 ∧ f̄1, χ7 := f̄2 ⊗ f̄2 ∧ ē1, χ8 := f̄2 ⊗ f̄2 ∧ f̄1,

χ9 := ē2 ⊗ f̄2 ∧ ē1 + f̄2 ⊗ ē2 ∧ ē1, χ10 := ē2 ⊗ f̄2 ∧ f̄1 + f̄2 ⊗ ē2 ∧ f̄1,

χ11 := ē1 ⊗ f̄1 ∧ ē2 + f̄1 ⊗ ē1 ∧ ē2, χ12 := ē1 ⊗ f̄1 ∧ f̄2 + f̄1 ⊗ ē1 ∧ f̄2,

χ13 := ē1 ⊗ ē2 ∧ f̄2 − ē1 ⊗ ē1 ∧ f̄1 + ē2 ⊗ ē1 ∧ f̄2,

χ14 := f̄1 ⊗ ē2 ∧ f̄2 − f̄1 ⊗ ē1 ∧ f̄1 − f̄2 ⊗ f̄1 ∧ ē2,

χ15 := ē2 ⊗ ē1 ∧ f̄1 − ē2 ⊗ ē2 ∧ f̄2 + ē1 ⊗ ē2 ∧ f̄1,

χ16 := f̄2 ⊗ ē1 ∧ f̄1 − f̄2 ⊗ ē2 ∧ f̄2 − f̄1 ⊗ f̄2 ∧ ē1.

We will show that W16 is stabilized by Sp(V, f), implying that the subspace W16 is inde-
pendent of the chosen hyperbolic basis (ē1, f̄1, ē2, f̄2). We will prove the following.

Theorem 1.1 The Sp(V, f)-module W16 is irreducible if and only if char(F) 6= 5. If
char(F) = 5, then W16 has a unique nontrivial submodule, namely the subspace

〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉.

Define now the following point-line geometry W (F):

• the points of W (F) are the 1-dimensional subspaces of V ;

• the lines of W (F) are the 2-dimensional subspaces of V which are totally isotropic
with respect to f ;

• incidence is containment.

Then W (F) is a generalized quadrangle ([5]) meaning that for every line L and every
point x not incident with L, there exists a unique point on L collinear with x. The
generalized quadrangle W (F) is called symplectic. The flag-geometry F(W (F)) of W (F)
is the following point-line geometry:

• the points of F(W (F)) are the flags of W (F), that is the unordered point-line pairs
{x, L}, where L is a line of W (F) and x is a point of W (F) incident with L;

• the lines of F(W (F)) are of two types, the points of W (F) on the one hand and the
lines of W (F) on the other hand;

• incidence is reverse containment.
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The geometry F(W (F)) is a so-called generalized octagon of order (|F|, 1), see [12].
For every flag F = {〈v̄1〉, 〈v̄1, v̄2〉} of W (F), let e∗(F ) be the point 〈v̄1 ⊗ v̄1 ∧ v̄2〉 of

PG(W24). The point e∗(F ) is well-defined. Indeed, if v̄′1, v̄
′
2 are other vectors of V such

that 〈v̄1〉 = 〈v̄′1〉 and 〈v̄1, v̄2〉 = 〈v̄′1, v̄′2〉, then 〈v̄1⊗ v̄1 ∧ v̄2〉 = 〈v̄′1⊗ v̄′1 ∧ v̄′2〉. We will prove
the following (see Theorem 4.3).

Theorem 1.2 The map e∗ defined a full projective embedding of F(W (F)) into PG(W16).

With a full projective embedding of a point-line geometry into a projective space PG(W ),
we mean an injective mapping e from its point set to the point set of PG(W ), mapping
lines to full lines of PG(W ) such that the image of e generates the whole projective
space PG(W ). K. Coolsaet (unpublished) also observed that the flag geometry F(W (F))
admits a full projective embedding into a 15-dimensional projective space. Projective
embeddings of generalized octagons and flag geometries of projective planes have already
been studied in the literature, see [2, 3] and [7, 8, 9, 10, 11]. Projective embeddings
of F(W (F)) in a 15-dimensional and a 24 dimensional projective space were already
described in [2, 3], in case the underlying field F satisfies additional restrictions. The
description of the 15-dimensional embedding described here is essentially different from
the one given in [2]. In [2], the embedding space is of the form PG(Q⊗Q′), where Q and
Q′ are two 4-dimensional vector spaces, while here the embedding space is a subspace of
PG(V ⊗U) where dim(U) > 4. (Note that we can take for U the 5-dimensional subspace
〈ē1 ∧ ē2, ē1 ∧ f̄2, f̄1 ∧ ē2, f̄1 ∧ f̄2, ē1 ∧ f̄1 − ē2 ∧ f̄2〉 of

∧2 V .)

In this paper, distances between points of F(W (F)) will always be measured in the
collinearity graph of F(W (F)). The maximal distance between two points of F(W (F))
is equal to 4. The set of points at distance i (at most i) from a given point x will be
denoted by Γi(x) (Γ≤i(x)). For every point p of F(W (F)), we define Hp := Γ≤3(p). A
full projective embedding e of F(W (F)) into PG(W ) is called polarized if for every point
p, there exists a hyperplane Πp of PG(W ) such that Hp = e−1(e(PF) ∩ Πp), where PF
denotes the point set of F(W (F)). We will also show the following.

Theorem 1.3 For every point p of F(W (F)), there exists a unique hyperplane Πp of
PG(W16) such that Hp = e∗−1(e∗(PF) ∩ Πp). As a consequence, the embedding e∗ is
polarized.

We will also determine the dimensions of all subspaces 〈e∗(Γ≤i(p))〉, where p ∈ PF and
i ∈ {0, 1, 2, 3, 4}.

Suppose e : F(W (F))→ PG(W ) is a full projective embedding of F(W (F)) and G is a
group of automorphisms of F(W (F)). Then e is called G-homogeneous if for every g ∈ G
there exists a (necessarily unique) automorphism g of PG(W ) such that e ◦ g = g ◦ e. A
G-homogeneous full projective embedding where G is the full automorphism group is also
called a homogeneous full projective embedding. We will show the following.
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Theorem 1.4 If G is the group of automorphisms of F(W (F)) preserving the line types,
then e∗ is a G-homogeneous embedding. The embedding e∗ is homogeneous, unless |F| > 2
and F is a perfect field of characteristic 2.

Suppose e : F(W (F)) → PG(W ) is a full projective embedding of F(W (F)) and
π is a subspace of PG(W ) disjoint from the image of e. We denote by PG(W )/π the
quotient projective space whose points are those subspaces of PG(W ) that contain π as a
hyperplane. The function e/π which maps each point p of F(W (F)) to the point 〈e(p), π〉
of PG(W )/π is then a full projective embedding of F(W (F)) into PG(W )/π. We call e/π
a quotient of e.

The subspace 〈χ9 +2χ13, 2χ10 +χ14, χ11 +2χ15, 2χ12 +χ16〉 determines a subspace α of
PG(W16) which is disjoint from the image of e∗, implying that the embedding ē := e∗/α
is well-defined. We will show the following.

Theorem 1.5 The embedding ē is polarized and homogeneous.

2 Preliminaries

We continue with the notation introduced in Section 1. If (ē1, f̄1, ē2, f̄2) is a hyperbolic
basis of (V, f), then

(1) for every λ ∈ F∗ := F \ {0}, also (λē1,
f̄1
λ
, ē2, f̄2) is a hyperbolic basis of (V, f);

(2) for every λ ∈ F, also (ē1 + λē2, f̄1, ē2,−λf̄1 + f̄2) is a hyperbolic basis of (V, f);

(3) for every λ ∈ F, also (ē1, f̄1, ē2 + λf̄2, f̄2) is a hyperbolic basis of (V, f);

(4) for every λ ∈ F, also (ē1, f̄1, ē2, f̄2 + λē2) is a hyperbolic basis of (V, f);

(5) also (ē2, f̄2, ē1, f̄1) is a hyperbolic basis of (V, f);

(6) also (−f̄1, ē1, ē2, f̄2) is a hyperbolic basis of (V, f);

(7) also (ē1 + ē2, f̄1, ē2, f̄2 − f̄1) is a hyperbolic basis of (V, f).

For every i ∈ {1, 2, . . . , 7}, let Ωi denote the set of all ordered pairs (B1, B2) of hyperbolic
bases of (V, f) such that B2 can be obtained from B1 as described in (i) above. The
following was proved in [4, Lemma 2.1]:

Lemma 2.1 If B and B′ are two hyperbolic bases of (V, f), then there exist hyperbolic
bases B0, B1, . . . , Bk of (V, f) for some k ≥ 0 such that B0 = B, Bk = B′ and (Bi−1, Bi) ∈
Ω1 ∪ Ω2 ∪ . . . ∪ Ω5 for every i ∈ {1, 2, . . . , k}.

We shall make use of the following improved version of Lemma 2.1.
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Lemma 2.2 If B and B′ are two hyperbolic bases of (V, f), then there exist hyperbolic
bases B0, B1, . . . , Bk of (V, f) for some k ≥ 0 such that B0 = B, Bk = B′ and (Bi−1, Bi) ∈
Ω4 ∪ Ω5 ∪ Ω6 ∪ Ω7 for every i ∈ {1, 2, . . . , k}.

Proof. In view of Lemma 2.1, it suffices to prove this in the case where (B,B′) ∈ Ω1 ∪
Ω2∪Ω3∪Ω4∪Ω5. We leave the verification in each of these five cases as a straightforward
exercise to the reader. �

Lemma 2.2 implies the following.

Proposition 2.3 Let B = (ē1, f̄1, ē2, f̄2) be a hyperbolic basis of (V, f). Let θ1 be the
element of Sp(V, f) mapping B to (ē2, f̄2, ē1, f̄1), θ2 the element of Sp(V, f) mapping B to
(−f̄1, ē1, ē2, f̄2), θ3(λ) with λ ∈ F∗ the element of Sp(V, f) mapping B to (ē1, f̄1, ē2, f̄2 +
λē2), and θ4 the element of Sp(V, f) mapping B to (ē1 + ē2, f̄1, ē2, f̄2− f̄1). Then the group
G = 〈θ1, θ2, θ3(λ), θ4 |λ ∈ F∗〉 coincides with Sp(V, f).

Proof. Let θ be an arbitrary element of Sp(V, f). By Lemma 2.2, there exist hyperbolic
bases B0, B1, . . . , Bk of (V, f) for some k ≥ 0 such that B0 = B, Bk = Bθ and (Bi−1, Bi) ∈
Ω4 ∪ Ω5 ∪ Ω6 ∪ Ω7 for every i ∈ {1, 2, . . . , k}. We prove by induction on k that θ ∈ G.
This clearly holds if k ∈ {0, 1}. So, we will suppose that k ≥ 2 and that the proposition
holds for smaller values of k. Let θ′ be the element of Sp(V, f) mapping the hyperbolic
B to the hyperbolic basis Bk−1. By the induction hypothesis, θ′ ∈ G. Now, there exists

a θ′′ ∈ G mapping the hyperbolic basis B = Bθ′−1

k−1 to the hyperbolic basis Bθ′−1

k . Then
θ′ ◦ θ′′ maps B to Bk and hence coincides with θ. Since θ′, θ′′ ∈ G, also θ ∈ G. �

Now, let (ē∗1, f̄
∗
1 , ē
∗
2, f̄

∗
2 ) be a fixed hyperbolic basis of (V, f). For every h ∈ F∗, let θ∗h be

the element of GL(V ) mapping the ordered basis (ē∗1, f̄
∗
1 , ē
∗
2, f̄

∗
2 ) of V to the ordered basis

(hē∗1, f̄
∗
1 , hē

∗
2, f̄

∗
2 ) of V , and for every automorphism α of F, let θ∗α be the element of ΓL(V )

defined by
λ1ē

∗
1 + µ1f̄

∗
1 + λ2ē

∗
2 + µ2f̄

∗
2 7→ λα1 ē

∗
1 + µα1 f̄

∗
1 + λα2 ē

∗
2 + µα2 f̄

∗
2 .

Every θ ∈ Sp(V, f) will induce an automorphism Aθ of W (F), every θ∗h with h ∈ F∗
will induce an automorphism Ah of W (F), and every θ∗α with α ∈ Aut(F) will induce an
automorphism Aα of W (F). In fact the following holds.

Proposition 2.4 Every automorphism of W (F) is induced by an element of ΓL(V ) of
the form θ∗h ◦ θ ◦ θ∗α, where θ ∈ Sp(V, f), h ∈ F∗ and α ∈ Aut(F).

The following result is also known.

Proposition 2.5 The generalized quadrangle W (F) is isomorphic to its point-line dual
WD(F) if and only if F is a perfect field of characteristic 2.

Every automorphism A of W (F) induces an automorphism A of F(W (F)) that does not
alter the types of the lines. If F is a perfect field of characteristic 2, then every duality D
of W (F) will induce an automorphism D of F(W (F)) which interchanges the line types.
In fact, we have the following:
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Proposition 2.6 • If F is not a perfect field of characteristic 2, then every automor-
phism of F(W (F)) is induced by an automorphism of W (F).

• If F is a perfect field of characteristic 2, then every automorphism of F(W (F)) is
induced by an automorphism or a duality of W (F).

We follow the convention that distances in W (F), WD(F) and F(W (F)) are measured in
their respective collinearity graphs. We denote by d(·, ·), δ(·, ·) and δD(·, ·) the respective
distance functions in F(W (F)), W (F) and WD(F). We have the following:

Proposition 2.7 If {x1, L1} and {x2, L2} are two flags of W (F), then d({x1, L1}, {x2, L2})
= δ(x1, x2) + δD(L1, L2).

Two points p1 = {x1, L1} and p2 = {x2, L2} of F(W (F)) are said to be opposite if they
lie at maximal distance 4 from each other, i.e. if x1 and x2 are two noncollinear points of
W (F) and if L1, L2 are two nonintersecting lines of W (F).

3 The embedding and generating ranks of F(W (2))

If F is a finite field with q elements, then we denote W (F) and F(W (F)) also by W (q)
and F(W (q)). The generalized octagon F(W (2)) is, up to isomorphism, the unique
octagon of order (2, 1) and for this reason, we will also denote it by GO(2, 1). By [6,
Corollary 4, p.184], the geometry GO(2, 1) has full projective embeddings and hence

admits an absolutely universal embedding ẽ : GO(2, 1) → PG(W̃ ) (meaning that every

full embedding of GO(2, 1) is isomorphic to a quotient of ẽ). The dimension dim(W̃ ) of

W̃ is called the embedding rank of GO(2, 1) and is equal to v− rankF2(N), where v = 45 is
the total number of points of GO(2, 1) and N is an incidence matrix of GO(2, 1), that is
a 0-1 matrix whose rows are indexed by the points and whose columns are indexed by the
lines, where an entry equals 1 if and only if the corresponding point-line pair is incident.
We will now determine rankR(N). To achieve this goal, we will make use of the known
spectrum of the collinearity graph of GO(2, 1). This spectrum can easily be derived from
Table 6.4 on page 203 of [1].

Lemma 3.1 The collinearity graph of GO(2, 1) has spectrum (−2)16(−1)91103941.

Lemma 3.2 We have rankR(N) = 29.

Proof. Let A denote the adjacency matrix of GO(2, 1), where the ordering of the points
used to label the rows and columns of A is the same as the ordering of the points we used
to label the rows of N . We then have N ·NT = A+ 2I, where I is the (45× 45)-identity
matrix. So, by Lemma 3.1 we have

rankR(N) = rankR(N ·NT ) = rankR(A+ 2I) = 9 + 10 + 9 + 1 = 29.

�

Lemma 3.2 allows us to determine a lower bound for the embedding rank of GO(2, 1).
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Lemma 3.3 We have dim(W̃ ) ≥ 16.

Proof. We have dim(W̃ ) = 45− rankF2(N) ≥ 45− rankR(N) = 16. �

We will later show that for any field F, the generalized octagon F(W (F)) admits a full
projective embedding into a 15-dimensional projective space over F. The next goal in this
section will be to show that dim(W̃ ) = 16. To achieve this goal, we will make use of the
notion of generating rank and of another model of W (2).

A subspace of a point-line geometry S is a set X of points containing all the points
of a line if this line has at least two of its points in X. Obviously, the whole point set
is an example of a subspace. If X is a nonempty set of points, then the intersection of
all subspaces containing X is the smallest subspace that contains X and is denoted by
〈X〉. If 〈X〉 coincides with the whole point set, then X is called a generating set of S. In
general, 〈X〉 is called the subspace generated by X. The smallest size of a generating set
of S is called the generating rank of S and denoted by gr(S). If e : S → PG(W ) is a full
projective embedding of S, then dim(W ) ≤ gr(S).

In particular, we thus have that dim(W̃ ) ≤ gr(GO(2, 1)). In order to show that

dim(W̃ ) = 16, it thus suffices to show that GO(2, 1) has a generating set of size 16. We
achieve this goal by using another model of W (2). The generalized quadrangle W (2) is
isomorphic to the point-line geometry

• whose points are the subsets of size 2 of {1, 2, 3, 4, 5, 6},

• whose lines are the partitions of {1, 2, 3, 4, 5, 6} into three subsets of size 2,

• whose incidence relation is containment.

This model is called Sylvester’s model of W (2).

If x is a point of GO(2, 1), then:

• |Γ0(x)| = 1, |Γ1(x)| = 4, |Γ2(x)| = 8, |Γ3(x)| = 16 and |Γ4(x)| = 16;

• there are two lines containing x, four lines meeting Γ1(x) and Γ2(x), eight lines
meeting Γ2(x) and Γ3(x), and sixteen lines meeting Γ3(x) and Γ4(x).

Lemma 3.4 If x is a point of GO(2, 1), then:

(1) The graph defined on Γ4(x) by the collinearity relation has two connected compo-
nents. Each connected component is a cycle of length 8.

(2) If y0, y1, . . . , y8 = y0 is a cycle of length 8 contained in Γ4(x), then each line yi−1yi
with i ∈ {1, 2, . . . , 8} meets a unique line Li of GO(2, 1) for which Li ∩Γ2(x) 6= ∅ 6=
Li ∩ Γ3(x). The eight lines L1, L2, . . . , L8 are mutually distinct and are all the lines
meeting Γ2(x) and Γ3(x).
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Proof. We will use Sylvester’s model of W (2). Without loss of generality, we may
suppose that

x = {{1, 2}, {{1, 2}, {3, 4}, {5, 6}}.

Γ4(x) is a regular graph of degree 2 and hence is the disjoint union of a number of cycles.
Since the stabilizer of x acts transitively on the set of points opposite to x, all these cycles
will have the same length k. We now determine the length of such a cycle starting from
a point y0 ∈ Γ4(x). Without loss of generality, we may suppose that

y0 = {{1, 3}, {{1, 3}, {2, 6}, {4, 5}}.

The first step we take is along the line {1, 3}. The cycle which then arises will be denoted
by y0, y1, . . . , yk = y0. We find:

y1 = {{1, 3}, {{1, 3}, {2, 5}, {4, 6}}}, y2 = {{2, 5}, {{1, 3}, {2, 5}, {4, 6}}},

y3 = {{2, 5}, {{1, 4}, {2, 5}, {3, 6}}}, y4 = {{1, 4}, {{1, 4}, {2, 5}, {3, 6}}},

y5 = {{1, 4}, {{1, 4}, {2, 6}, {3, 5}}}, y6 = {{2, 6}, {{1, 4}, {2, 6}, {3, 5}}},

y7 = {{2, 6}, {{1, 3}, {2, 6}, {4, 5}}}, y8 = {{1, 3}, {{1, 3}, {2, 6}, {4, 5}}}.

Thus k = 8. Now, for every i ∈ {1, 2, . . . , 8}, put {zi} := yi−1yi ∩ Γ3(x), and let Li
denote the unique line through zi containing a point at distance 2 from x. Then one
easily computes:

z1 = {{1, 3}, {{1, 3}, {2, 4}, {5, 6}}} L1 = {{1, 3}, {2, 4}, {5, 6}}
z2 = {{4, 6}, {{1, 3}, {2, 5}, {4, 6}}} L2 = {4, 6}
z3 = {{2, 5}, {{1, 6}, {2, 5}, {3, 4}}} L3 = {{1, 6}, {2, 5}, {3, 4}}
z4 = {{3, 6}, {{1, 4}, {2, 5}, {3, 6}}} L4 = {3, 6}
z5 = {{1, 4}, {{1, 4}, {2, 3}, {5, 6}}} L5 = {{1, 4}, {2, 3}, {5, 6}}
z6 = {{3, 5}, {{1, 4}, {2, 6}, {3, 5}}} L6 = {3, 5}
z7 = {{2, 6}, {{1, 5}, {2, 6}, {3, 4}}} L7 = {{1, 5}, {2, 6}, {3, 4}}
z8 = {{4, 5}, {{1, 3}, {2, 6}, {4, 5}}} L8 = {4, 5}

Note that L1, L2, . . . , L8 are precisely the eight lines meeting Γ2(x) and Γ3(x). This shows
the validity of the lemma. �

Lemma 3.4 has the following corollary.

Corollary 3.5 Let L be a line meeting Γ2(x) and Γ3(x). Then the number of connected
components of Γ4(x) defined by the lines meeting Γ4(x) and Γ3(x) \ L is also equal to 2.

Proposition 3.6 The generalized octagon GO(2, 1) can be generated by 16 points.

8



Proof. Let x be a fixed point of GO(2, 1). Put u1 := x, and let u2, u3 ∈ Γ1(x) such that
xu2 and xu3 are the two lines through x.

There are four lines meeting Γ1(x) and Γ2(x). On each of these four lines, we take a
point not contained in Γ1(x). In this way, we obtain four points which we will denote by
u4, u5, u6 and u7.

There are eight lines meeting Γ2(x) and Γ3(x). We denote by L one of these eight
lines. On each of the seven other lines, we take a point not contained in Γ2(x). In this
way, we obtain seven points which we will denote by u8, u9, . . . , u14.

By Lemma 3.4(1), we know that Γ4(x) has two connected components C1 and C2. We
take an arbitrary point u15 ∈ C1 and an arbitrary point u16 ∈ C2.

We now show that {u1, u2, . . . , u16} is a generating set of GO(2, 1). Obviously, the
following hold:

〈u1〉 = {x}, 〈u1, u2, u3〉 = Γ≤1(x), 〈u1, u2, . . . , u7〉 = Γ≤2(x),

〈u1, u2, . . . , u14〉 = Γ≤3(x) \ (L ∩ Γ3(x)).

By Corollary 3.5, we also know that C1 and C2 are the two connected components of
Γ4(x) defined by the lines meeting Γ4(x) and Γ3(x) \ L. So, the smallest subspace of
GO(2, 1) containing Γ≤3(x) \ (L ∩ Γ3(x)) and u15 contains C1 and the smallest subspace
of GO(2, 1) containing Γ≤3(x) \L and u16 contains C2. We conclude that 〈u1, u2, . . . , u16〉
also contains C1 ∪ C2 = Γ4(x) and hence the whole point set of GO(2, 1). Indeed, every
point of L ∩ Γ3(x) is contained in a line that contains two points of Γ4(x). �

By Lemma 3.3 and Proposition 3.6, we have:

Corollary 3.7 The embedding and generating ranks of GO(2, 1) are equal to 16.

We also have the following:

Proposition 3.8 Let ẽ : GO(2, 1)→ PG(W̃ ) denote the universal embedding of GO(2, 1).
Then:

(1) ẽ is polarized. For every point x of GO(2, 1), there is a unique hyperplane Πx of

PG(W̃ ) such that Hx = ẽ−1(ẽ(P) ∩ Πx). Here, P is the point set of GO(2, 1).

(2) For every point x of GO(2, 1), the subspace of PG(W̃ ) generated by ẽ(Hx) is a

subspace of co-dimension 2 of PG(W̃ ).

Proof. If Π is a hyperplane of PG(W̃ ), then HΠ := ẽ−1(ẽ(P) ∩ Π) is a hyperplane of
GO(2, 1), i.e. a set of points distinct from P meeting each line in either 1 or 3 points. By
[6, Corollary 2, p.180], every hyperplane H of GO(2, 1) is equal to HΠ for a (necessarily

unique) hyperplane Π of PG(W̃ ).
For every point x of GO(2, 1), the set Hx is a hyperplane of GO(2, 1). Such hyper-

planes are called singular. Applying the previous paragraph to the singular hyperplanes
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θ1 θ2 θ3(λ) θ4

χ1 χ5 χ3 χ1 χ1 − χ5

χ2 χ6 χ4 χ2 + λχ1 χ2 − χ6 + χ13 − χ15

χ3 χ7 χ1 χ3 χ3

χ4 χ8 χ2 χ4 + λχ3 χ4

χ5 χ1 −χ6 χ5 χ5

χ6 χ2 χ5 χ6 χ6

χ7 χ3 −χ8 χ7 + λχ9 + λ2χ5 χ3 + χ7 + χ14 + χ16

χ8 χ4 χ7 χ8 + λχ10 + λ2χ6 χ4 + χ8

χ9 χ11 −χ10 χ9 + 2λχ5 χ9 + χ6 + χ15 + χ11

χ10 χ12 χ9 χ10 + 2λχ6 χ3 + χ10

χ11 χ9 −χ11 χ11 χ11 − χ6

χ12 χ10 −χ12 χ12 + λχ11 χ12 + χ3 + χ14 − χ10

χ13 χ15 −χ14 + χ10 χ13 − λχ5 χ13 − 3χ6 − 2χ15

χ14 χ16 χ13 + χ9 χ14 + λχ6 χ14 + 3χ3

χ15 χ13 χ15 + χ11 χ15 χ15 + 3χ6

χ16 χ14 χ16 − χ12 χ16 + λχ15 + λχ11 χ16 + 2χ14 + 3χ3

Table 1: The actions of θ1, θ2, θ3(λ) (λ ∈ F∗), θ4 on W16.

of GO(2, 1), we see that Claim (1) of the proposition is valid. Applying the previous
paragraph to the hyperplanes containing a given hyperplane Hx, x ∈ P , we see that the
number of hyperplanes of GO(2, 1) containing Hx is equal to 2δ − 1, where δ is the co-

dimension (in PG(W̃ )) of the subspace generated by ẽ(Hx). By Lemma 3.4(1), we know
that there are three hyperplanes containing Hx, namely Hx, Hx ∪C1 and Hx ∪C2, where
C1 and C2 are the two connected components of Γ4(x). It follows that δ = 2. �

4 A 16-dimensional Sp(V, f )-module hosting a full pro-

jective embedding of F(W (F))
We continue with the notation introduced in Section 1.

Proposition 4.1 The subspace W16 is stabilized by Sp(V, f).

Proof. With the notation of Proposition 2.3, we have that

Sp(V, f) = 〈θ1, θ2, θ3(λ), θ4 |λ ∈ F∗〉.

So, it suffices to show that each of θ1, θ2, θ3(λ) (λ ∈ F∗), θ4 stabilizes W16. The actions of
θ1, θ2, θ3(λ) (λ ∈ F∗) and θ4 on W16 are summarized in Table 1, and from this information
it indeed follows that each of θ1, θ2, θ3(λ) (λ ∈ F∗), θ4 stabilizes W16. �
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Lemma 4.2 Suppose U is a subspace of W16 containing χ1 that is stabilized by Sp(V, f).
Then U = W16.

Proof. Since χ1 ∈ U , the following vectors also belong to U :

χ5 = χθ11 , χ3 = χθ21 , χ6 = −χθ25 , χ7 = χθ13 , χ2 = χθ16 , χ4 = χθ22 , χ8 = −χθ27 ,

χ9 = χ
θ3(1)
7 − χ7 − χ5, χ10 = χ

θ3(1)
8 − χ8 − χ6, χ11 = χθ19 , χ12 = χθ110,

χ14 = χθ412 − χ12 + χ10 − χ3, χ15 = χθ49 − χ9 − χ6 − χ11, χ13 = χθ115, χ16 = χθ114.

Hence, W16 = 〈χ1, χ2, . . . , χ16〉 ⊆ U , i.e. U = W16. �

Theorem 4.3 The map e∗ defines a full projective embedding of F(W (F)) into PG(W16).

Proof. We first show that e∗(F ) is a point of PG(W16) for every flag F = {〈v̄1〉, 〈v̄1, v̄2〉}
of W (F). Let θ be an element of Sp(V, f) mapping ē1 to v̄1 and ē2 to v̄2. Then v̄1⊗v̄1∧v̄2 =
(ē1 ⊗ ē2 ∧ ē2)θ = χθ1 ∈ W16.

The latter also implies that the subspace of PG(W16) generated by the image of e∗

coincides with the subspace of PG(W16) generated by all points 〈χθ1〉 where θ ∈ Sp(V, f).
By Lemma 4.2, we then know that this subspace coincides with PG(W16).

It remains to show that e∗ maps every line L of F(W (F)) to some line of PG(W16).
There are two cases to consider for such a line L.

Suppose there exist linearly independent vectors v̄1, v̄2, v̄
′
2 such that L consists of all

flags of the form {〈v̄1〉, 〈v̄1, λ2v̄2 + λ′2v̄
′
2〉} where λ2, λ

′
2 ∈ F with (λ2, λ

′
2) 6= (0, 0). Then

e∗(L) consists of all points of the form 〈v̄1 ⊗ v̄1 ∧ (λ2v̄2 + λ′2v̄
′
2)〉 = 〈λ2 · v̄1 ⊗ v̄1 ∧ v̄2 + λ′2 ·

v̄1 ⊗ v̄1 ∧ v̄′2〉, where λ2, λ
′
2 ∈ F with (λ2, λ

′
2) 6= (0, 0), i.e. e∗(L) is a line of PG(W16).

Suppose there exist linearly independent vectors v̄1 and v̄2 such that L consists of all
flags of the form {〈λ1v̄1 + λ2v̄2〉, 〈v̄1, v̄2〉} where λ1, λ2 ∈ F such that (λ1, λ2) 6= (0, 0).
Then e∗(L) consists of all points of the form 〈(λ1v̄1 +λ2v̄2)⊗ v̄1∧ v̄2〉 = 〈λ1 · v̄1⊗ v̄1∧ v̄2 +
λ2 · v̄2⊗ v̄1 ∧ v̄2〉, where λ1, λ2 ∈ F with (λ1, λ2) 6= (0, 0), i.e. e∗(L) is a line of PG(W16). �

Theorem 4.4 If |F| = 2, then the embedding e∗ is absolutely universal.

Proof. This follows from the fact that dim(W16) = 16 equals the embedding rank of
F(W (2)), see Corollary 3.7. �

5 The (ir)reducibility of the Sp(V, f )-module W16

We continue with the notation introduced in the previous sections.

Proposition 5.1 If char(F) = 5, then the subspace

〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉

is stabilized by Sp(V, f).
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θ1 θ2 θ3(λ) θ4

χ9 + 2χ13 χ11 + 2χ15 −2(2χ10 + χ14) χ9 + 2χ13 (χ9 + 2χ13) + (χ11 + 2χ15)
2χ10 + χ14 2χ12 + χ16 3(χ9 + 2χ13) 2χ10 + χ14 2χ10 + χ14

χ11 + 2χ15 χ9 + 2χ13 χ11 + 2χ15 χ11 + 2χ15 χ11 + 2χ15

2χ12 + χ16 2χ10 + χ14 2χ12 + χ16 (2χ12 + χ16) + 3λ · (χ11 + 2χ15) (2χ12 + χ16)− (2χ10 + χ14)

Table 2: The actions of θ1, θ2, θ3(λ) (λ ∈ F∗), θ4 on the subspace 〈χ9 + 2χ13, 2χ10 +
χ14, χ11 + 2χ15, 2χ12 + χ16〉.

Proof. This follows from Table 2, where the actions of θ1, θ2, θ3(λ) (λ ∈ F∗), θ4 on the
subspace 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉 have been described. �

Lemma 5.2 Let U be a subspace of W16 stabilized by Sp(V, f), and let i, j ∈ {1, 2, . . . , 8}.
If U contains a vector having a nonzero component in χi, then U also contains a vector
having a nonzero component in χj.

Proof. The property mentioned in Lemma 5.2 that we need to prove is called Property
(Pij) here. Let Γ be the graph with vertex set {1, 2, . . . , 8}, where two distinct vertices i
and j are adjacent whenever Property (Pij) holds. By using the fact that χ ∈ U if and
only if χθ1 ∈ U , we see that {1, 5}, {2, 6}, {3, 7} and {4, 8} are edges of Γ. By using the
fact that χ ∈ U if and only if χθ2 ∈ U , we also see that {1, 3}, {2, 4}, {5, 6} and {7, 8}
are edges of Γ. These edges already turn Γ into a connected graph, proving the validity
of the lemma. �

Lemma 5.3 Let U be a subspace of W16 stabilized by Sp(V, f). If U contains a vector χi
with i ∈ {1, 2, . . . , 8}, then U = W16.

Proof. As there exists a θ ∈ Sp(V, f) such that χθi = χ1, we must have U = W16 by
Lemma 4.2. �

Lemma 5.4 Let U 6= W16 be a subspace of W16 stabilized by Sp(V, f). Then U ⊆
〈χ9, χ10, . . . , χ16〉.

Proof. We first deal with the case |F| = 2. Let χ = a1χ1 + a2χ2 + · · ·+ a16χ16 denote an
arbitrary vector of U . Then also the following vectors belong to U (with θ3 = θ3(1)):

χ(1) := χθ3 − χ, χ(2) := (χ(1))θ1 , χ(3) := (χ(2))θ3 − χ(2), χ(4) := (χ(3))θ4 − χ(3),

χ(5) := (χ(4))θ1 , χ(6) := (χ(5))θ3 − χ(5), χ(7) := (χ(6))θ4 − χ(6).

One computes that

• χ(1) = a2χ1 +a4χ3 +(a7 +a13)χ5 +(a8 +a14)χ6 +a7χ9 +a8χ10 +(a12 +a16)χ11 +a16χ15,

• χ(2) = a2χ5 +a4χ7 +(a7 +a13)χ1 +(a8 +a14)χ2 +a7χ11 +a8χ12 +(a12 +a16)χ9 +a16χ13,
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• χ(3) = (a8 + a14)χ1 + (a4 + a16)χ5 + a4χ9 + a8χ11,

• χ(4) = (a8 + a14)χ5 + (a4 + a8)χ6 + a4χ11 + a4χ15,

• χ(5) = (a8 + a14)χ1 + (a4 + a8)χ2 + a4χ9 + a4χ13,

• χ(6) = (a4 + a8)χ1 + a4χ5,

• χ(7) = (a4 + a8)χ5.

Since U 6= W16, we have by Lemma 5.3 that none of χ1, χ5 belongs to U . Since χ(6), χ(7) ∈
U , we then have that a4 + a8 = a4 = 0, i.e. a4 = a8 = 0. Since χ was an arbitrary vector
of U , Lemma 5.2 then implies that a1 = a2 = · · · = a8 = 0, i.e. U ⊆ 〈χ9, χ10, . . . , χ16〉.

From now on, we assume that |F| ≥ 3. Again, let χ = a1χ1 +a2χ2 + · · ·+a16χ16 denote
an arbitrary vector of U . Since |F| ≥ 3, we can take two distinct elements λ1, λ2 ∈ F∗. The
fact that λ1(χθ3(λ2)−χ)−λ2(χθ3(λ1)−χ) ∈ U then implies that λ1λ2(λ2−λ1)(a7χ5+a8χ6) ∈
U , i.e. a7χ5 + a8χ6 ∈ U . By Lemma 5.3, we also know that χ5 and χ6 do not belong to
U .

Suppose |F| > 3. Then we can take λ ∈ F∗ such that λ2 6= 1. Let θ be the element

of Sp(V, f) mapping (ē1, f̄1, ē2, f̄2) to (λē1,
f̄1
λ
, ē2, f̄2). The facts that χ5 6∈ U , χ6 6∈ U ,

a7χ5 + a8χ6 ∈ U and λa7χ5 + a8
λ
χ6 = (a7χ5 + a8χ6)θ ∈ U then imply that a7 = a8 = 0.

Since χ was an arbitrary vector of U , Lemma 5.2 then implies that a1 = a2 = · · · = a8 = 0,
i.e. U ⊆ 〈χ9, χ10, . . . , χ16〉.

Suppose F = F3. The facts that χ5 6∈ W , χ6 6∈ W , a7χ5 +a8χ6 ∈ W and a8χ5−a7χ6 =
(a7χ5 + a8χ6)θ2 ∈ U , then imply that a2

7 + a2
8 = 0, i.e. a7 = a8 = 0. Since χ was an

arbitrary vector of U , Lemma 5.2 then again implies that a1 = a2 = · · · = a8 = 0, i.e.
U ⊆ 〈χ9, χ10, . . . , χ16〉. �

Proposition 5.5 Let U be a subspace of W16 stabilized by Sp(V, f). If {ō} 6= U 6= W16,
then char(F) = 5 and U = 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉.

Proof. By Lemma 5.4, we know that U ⊆ 〈χ9, χ10, . . . , χ16〉. Let χ =
∑16

i=9 aiχi be an
arbitrary vector of U .

The fact that χθ3(1) − χ ∈ U has no components in χ5 and χ6 imply that 2a9 = a13

and 2a10 = −a14. These facts and the fact that χθ1 ∈ U imply that 2a11 = a15 and
2a12 = −a16. So, we have that U is a subpace of

〈χ9 + 2χ13, χ10 − 2χ14, χ11 + 2χ15, χ12 − 2χ16〉.

Now,

• (χ9 + 2χ13)θ4 = (χ9 + χ6 + χ15 + χ11) + (2χ13 − 6χ6 − 4χ15) = (χ9 + 2χ13) + (χ11 +
2χ15)− 5(χ6 + χ15),

• (χ10 − 2χ14)θ4 = (χ10 + χ3)− 2χ14 − 6χ3 = (χ10 − 2χ14)− 5χ3,

• (χ11 + 2χ15)θ4 = (χ11 − χ6) + 2χ15 + 6χ6 = (χ11 + 2χ15) + 5χ6,
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• (χ12− 2χ16)θ4 = (χ12 + χ3 + χ14− χ10)− 2χ16− 4χ14− 6χ3 = (χ12− 2χ16)− (χ10−
2χ14)− 5(χ3 + χ14).

Since U θ4 = U ⊆ 〈χ9 + 2χ13, χ10 − 2χ14, χ11 + 2χ15, χ12 − 2χ16〉, 〈χ3, χ6, χ6 + χ15, χ3 +
χ14〉 ∩ 〈χ9 + 2χ13, χ10 − 2χ14, χ11 + 2χ15, χ12 − 2χ16〉 = {ō} and the vectors χ6 + χ15, χ3,
χ6, χ3 + χ14 are linearly independent, we necessarily have that char(F) = 5. In this case,
we also have

U ⊆ 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉.

An arbitrary vector χ can thus be written as a linear combination of the vectors χ9 +2χ13,
2χ10 +χ14, χ11 + 2χ15 and 2χ12 +χ16. By considering the linear transformation θ1, we see
the following:

(a) U has a vector having a nonzero component in χ9 + 2χ13 if and only if U has a
vector having a nonzero component in χ11 + 2χ15;

(b) U has a vector having a nonzero component in 2χ10 + χ14 if and only if U has a
vector having a nonzero component in 2χ12 + χ16.

By considering the linear transformation θ2, we see the following:

(c) U has a vector having a nonzero component in χ9 + 2χ13 if and only if U has a
vector having a nonzero component in 2χ10 + χ14.

From (a), (b) and (c), we can then see that U contains a vector having a nonzero com-
ponent in 2χ12 + χ16. Since χθ3(1) − χ ∈ U , we then see that χ11 + 2χ15 ∈ U . Hence, also
χ9 + 2χ13 = (χ11 + 2χ15)θ1 ∈ U , 2χ10 + χ14 = −1

2
(χ9 + 2χ13)θ2 ∈ U and 2χ12 + χ16 =

(2χ10 + χ14)θ1 ∈ U . It follows that U = 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉. �

By Propositions 5.1 and 5.5, we have

Corollary 5.6 The Sp(V, f)-module W16 is reducible if and only if char(F) = 5, in which
case there is a unique nontrivial submodule. This submodule has dimension 4.

6 The embedding e∗ is polarized

Consider again the 24-dimensional subspace W24. The following 24 vectors determine a
basis of W24:

b̄1 := ē1 ⊗ ē1 ∧ ē2, b̄2 := f̄1 ⊗ f̄1 ∧ f̄2, b̄3 := ē1 ⊗ ē1 ∧ f̄1, b̄4 := f̄1 ⊗ ē2 ∧ f̄2,

b̄5 := ē1 ⊗ ē1 ∧ f̄2, b̄6 := f̄1 ⊗ ē2 ∧ f̄1, b̄7 := ē1 ⊗ ē2 ∧ f̄1, b̄8 := f̄1 ⊗ ē1 ∧ f̄2,

b̄9 := ē1 ⊗ ē2 ∧ f̄2, b̄10 := f̄1 ⊗ ē1 ∧ f̄1, b̄11 := ē1 ⊗ f̄1 ∧ f̄2, b̄12 := f̄1 ⊗ ē1 ∧ ē2,

b̄13 := ē2 ⊗ ē1 ∧ ē2, b̄14 := f̄2 ⊗ f̄1 ∧ f̄2, b̄15 := ē2 ⊗ ē1 ∧ f̄1, b̄16 := f̄2 ⊗ ē2 ∧ f̄2,

b̄17 := ē2 ⊗ ē1 ∧ f̄2, b̄18 := f̄2 ⊗ ē2 ∧ f̄1, b̄19 := ē2 ⊗ ē2 ∧ f̄1, b̄20 := f̄2 ⊗ ē1 ∧ f̄2,
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b̄21 := ē2 ⊗ ē2 ∧ f̄2, b̄22 := f̄2 ⊗ ē1 ∧ f̄1, b̄23 := ē2 ⊗ f̄1 ∧ f̄2, b̄24 := f̄2 ⊗ ē1 ∧ ē2.

Consider now the nondegenerate alternating bilinear form f̃ of W24 for which the following
ordered basis is a hyperbolic basis:

(b̄1,−b̄2, b̄3, b̄4, b̄5,−b̄6, b̄7,−b̄8, b̄9, b̄10, b̄11,−b̄12, b̄13,−b̄14, b̄15, b̄16, b̄17,−b̄18, b̄19,−b̄20, b̄21, b̄22, b̄23,−b̄24).

Then the following holds.

Lemma 6.1 Let i, j ∈ {1, 2, . . . , 24}. Then

b̄i = v̄1 ⊗ v̄2 ∧ v̄3 and b̄j = w̄1 ⊗ w̄2 ∧ w̄3,

where v̄1, v̄2, v̄3, w̄1, w̄2, w̄3 ∈ {ē1, f̄1, ē2, f̄2, ē3, f̄3}. Put a := f(v̄1, w̄1) and let b ∈ F such

that b · ē1 ∧ f̄1 ∧ ē2 ∧ f̄2 = v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3. Then f̃(b̄i, b̄j) = a · b.

Proof. The above-mentioned hyperbolic basis has been defined in such a way for this to
be true. �

Lemma 6.2 If v̄1, v̄2, v̄3, w̄1, w̄2, w̄3 ∈ V . Then

f̃(v̄1 ⊗ v̄2 ∧ v̄3, w̄1 ⊗ w̄2 ∧ w̄3) = ab,

where a := f(v̄1, w̄1) and b ∈ F such that b · ē1 ∧ f̄1 ∧ ē2 ∧ f̄2 = v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3.

Proof. We first show that the number ab is well-defined. Suppose v̄1⊗v̄2∧v̄3 = v̄′1⊗v̄′2∧v̄′3
and w̄1⊗w̄2∧w̄3 = w̄′1⊗w̄′2∧w̄′3 for certain vectors v̄1, v̄2, v̄3, w̄1, w̄2, w̄3, v̄

′
1, v̄
′
2, v̄
′
3, w̄

′
1, w̄

′
2, w̄

′
3 ∈

V . We may suppose that the vectors v̄1, v̄2, v̄3, w̄1, w̄2, w̄3, v̄
′
1, v̄
′
2, v̄
′
3, w̄

′
1, w̄

′
2, w̄

′
3 are dis-

tinct from ō. Then there exist unique α1, α2 ∈ F∗ such that v̄1 = α1v̄
′
1, w̄1 = α2w̄

′
1,

v̄2∧ v̄3 = 1
α1
v̄′2∧ v̄′3 and w̄2∧ w̄3 = 1

α2
w̄′2∧ w̄′3. Then a′ := f(v̄′1, w̄

′
1) = 1

α1α2
f(v̄1, w̄1) = a

α1α2
.

Since b · ē1∧ f̄1∧ ē2∧ f̄2 = v̄2∧ v̄3∧ w̄2∧ w̄3 = 1
α1α2

v̄′2∧ v̄′3∧ w̄′2∧ w̄′3 = b′

α1α2
· ē1∧ f̄1∧ ē2∧ f̄2,

we have a′b′ = a
α1α2
· α1α2b = ab.

Now, let A denote the set of all 6-tuples (v̄1, v̄2, v̄3, w̄1, w̄2, w̄3) ∈ V 6 such that f̃(v̄1 ⊗
v̄2 ∧ v̄3, w̄1⊗ w̄2 ∧ w̄3) = ab, where a := f(v̄1, w̄1) and b ∈ F such that b · ē1 ∧ f̄1 ∧ ē2 ∧ f̄2 =
v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3. If v̄, v̄′ ∈ V , k, k′ ∈ F and γ1, γ2 are two (possibly empty) sequences of

vectors of V whose lengths add up to five, then the facts that f̃ and F×F 7→ F : (a, b) 7→ ab
are bilinear imply the following:

(∗) If (γ1, v̄, γ2) and (γ1, v̄
′, γ2) belong to A, then also (γ1, kv̄ + k′v̄′, γ2) belongs to A.

Lemma 6.2 now follows from Lemma 6.1 and Property (∗). �

Lemma 6.3 Every θ ∈ Sp(V, f) leaves the form f̃ invariant.
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χ1 χ4 χ2 χ3 χ5 χ8 χ6 χ7 χ9 χ10 χ13 χ14 χ11 χ12 χ15 χ16

χ1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
χ3 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
χ5 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
χ8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
χ6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
χ7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
χ9 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0
χ10 0 0 0 0 0 0 0 0 -2 0 1 0 0 0 0 0
χ13 0 0 0 0 0 0 0 0 0 -1 0 -3 0 0 0 0
χ14 0 0 0 0 0 0 0 0 -1 0 3 0 0 0 0 0
χ11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1
χ12 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 1 0
χ15 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -3
χ16 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 3 0

Table 3: The values f̄(χi, χj), i, j ∈ {1, 2, . . . , 16}.

Proof. Since f̃ is bilinear, it suffices to prove that

f̃((v̄1 ⊗ v̄2 ∧ v̄3)θ, (w̄1 ⊗ w̄2 ∧ w̄3)θ) = f̃(v̄1 ⊗ v̄2 ∧ v̄3, w̄1 ⊗ w̄2 ∧ w̄3),

i.e., that
f̃(v̄θ1 ⊗ v̄θ2 ∧ v̄θ3, w̄θ1 ⊗ w̄θ2 ∧ w̄θ3) = f̃(v̄1 ⊗ v̄2 ∧ v̄3, w̄1 ⊗ w̄2 ∧ w̄3).

Put a := f(v̄1, w̄1) and let b ∈ F such that v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3 = b · ē1 ∧ f̄1 ∧ ē2 ∧ f̄2.
Then f(v̄θ1, w̄

θ
1) = f(v̄1, w̄1) = a and v̄θ2 ∧ v̄θ3 ∧ w̄θ2 ∧ w̄θ3 = det(θ) · v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3 =

v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3 = b · ē1 ∧ f̄1 ∧ ē2 ∧ f̄2. Indeed, every θ ∈ Sp(V, f) has determinant 1. It
follows that

f̃(v̄θ1 ⊗ v̄θ2 ∧ v̄θ3, w̄θ1 ⊗ w̄θ2 ∧ w̄θ3) = ab = f̃(v̄1 ⊗ v̄2 ∧ v̄3, w̄1 ⊗ w̄2 ∧ w̄3).

�

Definition. Let f̄ denote the restriction of f to W16 ×W16.

From

χ1 = b̄1, χ2 = b̄5, χ3 = −b̄6, χ4 = b̄2, χ5 = −b̄13, χ6 = b̄19, χ7 = −b̄20,

χ8 = −b̄14, χ9 = −b̄17 − b̄24, χ10 = −b̄23 + b̄18, χ11 = −b̄7 + b̄12, χ12 = b̄11 + b̄8,

χ13 = b̄9 − b̄3 + b̄17, χ14 = b̄4 − b̄10 + b̄18, χ15 = b̄15 − b̄21 + b̄7, χ16 = b̄22 − b̄16 + b̄8,

all the values f̄(χi, χj), i, j ∈ {1, 2, . . . , 16}, can easily be computed. They have been
listed in Table 3. From this table, we easily deduce the following:
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Proposition 6.4 The alternating bilinear form f̄ of W16 is nondegenerate if and only if
char(F) 6= 5. If char(F) = 5, then

Rad(f̄) = 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉.

Proof. From Table 3, we see that f̄ is nondegenerate if and only if det(M) 6= 0, where

M =


0 2 0 1
−2 0 1 0
0 −1 0 −3
−1 0 3 0

 ,
i.e., if and only if char(F) 6= 5. If char(F) = 5, then M has rank 2, implying that Rad(f̄)
is 4-dimensional. A straightforward calculation shows that

Rad(f̄) = 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉.

�

Let ζ denote the possibly degenerate symplectic polarity of PG(W16) induced by f̄ .

Proposition 6.5 For every point x of F(W (F)), e∗(x)ζ is a hyperplane of PG(W16)
containing all points e∗(y), where y is a point at distance at most 3 from x, and none of
the points e∗(z), where z is a point of F(W (F)) opposite to x.

Proof. Choose vectors v̄1, v̄2, v̄
′
1, v̄
′
2, v̄
′′
1 , v̄
′′
2 ∈ V such that

x = {〈v̄1〉, 〈v̄1, v̄2〉}, y = {〈v̄′1〉, 〈v̄′1, v̄′2〉}, z = {〈v̄′′1〉, 〈v̄′′1 , v̄′′2〉}.

If d(x, y) ≤ 3, then f(v̄1, v̄
′
1) = 0 or 〈v̄1, v̄2〉 ∩ 〈v̄′1, v̄′2〉 6= {ō}. In any case, we have

f̄(v̄1 ⊗ v̄1 ∧ v̄2, v̄
′
1 ⊗ v̄′1 ∧ v̄′2) = 0 by Lemma 6.2.

If d(x, z) = 4, then f(v̄1, v̄
′′
1) 6= 0 and 〈v̄1, v̄2〉∩ 〈v̄′′1 , v̄′′2〉 = {ō}, i.e. v̄1∧ v̄2∧ v̄′′1 ∧ v̄′′2 6= 0.

In this case, we have f̄(v̄1 ⊗ v̄1 ∧ v̄2, v̄
′′
1 ⊗ v̄′′1 ∧ v̄′′2) 6= 0 by Lemma 6.2.

The claims of the proposition follow. �

The following is an immediate corollary of Proposition 6.5.

Corollary 6.6 The projective embedding e∗ is polarized.

If char(F) = 5, then we denote by ē the embedding e∗/α, where α is the subspace of
PG(W16) corresponding to Rad(f̄) = 〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉. Note
that α is indeed disjoint from the image of e∗. Indeed, for every point x there exists
a point y of F(W (F)) opposite to x, and for each such point y the hyperplane e∗(y)ζ

contains α but not e∗(x), implying that e∗(x) cannot be contained in α.

Proposition 6.7 If char(F) = 5, then the embedding ē is polarized.

Proof. By Proposition 6.5, we know that for every point x of F(W (F)), Hx = e∗−1(e∗(PF)∩
Πx), where Πx is the hyperplane e∗(x)ζ of PG(W16). The proposition now follows from
the fact that α ⊆ Πx. �
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7 Further properties of the embedding e∗

Let us define the following subspaces of W16:

Z0 := 〈χ1〉, Z1 := 〈χ1, χ2, χ5〉, Z4 := W16.

If |F| ≥ 3, then we define

Z2 := 〈χ1, χ2, χ5, χ6, χ7, χ9, χ13, χ15〉,

Z3 := 〈{χ1, χ2, . . . , χ16} \ {χ4}〉.
If |F| = 2, then we define

Z2 := 〈χ1, χ2, χ5, χ6, χ7, χ9, χ13 + χ15〉,

Z3 := 〈{χ1, χ2, . . . , χ16, χ14 + χ16, χ12 + χ16} \ {χ4, χ12, χ14, χ16}〉.

Proposition 7.1 If x is the point {〈ē1〉, 〈ē1, ē2〉} of F(W (F)) and i ∈ {0, 1, 2, 3, 4}, then
〈e∗(Γ≤i(x))〉 = PG(Zi).

Proof. We identify the subspaces 〈e∗(Γ≤i(x))〉 here with their corresponding subspaces
of W16. Obviously, 〈e∗(Γ≤0(x))〉 = 〈e∗(x)〉 = 〈ē1 ⊗ ē1 ∧ ē2〉 = 〈χ1〉 = PG(Z0). There
are two lines through the point x = {〈ē1〉, 〈ē1, ē2〉}. The line 〈ē1〉 contains the points
x = {〈ē1〉, 〈ē1, ē2〉} and x1 = {〈ē1〉, 〈ē1, f̄2〉} and the line 〈ē1, ē2〉 contains the two points
x = {〈ē1〉, 〈ē1, ē2〉} and x2 = {〈ē2〉, 〈ē1, ē2〉}. This implies that 〈e∗(Γ≤1(x))〉 = 〈ē1 ⊗ ē1 ∧
ē2, ē1 ⊗ ē1 ⊗ f̄2, ē2 ⊗ ē1 ∧ ē2〉 = 〈χ1, χ2, χ5〉 = PG(Z1).

We now determine a generating set of 〈e∗(Γ≤2(x))〉. Points at distance 2 from x are
of one of the following two types:

(i) {〈α1ē1 + α2ē2 + f̄2〉, 〈α2ē2 + f̄2, ē1〉} with α1, α2 ∈ F;

(ii) {〈αē1 + ē2〉, 〈αē1 + ē2, βē1 + f̄1 − αf̄2〉} with α, β ∈ F.

We determine the contribution of both parts to 〈e∗(Γ≤2(x))〉. We compute that

(α1ē1 + α2ē2 + f̄2)⊗ (α2ē2 + f̄2) ∧ ē1

= α1α2·ē1⊗ē2∧ē1+α1·ē1⊗f̄2∧ē1+α2
2·ē2⊗ē2∧ē1+α2·ē2⊗f̄2∧ē1+α2·f̄2⊗ē2∧ē1+f̄2⊗f̄2∧ē1

= −α1α2χ1 − α1χ2 + α2
2χ5 + χ7 + α2χ9.

Besides χ1, χ2 and χ5 which are already present in 〈e∗(Γ≤1(x))〉, we also add the vectors
χ7 and χ9 to the generating set for 〈e∗(Γ≤2(x))〉.

We compute (αē1+ē2)⊗(αē1+ē2)∧(βē1+f̄1−αf̄2). The part (αē1+ē2)⊗(αē1+ē2)∧ē1 =
−αχ1+χ5 contributes no extra vectors to the generating set for 〈e∗(Γ≤2(x))〉. We therefore
compute the part (αē1 + ē2)⊗ (αē1 + ē2) ∧ (f̄1 − αf̄2). This is equal to

α2 · ē1 ⊗ ē1 ∧ f̄1 + α · ē1 ⊗ ē2 ∧ f̄1 − α3 · ē1 ⊗ ē1 ∧ f̄2 − α2 · ē1 ⊗ ē2 ∧ f̄2
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+α · ē2 ⊗ ē1 ∧ f̄1 + ē2 ⊗ ē2 ∧ f̄1 − α2 · ē2 ⊗ ē1 ∧ f̄2 − α · ē2 ⊗ ē2 ∧ f̄2

= −α3 · ē1 ⊗ ē1 ∧ f̄2 + ē2 ⊗ ē2 ∧ f̄1 + α · (ē2 ⊗ ē1 ∧ f̄1 − ē2 ⊗ ē2 ∧ f̄2

+ē1 ⊗ ē2 ∧ f̄1)− α2(ē1 ⊗ ē2 ∧ f̄2 − ē1 ⊗ ē1 ∧ f̄1 + ē2 ⊗ ē1 ∧ f̄2)

= −α3 · χ2 + χ6 + α · χ15 − α2 · χ13.

So, we conclude that:

• if |F| ≥ 3, then 〈e∗(Γ≤2(x))〉 = 〈χ1, χ2, χ5, χ6, χ7, χ9, χ13, χ15〉;

• if |F| = 2, then 〈e∗(Γ≤2(x))〉 = 〈χ1, χ2, χ5, χ6, χ7, χ9, χ13 + χ15〉.

We now determine a generating set of 〈e∗(Γ≤3(x))〉 by enlarging and modifying the
generating set for 〈e∗(Γ≤2(x))〉 that we just determined. Points at distance 3 from x are
of one of the following types:

(i) {〈f̄2 + αē1 + βē2〉, 〈f̄2 + αē1 + βē2, f̄1 + γē1 + αē2〉} for some α, β, γ ∈ F;

(ii) {〈f̄1 + αē1 + βē2 + γf̄2〉, 〈f̄1 + αē1 + βē2 + γf̄2, γē1 − ē2〉} for some α, β, γ ∈ F.

We first consider (f̄2 +αē1 +βē2)⊗ (f̄2 +αē1 +βē2)∧ (f̄1 + γē1 +αē2), where α, β, γ ∈ F.
By the above, we know that the part (f̄2 + αē1 + βē2) ⊗ (f̄2 + αē1 + βē2) ∧ ē1 = f̄2 ⊗
f̄2 ∧ ē1 + β · f̄2 ⊗ ē2 ∧ ē1 + α · ē1 ⊗ f̄2 ∧ ē1 + αβ · ē1 ⊗ ē2 ∧ ē1 + β · ē2 ⊗ f̄2 ∧ ē1 + β2 ·
ē2 ⊗ ē2 ∧ ē1 = χ7 + βχ9 − αχ2 − αβχ1 + β2χ5 is contained in 〈e∗(Γ≤2(x))〉. The part
(f̄2 + αē1 + βē2)⊗ (f̄2 + αē1 + βē2) ∧ (f̄1 + αē2) is equal to

χ8 + α · (χ16 − χ12) + β · χ10 − α2 · (χ9 + χ13) + β2 · χ6 + αβ · χ15 + α3 · χ1 − α2β · χ5.

We already know that χ1, χ5, χ6 and χ9 belong to 〈e∗(Γ≤2(x))〉. So, we know that for all
α, β ∈ F, the vector

χ8 + (χ16 − χ12)α + χ10β − χ13α
2 + αβχ15

belongs to 〈e∗(Γ≤3(x))〉. This implies that χ8, χ10 belong to 〈e∗(Γ≤3(x))〉 and hence also
the vector (χ16 − χ12)− αχ13 + βχ15 for all α, β ∈ F with α 6= 0. This implies that

• χ15 and hence also χ13 = (χ13 + χ15)− χ15 belong to 〈e∗(Γ≤3(x))〉;

• χ16 − χ12 belongs to 〈e∗(Γ≤3(x))〉.

The expression (f̄1 + αē1 + βē2 + γf̄2)⊗ (f̄1 + αē1 + βē2 + γf̄2) ∧ (γē1 − ē2) is equal to

−χ3−α·χ11+β ·χ6+γ ·χ14−α2·χ1−γ2·χ16−αβ ·χ1+αγ ·(χ9+χ13)−βγ ·(χ11+χ15)+β2γ ·χ5

+γ3 · χ7 − αβγ · χ1 − αγ2 · χ2 + βγ2 · χ9.
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We already know that the vectors χ1, χ2, χ5, χ6, χ7, χ9, χ13, χ15 are contained in 〈e∗(Γ≤3(x))〉.
So, we know that for all α, β, γ, the vector

−χ3 − αχ11 + γχ14 − γ2χ16 − βγχ11

is also contained in 〈e∗(Γ≤3(x))〉. Putting γ = 0, we see that all vectors of the form
−χ3 − αχ11 are contained in 〈e∗(Γ≤3(x))〉, i.e. χ3 and χ11 are contained in 〈e∗(Γ≤3(x))〉.
This implies that for every γ ∈ F∗, the vector χ14 − γχ16 is contained in 〈e∗(Γ≤3(x))〉.
If |F| 6= 2, then also the vectors χ14 and χ16 are contained in 〈e∗(Γ≤3(x))〉 and hence
also the vector χ12 = χ16 − (χ16 − χ12). If |F| = 2, then we can only conclude that the
vector χ14 +χ16 is contained in 〈e(Γ≤3(x))〉. The claims of the proposition should now be
obvious. �

Proposition 7.1 has the following corollary.

Corollary 7.2 (1) If |F| ≥ 3, then for every point x of F(W (F)), the subspace of
PG(W16) generated by e(Hx) is a hyperplane.

(2) If |F| = 2, then for every point x of F(W (F)), the subspace of PG(W16) generated
by e(Hx) is a subspace of co-dimension 2.

Proof. Since W16 is an Sp(V, f)-module, we can take the point x to be equal to
{〈ē1〉, 〈ē1, ē2〉}. The claims then follow from Proposition 7.1. �

Note that Corollary 7.2(2) was also proved in Proposition 3.8(2). By Proposition 3.8(1),
Proposition 6.5 and Corollary 7.2(1), we have:

Proposition 7.3 For every point x of F(W (F)), there exists a unique hyperplane of
PG(W16) containing all points e∗(y), where y is a point at distance at most 3 from x, and
none of the points e∗(z), where z is a point of F(W (F)) opposite to x.

We finish this section by proving the following result.

Proposition 7.4 The points and lines contained in the image of e∗ define a point-line
geometry isomorphic to F(W (F)).

Proof. Suppose x and y are two noncollinear points of F(W (F)). It then suffices to
prove that the unique line of PG(W16) through e∗(x) and e∗(y) intersects the image of e∗

in precisely two points. We may suppose that the hyperbolic basis (ē1, f̄1, ē2, f̄2) has been
chosen in such a way that one of the following cases occurs:

(1) x = {〈ē1〉, 〈ē1, ē2〉}, y = {〈ē2〉, 〈ē2, f̄1〉},

(2) x = {〈ē1〉, 〈ē1, ē2〉}, y = {〈f̄2〉, 〈f̄1, f̄2〉},

(3) x = {〈ē1〉, 〈ē1, ē2〉}, y = {〈f̄1〉, 〈f̄1, ē2〉},
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(4) x = {〈ē1〉, 〈ē1, ē2〉}, y = {〈f̄1〉, 〈f̄1, f̄2〉}.

From λ ∈ F∗, it is obvious that none of the points

〈ē1 ⊗ ē1 ∧ ē2 + λ · ē2 ⊗ ē2 ∧ f̄1〉, 〈ē1 ⊗ ē1 ∧ ē2 + λ · f̄2 ⊗ f̄2 ∧ f̄1〉,

〈ē1 ⊗ ē1 ∧ ē2 + λ · f̄1 ⊗ f̄1 ∧ ē2〉, 〈ē1 ⊗ ē1 ∧ ē2 + λ · f̄1 ⊗ f̄1 ∧ f̄2〉
belong to the image of e∗. So, the unique line of PG(W16) through e∗(x) and e∗(y)
intersects the image of e∗ in precisely two points. �

8 The homogeneity of the embedding e∗

Theorem 8.1 Let A denote the group of automorphisms of F(W (F)) preserving the line
types. Then e∗ is A-homogeneous.

Proof. Let θ be an element of Sp(V, f), an element of the form θ∗h with h ∈ F∗ or an
element of the form θ∗α with α ∈ Aut(F) (as defined in Section 2). Then θ can be regarded
as an element of ΓL(W16) such that (v̄1 ⊗ v̄1 ∧ v̄2)θ = v̄θ1 ⊗ v̄θ1 ∧ v̄θ2 holds for every totally
isotropic 2-space 〈v̄1, v̄2〉 of (V, f). The map {〈v̄1〉, 〈v̄1, v̄2〉} 7→ {〈v̄θ1〉, 〈v̄θ1, v̄θ2〉} for totally
isotropic 2-spaces 〈v̄1, v̄2〉 also induces an automorphism of F(W (F)). Theorem 8.1 then
follows from Proposition 2.4. �

Proposition 2.6 and Theorem 8.1 has the following corollary.

Corollary 8.2 If F is not a perfect field of characteristic 2, then e∗ is a homogeneous
embedding.

We also have:

Theorem 8.3 If char(F) = 5, then ē (as defined in Section 6) is a homogeneous embed-
ding.

Proof. The embedding ē is obtained by taking the quotient of e∗ by the subspace of
PG(W16) determined by

〈χ9 + 2χ13, 2χ10 + χ14, χ11 + 2χ15, 2χ12 + χ16〉.

This subspace is stabilized by the induced actions of the elements of Sp(V, f), the elements
θ∗h with h ∈ F∗ and the elements θ∗α with α ∈ Aut(F), showing that ē is also homogeneous.
�

We already know that e∗ is absolutely universal (see Theorem 4.4) and hence homogeneous
if |F| = 2. We are now going to show this directly by using our explicit description of e∗.
We start from the following element θ∗ of GL(W16):

χ1 7→ χ1, χ2 7→ χ5, χ3 7→ χ8, χ4 7→ χ4, χ5 7→ χ2, χ6 7→ χ7, χ7 7→ χ6, χ8 7→ χ3,
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χ9 7→ χ13 +χ15, χ10 7→ χ14 +χ16, χ11 7→ χ9 +χ12 +χ13 +χ16, χ12 7→ χ10 +χ11 +χ14 +χ15,

χ13 7→ χ13, χ14 7→ χ14, χ15 7→ χ9 + χ13, χ16 7→ χ10 + χ14.

It is straightforward to verify that θ∗ ◦ θ∗ = 1, i.e. θ∗ is an involution of GL(W16). We
show the following:

Lemma 8.4 Suppose |F| = 2. For every θ ∈ Sp(V, f), there then exists a θ′ ∈ Sp(V, f)

such that θ∗θ̃θ∗ = θ̃′. Here, θ̃ and θ̃′ are the induced actions of θ and θ′ on W16.

Proof. With the notation of Proposition 2.3, we have that Sp(V, f) = 〈θ1, θ2, θ3(1), θ4〉.
So, it suffices to prove the proposition in the case θ ∈ {θ1, θ2, θ3(1), θ4}. The verification
is straightforward if one uses the θ′ mentioned in the following table:

θ ∈ Sp(V, f) θ′ ∈ Sp(V, f)

θ1 (ē1, f̄1, ē2, f̄2) 7→ (ē1, f̄1, f̄2, ē2)
θ2 (ē1, f̄1, ē2, f̄2) 7→ (f̄2, ē2, f̄1, ē1)
θ3(1) (ē1, f̄1, ē2, f̄2) 7→ (ē1, f̄1 + f̄2, ē1 + ē2, f̄2)
θ4 (ē1, f̄1, ē2, f̄2) 7→ (ē1, f̄1, ē2 + f̄2, f̄2)

�

Proposition 8.5 Suppose |F| = 2. Then θ∗(Im(e∗)) = Im(e∗).

Proof. Since θ∗ is an involution, it suffices to show that θ∗(Im(e∗)) ⊆ Im(e∗). Let
〈v̄1⊗ v̄1∧ v̄2〉 be an arbitrary point of Im(e∗), where 〈v̄1, v̄2〉 is a totally isotropic subspace
of (V, f). We must show that 〈v̄1 ⊗ v̄2 ∧ v̄3〉θ

∗ ∈ Im(e∗). Now, there exists a θ ∈ Sp(V, f)

such that v̄1 = ēθ1 and v̄2 = ēθ2. By Lemma 8.4, θ∗θ̃θ∗ = θ̃′ for some θ′ ∈ Sp(V, f). Now,
Im(e∗) contains the point

〈ēθ′1 ⊗ ēθ
′

1 ∧ ēθ
′

2 〉 = 〈ē1⊗ ē1 ∧ ē2〉θ̃
′
= 〈ē1⊗ ē1 ∧ ē2〉θ

∗θ̃θ∗ = 〈ē1⊗ ē1 ∧ ē2〉θ̃θ
∗

= 〈v̄1⊗ v̄1 ∧ v̄2〉θ
∗
,

which is precisely what we needed to prove. �

Theorem 8.6 If |F| = 2, then the embedding e∗ is homogeneous.

Proof. Since θ∗(Im(e∗)) = Im(e∗), Proposition 7.4 implies that θ∗ ∈ GL(W16) is the
lifting of an automorphism of F(W (2)). By Proposition 2.6 and Theorem 8.1, it suffices
to prove that this automorphism corresponds to a duality of W (2).

Consider the line 〈ē1〉 of F(W (2)). The image of this line under e∗ is equal to 〈ē1 ⊗
ē1 ∧ ē2, ē1⊗ ē1 ∧ f̄2〉. Now, 〈ē1⊗ ē1 ∧ ē2, ē1⊗ ē1 ∧ f̄2〉θ

∗
= 〈ē1⊗ ē1 ∧ ē2, ē2⊗ ē1 ∧ ē2〉, which

is the image under e∗ of the line 〈ē1, ē2〉 of F(W (2)). Since θ∗ interchanges the line types,
it must be associated with a duality of W (2). �

Theorem 8.7 Suppose F is a perfect field of characteristic 2. Then e∗ is homogeneous if
and only if |F| = 2.
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Proof. In view of Theorem 8.6, it suffices to prove that |F| = 2 if e∗ is homogeneous.
Since F is a perfect field of characteristic 2, there exists an automorphism of F(W (F))

arising from a duality of W (F). Since the automorphism group of F(W (F)) preserving
the line types acts transitively on the set of opposite points of F(W (F)), there is an
automorphism of F(W (F)) arising from a duality D of W (F) that fixes the points x1 =
{〈ē1〉, 〈ē1, ē2〉} and x2 = {〈f̄1〉, 〈f̄1, f̄2〉}. Since e∗ is homogeneous, the automorphism D
of F(W (F)) lifts to an automorphism ∆ of PG(W16). Since field automorphisms induce
automorphisms of F(W (F)) fixing x1, x2 and preserving the line types, we may without
loss of generality suppose that ∆ ∈ PGL(W16).

Since xD1 = x1 and xD2 = x2, we are able to determine the action of D on additional

points of F(W (F)). Since xD1 = x1, the map D swaps the lines 〈ē1〉 and 〈ē1, ē2〉 and hence
should swap the unique points of 〈ē1〉 and 〈ē1, ē2〉 at distance 3 from x2. It follows that

{〈ē1〉, 〈ē1, f̄2〉}D = {〈ē2〉, 〈ē1, ē2〉}, (1)

{〈ē2〉, 〈ē1, ē2〉}D = {〈ē1〉, 〈ē1, f̄2〉}. (2)

Similarly, since xD2 = x2, the map D swaps the lines 〈f̄1〉 and 〈f̄1, f̄2〉, and hence also the
unique points on these lines at distance 3 from x1. It follows that

{〈f̄1〉, 〈f̄1, ē2〉}D = {〈f̄2〉, 〈f̄1, f̄2〉}, (3)

{〈f̄2〉, 〈f̄1, f̄2〉}D = {〈f̄1〉, 〈f̄1, ē2〉}. (4)

Now, put x3 = {〈ē2〉, 〈ē1, ē2〉} and x4 = {〈f̄2〉, 〈f̄1, f̄2〉}. Then x3 and x4 are two opposite

points, as well as the two points xD3 = {〈ē1〉, 〈ē1, f̄2〉} and xD4 = {〈f̄1〉, 〈f̄1, ē2〉}. The line

〈ē2〉 through x3 must be mapped by D to the line 〈ē1, f̄2〉 through xD3 . It follows that the
unique point of 〈ē2〉 at distance 3 from x4 must be mapped by D to the unique point of

〈ē1, f̄2〉 at distance 3 from xD4 . Hence,

{〈ē2〉, 〈ē2, f̄1〉}D = {〈f̄2〉, 〈ē1, f̄2〉}. (5)

Similarly, the line 〈f̄2〉 through x4 must be mapped by D to the line 〈f̄1, ē2〉 through xD4 .
It follows that the unique point of 〈f̄2〉 at distance 3 from x3 must be mapped by D to

the unique point of 〈f̄1, ē2〉 at distance 3 from xD3 . Hence,

{〈f̄2〉, 〈f̄2, ē1〉}D = {〈ē2〉, 〈f̄1, ē2〉}. (6)

Equations (1)–(6), and the facts that xD1 = x1, xD2 = x2 then imply that

〈χ1〉∆ = 〈χ1〉, 〈χ4〉∆ = 〈χ4〉, 〈χ2〉∆ = 〈χ5〉, 〈χ5〉∆ = 〈χ2〉,

〈χ3〉∆ = 〈χ8〉, 〈χ8〉∆ = 〈χ3〉, 〈χ6〉∆ = 〈χ7〉, 〈χ7〉∆ = 〈χ6〉.

Suppose θ∗ is the element of GL(W16) inducing ∆. Let k1, k2, . . . , k8 ∈ F∗ such that

χθ
∗

1 = k1χ1, χθ
∗

2 = k2χ5, χθ
∗

3 = k3χ8, χθ
∗

4 = k4χ4,
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χθ
∗

5 = k5χ2, χθ
∗

6 = k6χ7, χθ
∗

7 = k7χ6, χθ
∗

8 = k8χ3.

Now, let λ be an arbitrary element of F∗, and let θ be the element of Sp(V, f) mapping
the hyperbolic basis (ē1, f̄1, ē2, f̄2) to the hyperbolic basis ( ē1

λ
, λf̄1, ē2, f̄2). Identifying θ

with the induced action on W16, we have

• χθ1 = ē1
λ
⊗ ē1

λ
∧ ē2 = χ1

λ2
,

• χθ2 = ē1
λ
⊗ ē1

λ
∧ f̄2 = χ2

λ2
,

• χθ3 = (λf̄1)⊗ (λf̄1) ∧ ē2 = λ2χ3,

• χθ4 = (λf̄1)⊗ (λf̄1) ∧ f̄2 = λ2χ4,

• χθ5 = ē2 ⊗ ē2 ∧ ē1
λ

= 1
λ
χ5,

• χθ6 = ē2 ⊗ ē2 ∧ (λf̄1) = λχ6,

• χθ7 = f̄2 ⊗ f̄2 ∧ ē1
λ

= χ7

λ
,

• χθ8 = f̄2 ⊗ f̄2 ∧ (λf̄1) = λχ̄8.

Now, put θ′ = (θ∗)−1θθ∗ ∈ GL(W16). We compute

• χθ′1 = (χ1

k1
)θθ
∗

= ( χ1

λ2k1
)θ
∗

= χ1

λ2
,

• χθ′2 = (χ5

k5
)θθ
∗

= ( χ5

λk5
)θ
∗

= χ2

λ
,

• χθ′3 = (χ8

k8
)θθ
∗

= (λχ8

k8
)θ
∗

= λχ3,

• χθ′4 = (χ4

k4
)θθ
∗

= (λ
2χ4

k4
)θ
∗

= λ2χ4,

• χθ′5 = (χ2

k2
)θθ
∗

= ( χ2

λ2k2
)θ
∗

= χ5

λ2
,

• χθ′6 = (χ7

k7
)θθ
∗

= ( χ7

λk7
)θ
∗

= χ6

λ
,

• χθ′7 = (χ6

k6
)θθ
∗

= (λχ6

k6
)θ
∗

= λχ7,

• χθ′8 = (χ3

k3
)θθ
∗

= (λ
2χ3

k3
)θ
∗

= λ2χ8.

Since θ, θ∗ stabilize Im(e∗), also θ′ stabilizes Im(e∗) and hence by Proposition 7.4 corre-
sponds to an automorphism of F(W (F)) that does not alter the line types. We denote
by θ′′ the element of GL(V ) that induces this automorphism of F(W (F)) (note that the
field automorphisms corresponding to the actions of θ′′ on V and of θ′ on W16 are the
same and so both of them are trivial).

Since 〈ē1 ⊗ ē1 ∧ ē2〉θ
′

= 〈χ1〉θ
′

= 〈χ1〉 = 〈ē1 ⊗ ē1 ∧ ē2〉, we have 〈ē1〉θ
′′

= 〈ē1〉. In
a similar way, the facts that 〈χ3〉θ

′
= 〈χ3〉, 〈χ5〉θ

′
= 〈χ5〉 and 〈χ7〉θ

′
= 〈χ7〉 imply that

〈f̄1〉θ
′′

= 〈f̄1〉, 〈ē2〉θ
′′

= 〈ē2〉 and 〈f̄2〉θ
′′

= 〈f̄2〉.
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This implies that there exist h, k ∈ F∗ such that θ′′ ∼ θhk, where θhk is the element of
GL(V ) that maps the hyperbolic basis (ē1, f̄1, ē2, f̄2) to the ordered basis (ē1, hf̄1, kē2,

h
k
f̄2).

The notation θ′′ ∼ θhk means here that θ′′ and θhk induce the same element of PGL(V ),
i.e. they are equal up to a nonzero factor. By looking at the induced actions on W16, we
see that there exists an η ∈ F∗ such that:

(I) χ1

λ2
= χθ

′
1 = η(ē1 ⊗ ē1 ∧ kē2) = ηkχ1,

(II) χ2

λ
= χθ

′
2 = η(ē1 ⊗ ē1 ∧ h

k
f̄2) = ηh

k
χ2,

(III) λχ3 = χθ
′

3 = η(hf̄1 ⊗ hf̄1 ∧ kē2) = ηh2kχ3,

(IV) λ2χ4 = χθ
′

4 = η(hf̄1 ⊗ hf̄1 ∧ h
k
f̄2) = ηh3

k
χ4,

(V) χ5

λ2
= χθ

′
5 = η(kē2 ⊗ kē2 ∧ ē1) = ηk2χ5,

(VI) χ6

λ
= χθ

′
6 = η(kē2 ⊗ kē2 ∧ hf̄1) = ηk2hχ6,

(VII) λχ7 = χθ
′

7 = η(h
k
f̄2 ⊗ h

k
f̄2 ∧ ē1) = ηh2

k2
χ7,

(VIII) λ2χ8 = χθ
′

8 = η(h
k
f̄2 ⊗ h

k
f̄2 ∧ hf̄1) = ηh3

k2
χ8.

From (I) and (V), it follows that ηk = ηk2, i.e. k = 1. Equation (I) then implies that
η = 1

λ2
. Combining this with Equation (II), we find h = λ. By Equation (III), we then

know that λ = 1
λ2
· λ2 · 1 = 1. Since λ was an arbitrary element of F∗, we must have that

|F| = 2, as we needed to prove. �
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