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Abstract

A hyperplane of the symplectic dual polar space DW (2n − 1, K),
n ≥ 2, is called of subspace-type if it consists of all maximal singular
subspaces of W (2n − 1, K) which meet a given (n − 1)-dimensional
subspace of PG(2n−1, K). We show that a hyperplane H of DW (2n−
1, K) is of subspace-type if and only if for every hex F of DW (2n −
1, K), H ∩ F is either F or a hyperplane of subspace-type of F . In
the case K is a perfect field of characteristic 2, we prove a stronger
result, namely a hyperplane H of DW (2n− 1, K) is of subspace-type
or arises from the spin-embedding of DW (2n− 1, K) ∼= DQ(2n, K) if
and only if for every hex F of DW (2n − 1, K), H ∩ F is either F , a
hexagonal hyperplane of F or a hyperplane of subspace-type of F .
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1 Introduction

1.1 Basic definitions and properties

Let Π be a non-degenerate polar space (Tits [15], Veldkamp [16]) of rank
n ≥ 2. With Π there is associated a point-line geometry ∆ whose points are
the maximal singular subspaces of Π, whose lines are the next-to-maximal
singular subspaces of Π and whose incidence relation is reverse containment.
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The geometry ∆ is called a dual polar space of rank n (Cameron [2]). The
distance d(x, y) between two points x and y of ∆ will be measured in the
collinearity graph of ∆. The maximal distance between two points of ∆ is
equal to n. The dual polar space ∆ is a near polygon (Shult and Yanushka
[14]; De Bruyn [5]) which means that for every point p and every line L, there
exists a unique point on L nearest to p. For every point x of ∆ and every
i ∈ N, let ∆i(x), respectively ∆∗i (x), denote the set of points at distance i,
respectively distance at most i, from x. We denote ∆∗1(x) also by x⊥. The
diameter of a set X of points of ∆ is the maximal distance between two of
its points and is denoted by diam(X).

If α is a singular subspace of Π, then the set of all maximal singular
subspaces of Π containing α is a convex subspace of diameter n− 1−dim(α)
of ∆. Conversely, every non-empty convex subspace of ∆ is obtained in
this way. The convex subspaces of diameter 2, 3, respectively n − 1, are
called the quads, hexes, respectively maxes, of ∆. The convex subspaces
through a given point x of ∆ determine a projective space of dimension n−1
which we will denote by Res∆(x). If ∗1 and ∗2 are two objects of ∆ (like
points or non-empty sets of points), then 〈∗1, ∗2〉 denotes the smallest convex
subspace of ∆ containing ∗1 and ∗2. If x is a point and A is a non-empty
convex subspace of ∆, then A contains a unique point πA(x) nearest to x
and d(x, y) = d(x, πA(x)) + d(πA(x), y) for every point y of A. We call πA(x)
the projection of x onto A. If M is a max, then every point not contained in
M is collinear with a unique point of M . If M is a max and A is a convex
subspace of diameter k meeting M , then either A ⊆M or A∩M is a convex
subspace of diameter k − 1.

A hyperplane of ∆ is a proper subspace of ∆ which meets every line. For
every point x of ∆, the set Hx of points at distance at most n− 1 from x is
a hyperplane of ∆, called the singular hyperplane of ∆ with deepest point x.
If HF is a hyperplane of a convex subspace F of diameter δ ≥ 1 of ∆, then
the set H of points of ∆ at distance at most n − δ from a point of HF is a
hyperplane of ∆, called the extension of HF . If δ = n, then F = ∆, H = HF

and the extension is called trivial. A point x of a hyperplane H of ∆ is called
deep with respect to H if x⊥ ⊆ H. A convex subspace A of diameter at least
1 is called deep with respect to H if A ⊆ H.

Suppose now that the dual polar space ∆ is thick. Then every hyperplane
of ∆ is a maximal proper subspace by Shult [12, Lemma 6.1]. If H is a
hyperplane of ∆ and if Q is a quad of ∆, then either Q ⊆ H or Q ∩ H
is a hyperplane of Q. By Payne and Thas [9, 2.3.1], one of the following
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cases then occurs: (1) Q ⊆ H; (2) there exists a point x in Q such that
x⊥ ∩Q = H ∩Q; (3) Q ∩H is a subquadrangle of Q; (4) Q ∩H is an ovoid
of Q. (Recall that an ovoid is a set of points meeting each line in a unique
point.) If case (1), (2), (3), respectively (4) occurs, then we say that Q is
deep, singular (with deep point x), subquadrangular, respectively ovoidal with
respect to H. A hyperplane H of ∆ is called locally singular, locally ovoidal,
respectively locally subquadrangular, if every non-deep quad of ∆ is singular,
ovoidal, respectively subquadrangular, with respect to H.

A full (projective) embedding of ∆ is an injective mapping e from the
point-set P of ∆ to the point-set of a projective space Σ satisfying: (i)
〈e(P)〉Σ = Σ, (ii) e(L) := {e(x) |x ∈ L} is a line of Σ for every line L of
∆. If e is a full embedding of ∆ into the projective space Σ, then for every
hyperplane α of Σ, the set H(α) := e−1(e(P) ∩ α) is a hyperplane of ∆. We
say that the hyperplane H(α) arises from the embedding e.

In this paper, we will meet two classes of dual polar spaces: the dual
polar space DQ(2n,K) related to a nonsingular quadric of Witt-index n in
PG(2n,K) and the dual polar space DW (2n − 1,K) related to the polar
space W (2n − 1,K) of the subspaces of PG(2n − 1,K) which are totally
isotropic with respect to a given symplectic polarity of PG(2n − 1,K). We
have DW (2n − 1,K) ∼= DQ(2n,K) if and only if K is a perfect field of
characteristic 2 (see e.g. [8]). If F is a convex subspace of diameter δ ≥ 2
of DW (2n − 1,K), then the points and lines contained in F determine a
point-line geometry isomorphic to DW (2δ − 1,K). In particular, the points
and lines contained in a quad determine a generalized quadrangle isomorphic
to DW (3,K) ∼= Q(4,K). Since every proper subquadrangle of Q(4,K) is a
full subgrid, the following holds for every hyperplane H and every quad Q
of DW (2n − 1,K): if Q is subquadrangular with respect to H, then Q ∩H
is a full subgrid of Q.

The dual polar space ∆ = DQ(2n,K) has a nice full embedding into
PG(2n−1,K), which is called the spin-embedding ofDQ(2n,K), see Chevalley
[4] or Buekenhout and Cameron [1]. The following proposition characterizes
the hyperplanes of DQ(2n,K) which arise from its spin-embedding.

Proposition 1.1 ([6], [13]) The hyperplanes of DQ(2n,K), n ≥ 2, which
arise from its spin-embedding are precisely the locally singular hyperplanes of
DQ(2n,K).

By Pralle [10], see also Shult [11] for the finite case, the dual polar space
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DQ(6,K) has two types of locally singular hyperplanes, the singular hy-
perplanes and the so-called hexagonal hyperplanes. The points and lines
contained in a hexagonal hyperplane define a split Cayley hexagon H(K). If
H is a hexagonal hyperplane of DQ(6,K), then every quad of DQ(6,K) is
singular with respect to H.

1.2 The main results

Let ζ be a symplectic polarity of PG(2n − 1,K), n ≥ 2, and let π be an
(n − 1)-dimensional subspace of PG(2n − 1,K). Then the set Hπ of all
maximal totally isotropic subspaces of PG(2n − 1,K) (w.r.t. ζ) meeting π
is a hyperplane of the dual polar space DW (2n − 1,K) associated with ζ,
see De Bruyn [7]. We will call any hyperplane which can be obtained in
this way a hyperplane of subspace-type. If n is even and if π is nonsingular,
then we will denote the hyperplane Hπ also by Hyp(2n − 1,K). By [7], the
hyperplane Hyp(3,K) is a full subgrid of DW (3,K) ∼= Q(4,K). Also by [7], a
hyperplane of subspace-type of DW (2n−1,K) is either a singular hyperplane
or the (possibly trivial) extension of a hyperplane of type Hyp(4m − 1,K)
where 2 ≤ 2m ≤ n.

The aim of this paper is to give a characterization of the hyperplanes of
subspace-type. We will prove the following two theorems.

Theorem 1.2 The following are equivalent for a hyperplane H of DW (2n−
1,K), n ≥ 3:

(1) H is a hyperplane of subspace-type;
(2) For every hex F of DW (2n − 1,K), F ∩ H is either F , a singular

hyperplane of F or the extension of a full subgrid of a quad of F .

Theorem 1.3 Let n ≥ 3 and let K be a perfect field of characteristic 2.
Then the following are equivalent for a hyperplane H of DW (2n− 1,K):

(1) H is either a hyperplane of subspace-type or arises from the spin-
embedding of DW (2n− 1,K) ∼= DQ(2n,K);

(2) For every hex F of DW (2n − 1,K), F ∩ H is either F , a singular
hyperplane of F , a hexagonal hyperplane of F or the extension of a full
subgrid in a quad of F .
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1.3 Regarding the proof of the main results

Suppose H is a hyperplane of subspace-type of DW (2n − 1,K), n ≥ 3. By
Proposition 2.9 of [7], we know that for every convex subspace F of diameter
at least 2 of DW (2n − 1,K), either F ⊆ H or F ∩ H is a hyperplane of
subspace-type of F . In particular, if F is a hex of DW (2n − 1,K), then
F ∩ H is either F , a singular hyperplane of F or the extension of a full
subgrid of a quad of DW (2n− 1,K).

Suppose K is a perfect field of characteristic 2 and that H is a hyperplane
of DW (2n−1,K), n ≥ 3, arising from the spin-embedding of DW (2n−1,K).
Then by Proposition 1.1, H is locally singular. If F is a hex of DW (2n−1,K),
then either F ⊆ H or F ∩ H is a locally singular hyperplane of F . Hence,
F ∩H is either F , a singular hyperplane of F or a hexagonal hyperplane of
F .

This proves the implications (1) ⇒ (2) in Theorems 1.2 and 1.3. We still
need to prove the implications (2)⇒ (1) in these theorems. In Section 3, we
will prove the following proposition by induction on n.

Proposition 1.4 Let H be a hyperplane of DW (2n−1,K), n ≥ 3, such that
for any hex F of DW (2n− 1,K), F ∩H is one of the following: (i) F ; (ii) a
singular hyperplane of F ; (iii) the extension of a full subgrid of a quad of F ;
(iv) (only possible when K is a perfect field of characteristic 2) a hexagonal
hyperplane of F . Then the following holds:

(1) If there are no subquadrangular quads, then H is a locally singular
hyperplane.

(2) If there exists at least one subquadrangular quad, then H is a hyper-
plane of subspace-type.

Theorems 1.2 and 1.3 easily follow from Proposition 1.4. Obviously, this is
the case for Theorem 1.3 (Recall Proposition 1.1). We will now also show
that the implication (2)⇒ (1) in Theorem 1.2 is a consequence of Proposition
1.4.

Let H be a hyperplane of DW (2n− 1,K), n ≥ 3, such that for every hex
F of DW (2n − 1,K), F ∩H is either F , a singular hyperplane of F or the
extension of a full subgrid in a quad of F . If there exists a subquadrangular
quad, then H is a hyperplane of subspace-type by Proposition 1.4. Suppose
therefore that there are no subquadrangular quads. Then by Proposition
1.4, H is a locally singular hyperplane of DW (2n − 1,K). If F is a hex of
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DW (2n−1,K), then F ∩H is either F or a locally singular hyperplane of F .
Hence, either F ∩H = F or F ∩H is a singular hyperplane of F . Now, by
Cardinali, De Bruyn and Pasini [3, Lemma 3.4], a hyperplane H ′ of a thick
dual polar space is singular if and only if for every hex F ′ not contained in H ′,
F ′ ∩H ′ is a singular hyperplane of F ′. Applying this here we see that H is a
singular hyperplane of DW (2n− 1,K). Denote by π the (n− 1)-dimensional
singular subspace of W (2n− 1,K) corresponding to the deepest point of H.
Then the hyperplane Hπ of subspace-type coincides with H. So, in any case
we have that H is a hyperplane of subspace-type.

2 Preliminary properties

2.1 Some properties of the hyperplanes of subspace-
type

Let ζ be a symplectic polarity of PG(2n−1,K), n ≥ 2, and let W (2n−1,K)
and ∆ := DW (2n − 1,K) denote the corresponding polar and dual polar
spaces. Let π be an (n − 1)-dimensional subspace of PG(2n − 1,K) and let
Hπ denote the corresponding hyperplane of subspace-type of DW (2n−1,K).
By De Bruyn [7, Corollary 2.11], Hπ does not admit ovoidal quads. For a
proof of the following lemma, see [7, Proposition 2.6].

Lemma 2.1 A max M of DW (2n− 1,K) is contained in Hπ if and only if
the point of W (2n− 1,K) corresponding to M belongs to π ∪ πζ.

Lemma 2.2 Let x be a point of DW (2n − 1,K), n ≥ 3, and let M be a
max through x. If every max through x distinct from M is contained in
Hπ, then also M is contained in Hπ and Hπ is the singular hyperplane of
DW (2n− 1,K) with deepest point x.

Proof. Let α be the maximal singular subspace of W (2n−1,K) correspond-
ing to x. By Lemma 2.1, there is at most 1 point in α which is not covered
by π∪πζ . It follows that every point of α is covered by π∪πζ . Hence, also M
is contained in Hπ. So, the singular hyperplane Hx of DW (2n − 1,K) with
deepest point x is contained in Hπ. Since Hx is a maximal proper subspace
of DW (2n− 1,K), Hx = Hπ. �

Lemma 2.3 If α is a maximal totally isotropic subspace of W (2n − 1,K),
then dim(π ∩ α) = dim(πζ ∩ α).
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Proof. Put β = π ∩ α and k = dim(β). The space βζ has dimension
2n− 2− k and contains the (n− 1)-dimensional subspaces πζ and α. Hence,
dim(πζ ∩α) ≥ k = dim(π∩α). By symmetry, also dim(π∩α) ≥ dim(πζ ∩α).
�

Corollary 2.4 Hπ = Hπζ . �

Consider now the following three types of points in Hπ:
(1) maximal singular subspaces α for which dim(α∩π) = dim(α∩πζ) = 0

and α ∩ π = α ∩ πζ ;
(2) maximal singular subspaces α for which dim(α∩π) = dim(α∩πζ) = 0

and α ∩ π 6= α ∩ πζ ;
(3) maximal singular subspaces α for which dim(α∩π) = dim(α∩πζ) ≥ 1.

Lemma 2.5 Let α be a point of Hπ.
(i) If α is a point of type (1), then there exists a unique deep max A(α)

through α and the lines of ∆ through α which are contained in Hπ are precisely
the lines of A(α) through α.

(ii) If α is a point of type (2), then there are two distinct deep maxes
A1(α) and A2(α) through α such that the lines through x contained in Hπ

are precisely the lines through x which are contained in A1(α) ∪ A2(α).
(iii) If α is a point of type (3), then α is a deep point.

Proof. If α is a point of type (3) of ∆, then every (n − 2)-dimensional
subspace of α contains a point of π. It follows that every line through α is
contained in Hπ. So, α is a deep point of ∆.

Let α be a point of type (1) of ∆ and let x denote the unique point of
W (2n− 1,K) contained in α ∩ π = α ∩ πζ . Let β be an (n− 2)-dimensional
subspace of α. If β contains the point x, then β obviously is a deep line. If
β does not contain the point x, then βζ ∩ π = {x}, and it follows that α is
the unique point of the line β contained in Hπ. [If βζ ∩ π would be a line
L, then L must be a singular line and 〈β, L〉 would be a singular subspace
of dimension n, which is impossible.] Hence, there exists a unique deep max
A(α) through α and the lines of ∆ through α which are contained in Hπ are
precisely the lines of A(α) through α.

Let α be a point of type (2) of ∆ and let x1 and x2 be the points of
W (2n − 1,K) contained in α ∩ π and α ∩ πζ , respectively. Let β be an
(n − 2)-dimensional subspace of α. If β contains at least one of the points
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x1 and x2, then by Lemma 2.3, every maximal singular subspace through β
meets π, proving that β is a deep line. Suppose now that β ∩ {x1, x2} = ∅.
If α′ 6= α is a maximal singular subspace through β meeting π in a point
x 6= x1, then β = x⊥ ∩ α contains the point x2, a contradiction. So, if
β ∩ {x1, x2} = ∅, then α is the unique point on the line β which is contained
in Hπ. It follows that there are two deep maxes A1(α) and A2(α) through α
such that the lines through x contained in Hπ are precisely the lines through
x which are contained in A1(α) ∪ A2(α). �

2.2 On a certain class of hyperplanes of DW (2n− 1,K)

In this subsection, we suppose that H is a hyperplane of ∆ := DW (2n−1,K),
n ≥ 3, such that for any hex F of ∆, F ∩H is one of the following: (i) F ; (ii)
a singular hyperplane of F ; (iii) the extension of a full subgrid of a quad of F ;
(iv) (only possible when K is a perfect field of characteristic 2) a hexagonal
hyperplane of F .

Lemma 2.6 No quad of ∆ is ovoidal with respect to H.

Proof. Let Q be an arbitrary quad of ∆ and let F be an arbitrary hex
containing Q. If F ⊆ H, then also Q ⊆ H. If F ∩H is a singular hyperplane
of F , then either Q ⊆ H or Q ∩H is a singular hyperplane of Q. If F ∩H
is the extension of a full subgrid of a quad of F , then Q ∩ H is either Q,
a singular hyperplane of Q or a full subgrid of Q. If F ∩ H is a hexagonal
hyperplane of F , then Q ∩H is a singular hyperplane of Q. �

Definition. Let x be a point of ∆. The convex subspaces through x define a
projective space Res∆(x) isomorphic to PG(n− 1,K). If x ∈ H, then ΛH(x)
(or Λ(x) when no confusion is possible) denotes the set of lines through x
contained in H. The set Λ(x) is a set of points of Res∆(x).

Lemma 2.7 For every point x of H, Λ(x) is one of the following sets of
points of the projective space Res∆(x):

(1) a hyperplane;
(2) the union of two distinct hyperplanes;
(3) the whole space.

Proof. Let α be a subspace of Res∆(x) of dimension at least 1. We will
show the following by induction on dim(α):
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(∗) α ∩ Λ(x) is equal to either α, a hyperplane of α or the union of two
distinct hyperplanes of α.

Case I. Suppose dim(α) = 1. Property (∗) then follows from the fact that
every quad is either deep, singular or subquadrangular.

Case II. Suppose dim(α) = 2. Let F denote the hex through x corresponding
to α. If F ⊆ H, then α∩Λ(x) is equal to α. If F ∩H is a singular hyperplane
of F , then α∩Λ(x) is either α or a hyperplane of α. If F ∩H is the extension
of a full subgrid of a quad of F , then α∩Λ(x) is either α, a hyperplane of α
or the union of two hyperplanes of α. If F ∩H is a hexagonal hyperplane of
F , then α∩Λ(x) is a hyperplane of α. In any case, we see that property (∗)
holds.

Case III. Suppose dim(α) = 3. By the induction hypothesis, property (∗)
holds for any line or plane of α. If every line of α intersects Λ(x) in the
whole line or a singleton, then α ∩ Λ(x) is either α itself or a hyperplane of
α. So, we may suppose that there exists a line L in α which intersects Λ(x)
in two points x1 and x2. Every plane of α through L intersects Λ(x) in the
union of a line through x1 and a line through x2. Now, let β1, β2, β3 be three
distinct planes of α through L. For every i ∈ {1, 2, 3}, let Li, respectively Mi,
denote the unique line through x1, respectively x2, contained in βi ∩ Λ(x).
Put γ1 := 〈L1, L2〉, γ2 := 〈M1,M2〉, {u1} = γ1 ∩M3 and {v1} = γ2 ∩ L3.
Since L1 ∪ L2 ∪ {u1} ⊆ Λ(x) and u1 /∈ L1 ∪ L2, we have γ1 ⊆ Λ(x) by the
induction hypothesis applied to the subspace γ1. In a similar way, one shows
that γ2 ⊆ Λ(x). Now, every plane of α through L intersects γ1 ∪ γ2 in the
union of a line through x1 and a line through x2. This forces Λ(x) ∩ α to be
equal to γ1 ∪ γ2.

Case IV. Suppose that dim(α) ≥ 4 and that property (∗) holds for any
subspace of dimension less than dim(α). If every line of α intersects Λ(x) in
the whole line or a singleton, then α∩Λ(x) is either α itself or a hyperplane
of α. So, we may suppose that there exists a line L in α which intersects
Λ(x) in two points x1 and x2. For every plane β ⊆ α through L, let k(β)
denote the unique point of β such that β ∩Λ(x) is the union of the two lines
k(β)x1 and k(β)x2.

Claim. The set K = {k(β) | β a plane through L contained in α} is a sub-
space of α with dim(K) = dim(α)− 2.
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Let β1 and β2 be two distinct planes of α through L. By the induction hy-
pothesis, the three-space 〈β1, β2〉 intersects Λ(x) in the union of two planes
δ1 and δ2. The line δ1 ∩ δ2 coincides with the line through k(β1) and k(β2),
and every point of δ1 ∩ δ2 is of the form k(β) for some plane β of 〈β1, β2〉
through L. This proves that K is a subspace. Since L is disjoint from
K, dim(K) ≤ dim(α) − 2. Since every plane of α through L meets K,
dim(K) = dim(α)− 2.

It is now obvious that α ∩ Λ(x) = 〈K, x1〉 ∪ 〈K, x2〉. �

Definition. If x is a point of H such that case (1), (2), respectively (3)
of Lemma 2.7 occurs, then we say that x has type (1), (2), respectively (3)
(with respect to H).

Lemma 2.8 The set of points of type (3) of H forms a subspace of ∆.

Proof. Let x1 and x2 be two distinct collinear points of type (3) and let x3

denote a point on the line x1x2 distinct from x1 and x2. We must show that
every line L through x3 is contained in H. Obviously, this holds if L = x1x2.
So, suppose L 6= x1x2 and let Q be the quad 〈L, x1x2〉. Every point of x⊥1 ∩Q
and x⊥2 ∩Q is contained in Q. So, Q is a deep quad and L ⊆ H. �

Lemma 2.9 A point x of H is of type (2) if and only if it is contained in a
subquadrangular quad.

Proof. A point x of H is of type (2) if and only if there exists a line
in Res∆(x) intersecting Λ(x) in precisely two points. Obviously, the lines
of Res∆(x) which intersect Λ(x) in precisely two points correspond to the
subquadrangular quads through x. �

The following is an immediate consequence of Lemmas 2.6 and 2.9.

Corollary 2.10 If there are no points of type (2), then H is locally singular.

3 Proof of Proposition 1.4

We will now prove Proposition 1.4 by induction on n. Obviously, Proposition
1.4 holds if n = 3. So, we will suppose that n ≥ 4, that H is a hyperplane
of ∆ := DW (2n− 1,K) satisfying the conditions of Proposition 1.4 and that
Proposition 1.4 holds for symplectic dual polar spaces of rank smaller than n.
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Recall that by Lemma 2.7, there are three types of points in H. If there are
no points of type (2), then Proposition 1.4 holds by Lemma 2.9 and Corollary
2.10. In the sequel, we will assume that there exists at least 1 point of type
(2).

Definition. Let P1, P2, respectively P3 denote the set of points of H which
have type (1), (2), respectively (3) with respect to H (cf. Lemma 2.7). Notice
that P3 is the set of deep points. For every point x ∈ P2, let AH1 (x) and AH2 (x)
denote the two maxes through x such that (AH1 (x)∪AH2 (x))∩ x⊥ ⊆ H. Put

IH(x) := AH1 (x) ∩ AH2 (x).

Then IH(x) has diameter n − 2. If no confusion is possible, we will write
I(x), A1(x) and A2(x) instead of IH(x), AH1 (x) and AH2 (x).

Lemma 3.1 The following holds for every point x ∈ P2.
(i) If y ∈ I(x) with d(y, x) ≤ n− 3, then y ∈ H.
(ii) If y′ ∈ (A1(x) ∪ A2(x)) \ I(x) with d(y′, x) ≤ n− 2, then y′ ∈ H.

Proof. In (i), let y′ be a point of A1(x) \ I(x) collinear with y. In (ii),
let y be the unique point of I(x) collinear with y′. In both cases, we have
d(x, y) ≤ n − 3 and d(x, y′) ≤ n − 2. Now, let M denote a max through x,
y and y′ such that diam(M ∩ I(x)) = n− 3, diam(M ∩ A1(x)) = n− 2 and
diam(M ∩A2(x)) = n− 2. The point x of M ∩H has type (2) with respect
to the hyperplane H ′ := M ∩ H of M . So, the hyperplane H ′ cannot be
locally singular. By the induction hypothesis, H ′ is a hyperplane of subspace-
type. By Lemma 2.5, IH

′
(x), AH

′
1 (x) and AH

′
2 (x) are contained in H ′. Now,

IH
′
(x) = IH(x) ∩M and {AH′

1 (x), AH
′

2 (x)} = {AH1 (x) ∩M,AH2 (x) ∩M}. It
follows that y and y′ are contained in H. �

Lemma 3.2 For every point x ∈ P2, I(x) ⊆ H.

Proof. By the induction hypothesis, either A1(x) ⊆ H, A1(x)∩H is a hyper-
plane of subspace-type of A1(x) or A1(x)∩H is a locally singular hyperplane
of A1(x). If A1(x) ⊆ H, then also I(x) ⊆ H.

Suppose A1(x) ∩ H is a locally singular hyperplane of A1(x). Let y be
a point of I(x) at distance at most n − 3 from x. Since there are no sub-
quadrangular quads in A1(x) through y, y has type (1) or (3) with respect
to the hyperplane A1(x) ∩H of A1(x). Since every line of A1(x) through y
not contained in I(x) is contained in H (recall Lemma 3.1), y necessarily has

11



type (3) with respect to the hyperplane A1(x)∩H of A1(x). Since this holds
for every point y of I(x) at distance at most n− 3 from x, I(x) ⊆ H.

Suppose A1(x)∩H is a hyperplane of subspace-type of A1(x). By Lemma
3.1, every max of A1(x) through x distinct from I(x) is contained in A1(x)∩
H. Hence, by Lemma 2.2 also I(x) is contained in A1(x) ∩H. �

Corollary 3.3 Let x be a point of P2. Then for every i ∈ {1, 2}, ∆∗n−2(x)∩
Ai(x) ⊆ H. �

Lemma 3.4 Let x be a point of P2. Then on every line L through x con-
tained in I(x), there is a unique point xL belonging to P3. Moreover, L \
{xL} ⊆ P2 and for every x′ ∈ L \ {xL}, we have I(x) = I(x′) and {A1(x),
A2(x)} = {A1(x′), A2(x′)}.

Proof. By Corollary 3.3, y⊥ ∩ (A1(x) ∪ A2(x)) ⊆ H for every point y ∈ L.
So, every point of L belongs to P2∪P3. Now, let Q denote a quad through L
not contained in A1(x)∪A2(x). Then Q is singular with respect to H, since
L ⊆ H and (x⊥ ∩H) ∩Q = L. If xL is the deep point of Q with respect to
H, then xL

⊥ ∩ Q ⊆ H and hence xL ∈ P3. By Lemma 2.8, L \ {xL} ⊆ P2.
For every x′ ∈ L \ {xL}, {A1(x), A2(x)} = {A1(x′), A2(x′)} and I(x) = I(x′)
since x′⊥ ∩ (A1(x) ∪ A2(x)) ⊆ H by Corollary 3.3. �

Lemma 3.5 If x ∈ P2, then A1(x) ∪ A2(x) ⊆ H.

Proof. Let i ∈ {1, 2}. By Lemma 3.4, there exists an x′ ∈ ∆1(x) ∩ P2 such
that I(x) = I(x′) and {A1(x), A2(x)} = {A1(x′), A2(x′)}. Without loss of
generality, we may suppose that A1(x) = A1(x′) and A2(x) = A2(x′). By
Corollary 3.3, the subspace Ai(x)∩H of Ai(x) contains ∆∗n−2(x)∩Ai(x) and
∆∗n−2(x′)∩Ai(x). Now, ∆∗n−2(x)∩Ai(x) ⊆ H and ∆∗n−2(x′)∩Ai(x) ⊆ H are
maximal proper subspaces of Ai(x). It follows that Ai(x) ∩ H = Ai(x), in
other words Ai(x) ⊆ H. �

Corollary 3.6 Every point of P2 is contained in precisely two deep maxes.
�

Lemma 3.7 Let x be a point of P2. Then
(i) I(y) = I(x) for every point y ∈ I(x) ∩ P2;
(ii) I(x) ⊆ P2 ∪ P3 and H(x) := I(x) ∩ P3 is a hyperplane of I(x).
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Proof. (i) Let M1 and M2 denote the two deep maxes through x. Then
I(x) = M1 ∩M2. Hence, M1 and M2 are also the two deep maxes through y
and I(y) = M1 ∩M2 = I(x).

(ii) Since A1(x) ⊆ H and A2(x) ⊆ H, every point of I(x) belongs to
P2 ∪ P3. The claim follows from Lemma 3.4 and part (i). �

Lemma 3.8 Let M be a deep max, let x ∈ M ∩ P2 and let x′ be a point of
∆1(x) ∩M not contained in I(x). Then

(i) L = xx′ only contains points of P2;
(ii) I(x′) is disjoint from I(x).

Proof. (i) Let M ′ denote the other deep max through x. Then I(x) =
M ∩M ′. Let L′ denote a line of M ′ through x not contained in I(x). Then
the quad 〈L,L′〉 is subquadrangular, since x ∈ P2. Hence, L ∪ L′ ⊆ P2 by
Lemma 2.9.

(ii) By Lemma 3.7 and (i), xx′ 6⊆ I(x′). This implies that I(x) and I(x′)
are disjoint. �

Lemma 3.9 No point of P1 is collinear with a point of P2.

Proof. Suppose that the point x ∈ P1 is collinear with the point y ∈ P2.
Without loss of generality, we may suppose that x ∈ A1(y). Now, I(y) ⊆
A1(y) and I(y) does not contain the point x by Lemma 3.7. But then by
Lemma 3.8, the line xy must be contained in P2 which is clearly not the case.
�

The following is an immediate corollary of Lemmas 2.8 and 3.9.

Corollary 3.10 If a line L ⊆ H contains a point of P1, then either all points
of L belong to P1, or precisely one point of L belongs to P3 and the remaining
points belong to P1.

Lemma 3.11 If there exists a deep max M containing a point of P1, then
H is a hyperplane of subspace-type which extends a hyperplane of M .

Proof. We first prove that M ⊆ P1 ∪ P3. Suppose M ∩ P2 6= ∅. Let u ∈ P1

and v ∈ P2 be points of M with d(u, v) as small as possible. By Lemma 3.9,
d(u, v) ≥ 2. The convex subspace I(v) is contained in M and only contains
points of P2 ∪ P3 by Lemma 3.7. Hence, u 6∈ I(v). Put u′ := πI(v)(u) and
let L denote an arbitrary line of M through u different from uu′ such that
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L′ := πI(v)(L) ⊆ 〈v, u′〉. By Corollary 3.10, at most one point of L does not
belong to P1. By Lemma 3.9 and the fact that I(v) ⊆ P2 ∪ P3, it follows
that at most one point of L′ does not belong to P3. It follows that L′ ⊆ P3

since P3 is a subspace. So, v 6∈ L′ and d(v, u′) ≥ 2. Let y denote the
unique point of L′ nearest to v. Let L′′ denote a line of 〈v, u′〉 through v
not contained in 〈v, y〉. Then L′′ contains a unique point z of P3 by Lemma
3.7. Now, every point of L′′ has distance d(v, u′) − 1 to a (unique) point
of L′. Since |L′|, |L′′| ≥ 3, there exists a point v1 ∈ L′′ \ {z} and a point
u1 ∈ L∩P1 such that d(v1, πI(v)(u1)) = d(v, u′)− 1. Hence, u1 ∈ P1, v1 ∈ P2

and d(u1, v1) = d(u, v)− 1, a contradiction. Hence, M ⊆ P1 ∪ P3.
Next, we prove that G := M ∩ P3 is a hyperplane of M . Let L be an

arbitrary line of M containing a point x of P1 and let Q be a quad through
L not contained in M . Since x⊥ ∩Q∩H = L, Q is singular. The deep point
y of Q necessarily is contained in P3. Since P3 is a subspace, L ∩ P3 = {y}.
This proves that M ∩ P3 is a hyperplane of M .

By the previous two paragraphs, H consists of those points of ∆ which
have distance at most 1 from G. So, the hyperplane H is the extension of
G. Let M ′ denote a max disjoint from M . By the induction hypothesis,
the hyperplane M ′ ∩ H of M ′ is either locally singular or a hyperplane of
subspace-type. Hence, also the hyperplane G of M (which is isomorphic to
the hyperplane H ∩M ′ of M ′) is either locally singular or a hyperplane of
subspace-type. Now, the extension of a locally singular hyperplane is again
locally singular and the extension of a hyperplane of subspace-type is again
a hyperplane of subspace-type. Since we assumed P2 6= ∅, the hyperplane H
cannot be locally singular. Hence, H is a hyperplane of subspace-type. �

In view of Lemma 3.11, we may now suppose that no point of P1 is contained
in a deep max. SinceH is a proper set of points of ∆, every deep max contains
at least one point of P2. We now define a relation R on the setM of all deep
maxes. For M1,M2 ∈ M, we say that (M1,M2) ∈ R if and only if either
M1 = M2 or M1 ∩M2 ⊆ P3.

Lemma 3.12 The relation R is an equivalence relation.

Proof. Obviously, R is reflexive and symmetric. We prove that R is also
transitive. Let M1, M2 and M3 be three maxes such that (M1,M2) ∈ R and
(M2,M3) ∈ R. We will show that (M1,M3) ∈ R. We may suppose that M1,
M2 and M3 are mutually different.
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Case I: M1 ∩M2 = ∅ and ∅ 6= M2 ∩M3 ⊆ P3.
If M3 is disjoint from M1, then we are done. So, suppose M1∩M3 6= ∅. Let y
denote an arbitrary point of M1 ∩M3, let Ly denote the unique line through
y meeting M2 in a point z and let Q denote an arbitrary quad through Ly.
Then z⊥ ∩Q ⊆ H and Q ∩M1 ⊆ H. It follows that Q is deep. Since Q was
an arbitrary quad through Ly, y ∈ P3. This proves that M1 ∩M3 ⊆ P3 and
that (M1,M3) ∈ R.

Case II: M1 ∩M2 = ∅ and M2 ∩M3 = ∅.
Suppose that (M1,M3) 6∈ R. Then M1 ∩M3 6= ∅ and there exists a point
y ∈M1∩M3∩P2. Let Ly denote the unique line through y meeting M2. Then
Ly ⊆ H. Now, {A1(y), A2(y)} = {M1, 〈I(y), Ly〉}. Hence, M3 = 〈I(y), Ly〉,
contradicting the fact that M2 and M3 are disjoint.

Case III: M2 ∩M3 = ∅ and ∅ 6= M1 ∩M2 ⊆ P3.
Similarly as in Case I, one shows that (M1,M3) ∈ R.

Case IV: ∅ 6= M1 ∩M2 ⊆ P3 and ∅ 6= M2 ∩M3 ⊆ P3.
If M1 ∩M2 = M2 ∩M3, then M1 ∩M3 6= ∅ and M1 ∩M3 = M1 ∩M2 ⊆ P3,
proving that (M1,M3) ∈ R. If M1 ∩ M2 and M2 ∩ M3 are disjoint, then
also M1 and M3 are disjoint and we are done. So, we may suppose that
diam(M1 ∩M2) = diam(M1 ∩M3) = diam(M2 ∩M3) = n − 2, diam(M1 ∩
M2 ∩M3) = n− 3, M1 ∩M2 ⊆ P3 and M2 ∩M3 ⊆ P3.

Suppose that there exists a point y in (M1 ∩M3 ∩P2) \M2, let y′ denote
the unique point of M2 collinear with y (so, y′ ∈M1∩M2∩M3), let Q denote
a quad through yy′ not contained in M1∪M3 and let z be an arbitrary point
of Q ∩M2 \ {y′}. Since y ∈ P2, Q is not deep. Now, y′⊥ ∩ Q ⊆ H since
y′ ∈ P3. So, Q is singular with deep point y′. It follows that z ∈ P2. By
Lemma 3.8, y′z ⊆ I(z). So, I(z) ∩ M1 ∩ M2 and I(z) ∩ M3 ∩ M2 have
diameter n − 3. Now, let R be a quad of M2 through zy′ not contained in
I(z) ∪ 〈z,M1 ∩ M2 ∩ M3〉. Then R intersects Mi, i ∈ {1, 3}, in a line Li
which is not contained in M1 ∩M2 ∩M3. Let A be the hex 〈R, yy′〉. Since
y ∈ P2, A contains a subquadrangular quad through y. It follows that the
hyperplane A ∩H is the extension of a full subgrid G∗ in a quad Q∗. Since
L1, L3 ⊆ P3, L1, L3 ⊆ G∗ and hence Q∗ = R. Now, let M ′

2 denote the unique
deep max through z different from M2. Then M ′

2 ∩ A is a deep quad of A
through z which necessarily coincides with Q∗ = R (notice that z ∈ Q∗ \G∗).
But this would imply that R ⊆ I(z), a contradiction. Hence, M1 ∩M3 ⊆ P3

and (M1,M3) ∈ R. �
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Definition. For every point x of P2 and every i ∈ {1, 2}, let Ci(x) denote
the equivalence class of R containing the element Ai(x). Obviously, C1(x) 6=
C2(x).

Lemma 3.13 If x and y are two collinear points of P2, then {C1(x), C2(x)} =
{C1(y), C2(y)}.

Proof. If I(x) = I(y), then {A1(x), A2(x)} = {A1(y), A2(y)} and hence
{C1(x), C2(x)} = {C1(y), C2(y)}. Suppose therefore that I(x) 6= I(y). Then
〈y, I(x)〉 is a deep max. Without loss of generality, we may suppose that
A1(x) = A1(y) = 〈y, I(x)〉. So, C1(x) = C1(y). By Lemma 3.8, I(y) is disjoint
from I(x). Hence, also A2(y) is disjoint from A2(x). Hence, C2(x) = C2(y). �

Lemma 3.14 The equivalence relation R has precisely two classes.

Proof. Let x be an arbitrary point of P2 and let M be an arbitrary element
of M. We will prove that either M ∈ C1(x) or M ∈ C2(x).

If M ∩ A1(x) ⊆ P3, then M ∈ C1(x). Suppose therefore that there exists
a point y ∈ M ∩ A1(x) ∩ P2. We prove by induction on d(x, y) that there
exists a path in A1(x) which connects the points x and y and which entirely
consists of points of P2. Obviously, this holds if d(x, y) ≤ 1. So, suppose that
d(x, y) ≥ 2. Let Lx denote an arbitrary line through x contained in 〈x, y〉,
let z denote the unique point on Lx at distance d(x, y)− 1 from y and let Ly
be a line of 〈x, y〉 through y not contained in 〈x, z〉. Then every point of Lx
has distance d(x, y) − 1 from a unique point of Ly. Since |Lx|, |Ly| ≥ 3 and
|Lx ∩ P3|, |Ly ∩ P3| ≤ 1 (recall Lemma 2.8), there exist points x′ ∈ Lx \ P3

and y′ ∈ Ly \P3 at at distance d(x, y)− 1 from each other. By the induction
hypothesis, the points x′ ∈ P2 and y′ ∈ P2 are connected by a path of A1(x)
which entirely consists of points of P2. Hence, also x and y are connected by
such a path.

Now, by Lemma 3.13, we have {C1(x), C2(x)} = {C1(y), C2(y)}. Since
either M ∈ C1(y) or M ∈ C2(y), we have that either M ∈ C1(x) or M ∈ C2(x).
�

Let C1 and C2 denote the two classes of the equivalence relation R. Let πi,
i ∈ {1, 2}, be the set of points of W (2n− 1,K) corresponding to the maxes
of Ci. Every maximal totally isotropic subspace meeting π1 ∪ π2 belongs to
H.
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Lemma 3.15 The set πi is a subspace of the ambient projective space PG(2n−
1,K) of W (2n− 1,K).

Proof. Let L be a line of PG(2n−1,K) containing two distinct points x and
y of πi. For every point z of L, let Mz denote the max of ∆ corresponding
to z.

Suppose L is a hyperbolic line of W (2n − 1,K). Then the maxes Mz,
z ∈ L, are mutually disjoint, and every line meeting Mx and My also meets
every Mz, z ∈ L \ {x, y}. It follows that all the maxes Mz, z ∈ L, are deep
and belong to the equivalence class Ci of R. This proves that L ⊆ πi.

Suppose L is a line of W (2n−1,K). Then there exists a convex subspace
A of diameter n − 2 in ∆ which is contained in all maxes Mz, z ∈ L. We
have A = Mx ∩My ⊆ P3. Hence, all maxes Mz, z ∈ L, are deep and belong
to the equivalence class Ci of R. This proves that L ⊆ πi. �

Lemma 3.16 Let M denote an arbitrary deep max of C1. Then for every
point x of M , there exists a max Mx ∈ C2 containing x.

Proof. If x ∈ P2, then we are done. So, suppose x ∈ P3. Let y denote a
point of M ∩P2 with d(x, y) as small as possible. Every line of 〈x, y〉 through
y contains a point at distance d(x, y) − 1 from x. This point belongs to P3

and hence is contained in I(y) by Lemma 3.8. It follows that 〈x, y〉 ⊆ I(y).
So, if Mx denotes the unique deep max through y different from M , then
Mx ∈ C2 and x ∈Mx. �

Corollary 3.17 Let M denote a deep max of C1 and let u denote the unique
point of π1 corresponding to M . Then every maximal totally isotropic sub-
space of W (2n− 1,K) containing u meets π2. �

Lemma 3.18 We have dim(π2) = n− 1.

Proof. Suppose dim(π2) ≥ n. Then every maximal totally isotropic sub-
space of W (2n− 1,K) meets π2 and hence belongs to H, a contradiction.

Suppose dim(π2) ≤ n − 2. Let u denote an arbitrary point of π1. The
subspaces of PG(2n−1,K) through u contained in uζ define a projective space
uζ/u of dimension 2n−3 and the totally isotropic subspaces of PG(2n−1,K)
through u define a polar space W (2n− 3,K) in uζ/u. The space 〈π2 ∩ uζ , u〉
has dimension at most n− 2 in uζ/u. One easily proves (see e.g. Lemma 2.3
of [7]) that there exists a maximal singular subspace in W (2n−3,K) disjoint
from 〈π2 ∩ uζ , u〉 (in uζ/u). This implies that there exists a maximal totally
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isotropic subspace of W (2n− 1,K) through u disjoint from π2, contradicting
Corollary 3.17.

Hence, dim(π2) = n− 1. �

The following lemma finishes the proof of Proposition 1.4.

Lemma 3.19 The hyperplane H is of subspace-type.

Proof. The hyperplane Hπ2 of subspace-type is contained in H and is a
maximal proper subspace of DW (2n− 1,K). It follows that H = Hπ2 . �
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