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Abstract

In recent work, we constructed a new near octagon G from certain involutions of the
finite simple group G2(4) and showed a correspondence between the Suzuki tower of finite
simple groups, L3(2) < Us(3) < Jo < G2(4) < Suz, and the tower of near polygons,
H(2,1) C H(2)? € HJ C G. Here we characterize each of these near polygons (except for
the first one) as the unique near polygon of the given order and diameter containing an
isometrically embedded copy of the previous near polygon of the tower. In particular, our
characterization of the Hall-Janko near octagon HJ is similar to an earlier characterization
due to Cohen and Tits who proved that it is the unique regular near octagon with parameters
(2,4;0,3), but instead of regularity we assume existence of an isometrically embedded dual
split Cayley hexagon, H(2)”. We also give a complete classification of near hexagons of
order (2,2) and use it to prove the uniqueness result for H(2)".
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1 Introduction

Near polygons, introduced by Shult and Yanushka [19], form an important class of point-line
geometries. They are related to polar spaces [8], distance-regular graphs [6], finite simple groups,
and they have a rich theory of their own [I1]. While dual polar spaces and generalized polygons
(which can be seen as a special class of near polygons) are related to classical groups and
exceptional groups of Lie type, there are also some near polygons corresponding to sporadic
simple groups. One of the most famous examples is the Hall-Janko near octagon HJ (also known
as the Cohen-Tits near octagon [4]) constructed by Cohen using central involutions of the Hall-
Janko sporadic simple group Jo (cf. [9]). The collinearity graph of HJ is a distance regular graph,
with intersection array {10,8,8,2;1,1,4,5}, which is uniquely determined by these intersection
numbers, or equivalently, HJ is the unique regular near octagon with parameters (2,4;0,3)
(cf. [I0, Thm. 3]).

It is well known that HJ contains subgeometries isomorphic to the dual split Cayley hexagon
of order (2,2), henceforth denoted by H(2)”. One of our main results in this paper is an
alternative characterization of HJ where instead of assuming regularity we only assume the
order (2,4) and the existence of an isometrically embedded H(2)".

In [2] we constructed a new near octagon G using a conjugacy class of involutions of the
finite simple group G2(4) and proved that G contains HJ as an isometrically embedded subge-
ometry. In fact, we gave a correspondence between the Suzuki tower of finite simple groups (a



name coined by Tits as has been mentioned in [I6]) and the tower of near polygons H(2,1) C
H(2)P c HJ C G, where H (2, 1) is the unique generalized hexagon of order (2, 1) (the point-line
dual of the incidence graph of Fano plane). We also showed a correspondence between these near
polygons and a sequence of five vertex-transitive graphs that have the five groups of the Suzuki
tower as automorphism groups. All graphs besides the first one in this sequence are strongly
regular and contain the previous one as a local graph. This latter property can in fact be used
to give a common characterization of the graphs contained in this “Suzuki tower of strongly
regular graphs” (cf. Pasechnik [I7]). In the present paper, we obtain a similar common char-
acterization for the geometries in the “Suzuki tower of near polygons” by proving the following
three theorems.

Theorem 1.1. The dual split Cayley hexagon of order (2,2) is the unique near hexagon of order
(2,2) that contains the generalized hexagon H(2,1) as an isometrically embedded subgeometry.

Theorem 1.2. The Hall-Janko near octagon is the unique near octagon of order (2,4) that
contains the dual split Cayley hexagon of order (2,2) as an isometrically embedded subgeometry.

Theorem 1.3. The G2(4) near octagon G is the unique near octagon of order (2,10) that
contains the Hall-Janko near octagon as an isometrically embedded subgeometry.

This paper is organised as follows. In Section [2| we give the basic properties of near polygons
and their valuations that we will use in our proofs. In Section |3| we first prove that up to
isomorphism there are only three near hexagons of order (2,2), the two generalized hexagons
of order (2,2) (split Cayley hexagon and its dual) and the product near polygon L3 x L3 x Lg.
Then we show that out of these three near hexagons only the dual split Cayley hexagon contains
H(2,1) as a subgeometry, thus proving Theorem |[1.1

Sections [] and [5] are then devoted to proving Theorems and respectively. The
main tool that we use in these proofs is the theory of valuations of near polygons introduced
by De Bruyn and Vandencasteele in [I4]. This is a purely combinatorial tool which has since
been developed and used to obtain several classification results for near polygons (see [13] for a
survey). In [I] we used the so-called valuation geometry of H(2)", obtained with the help of a
computer, to prove that it is not contained in any semi-finite near hexagon as a full isometrically
embedded subgeometry, thus giving a partial answer to the famous open problem about existence
of semi-finite generalized polygons in this particular case. Moreover, the G2(4) near octagon G
was first constructed using the valuation geometry of HJ (see [2, Appendix]). The algorithm
provided in [I] to compute the valuation geometry of H(2)” can also be used to compute the
valuation geometry of HJ and both these valuation geometries will be crucial to our proofs. We
have made the computer code, written in GAP [15], required for these computations available

online, see [3]. This code is also used to prove Lemmas and

2 Near polygons and their valuations

In a partial linear space we can identify each line with the set of points incident with it, and
then the incidence relation becomes set inclusion. We would do so whenever it is convenient. A
partial linear space is said to have order (s,t) if every line is incident with precisely s+ 1 points
and if every point is incident with precisely ¢t 4+ 1 lines. All distances in a partial linear space
S = (P,L,7) will be measured in its collinearity graph, and denoted by ds(-,-) or by d(,-)



when no confusion could arise. If z is a point of S, then I';(x), for i € N, will denote the set of
points of S at distance i from z. Similarly, for a nonempty subset X C P, we define

Ii(X)={zePli=d(z,X):=mind(z,y)}.
yeX

Let X be a set of points of S. Then X is called a subspace if for every pair of distinct collinear
points in X, the line joining those points is contained in X. A subspace X is called convez, if
for every pair of points z,y € X all points on a shortest path between x and y are contained in
X.

A near 2d-gon with d € N is a partial linear space N = (P, L£,Z) defined by the following
axioms:

(NP1) the collinearity graph of N is a connected graph of diameter d;

(NP2) for every x € P and every line L € L there exists a unique point 7y (z) incident with L
that is nearest to x.

It follows that every near 4-gon is a possibly degenerate generalized quadrangle (see [1§]). In
fact, generalized 2d-gons with d > 2 are near 2d-gons that satisfy the following extra property:

(GP) For every pair of points x,y at distance i € {1,2,...,d — 1} from each other, the set
{z € P|d(z,z) =i—1,d(z,y) = 1} is a singleton.

Two lines L; and Lg of a near polygon are called parallel at distance i if d(L1, Lo) = ¢ and for
each point x1 on Ly, there is a unique point x on Ly such that d(z1, z2) = i, or equivalently, if
d(L1, Ly) = i and for each point z3 on Lo, there is a unique point 1 on Ly such that d(x1, z9) = i.

Let N = (P, L,T) be a subgeometry of another near polygon N’ = (P', L, T"), i.e., P C P/,
LCL andZ=T'N(P x L). Then N is called a full subgeometry of N if for every line L € £
we have {x € P:a2Z L} ={x € P : T’ L} and it is called isometrically embedded if for all
x,y € P we have dy(z,y) = dy (2, y).

For every nonempty convex subspace X of a near polygon N' = (P, L,Z), we can define a
full isometrically embedded subgeometry of N by taking the elements of X as the points of the
subgeometry and the lines L € £ satisfying {x € X : ® Z L} = {x € P : = T L} as the lines of
the subgeometry, with the incidence relation being the one induced by Z.

The most important class of subgeometries of near polygons are the quads. They were
introduced by Shult and Yanushka in [19], and the theory of near polygons with quads was
further developed by Brouwer and Wilbrink in [7]. A quad @ of a near polygon N is a set of
points that satisfies the following properties.

(Q1) The maximum distance between two points of @ is 2.
(Q2) If x,y € @Q are distinct and collinear, then every point incident with the line zy lies in Q.

(Q3) If z and y are two non-collinear points in @), then every common neighbour of z and y is

in Q.

(Q4) The subgeometry of N determined by those points and lines that are contained in @ is a
non-degenerate generalized quadrangle.



Or succinctly, a quad @ is a convex subspace of N that induces a subgeometry isomorphic to a
non-degenerate generalized quadrangle. Sufficient conditions for existence of quads were given
by Shult and Yanushka in [I9, Proposition 2.5], where they proved that if a and b are two points
of a near polygon at distance 2 from each other, and if ¢ and d are two common neighbours of
a and b such that at least one of the lines ac, ad, be, bd contains at least three points, then a and
b are contained in a unique quad. We will implicitly use this result in our proofs.

In a near polygon with three points per line, each quad induces a generalized quadrangle
of order (2,t), and each such generalized quadrangle is isomorphic to either the (3 x 3)-grid,
W(2) or Q(5,2) (see eg. Section 1.10 in [I1]). We will call the quad a grid-quad, a W (2)-quad
or a Q(5,2)-quad depending on which case occurs. The (3 x 3)-grid is an example of a so-called
product near polygon (see Section 1.6 in [I1] for the precise definition) as it can be obtained by
taking the direct product Lg x L3, where L3 is a line with three points. We will see another
example of a product near polygon, ILg x ILg x LL3, in Section 3| which is a near hexagon of order
(2,2).

Let N = (P, L,T) be a near 2d-gon. A function f : P — Z is called a semi-valuation of N if
every line L contains unique point x, such that f(z) = f(zr)+ 1 for every point x of L distinct
from zp. A valuation of N is a semi-valuation f for which min,cp f(x) = 0.

Let f be a valuation of N. Then Mj denotes the maximum value attained by f and Of
denotes the set of points with f-value 0. It can be easily checked that the set of points of A/ that
have f-value strictly less than My is a hyperplane Hy of N, i.e., a proper subset of P having
the property that each line has either one or all its points in it. From the near polygon axioms
it also follows that the function f : P — Z defined by f(y) = d(x,y), where z is a fixed point
of NV, is a valuation of A/. This is known as the classical valuation of N with center z. Two
valuations fi; and fo of N are called isomorphic if there exists an automorphism 6 of A/ such
that fo = f1 0 6. Thus, all classical valuations of N are isomorphic if Aut(N') acts transitively
on the points of N, which is true for all the Suzuki tower near polygons.

Two valuations f; and fo of A are called neighboring valuations if there exists an € € Z such
that |fi(x) — fa(z) + €| < 1 for every point x of N. The number e (necessarily belonging to
{-1,0,1}) is uniquely determined, except when f; = fo, in which case there are three possible
values for €, namely —1, 0 and 1. Suppose N is a near polygon in which every line has precisely
three points. Then for every pair of neighbouring valuations fi, fo we can define a third valuation
f3 = f1 * fo which satisfies the following properties: (i) fo * f1 = fi1 * fo = f3; (ii) f1 and f3
are neighboring valuations and f1 x f3 = fa; (iii) fo and f3 are neighboring valuations and
fo x fs3 = f1. For the definition of this operator and more on the basic theory of valuations we
refer to [Il, Section 2] or [12, Section 2], where this operator was introduced. The following result
establishes the main connection between valuations and isometric embeddings of near polygons.

Lemma 2.1. Let N = (P,L,Z) be a near polygon which is an isometrically embedded full
subgeometry of a near polygon N = (P',L',T"). Then the following holds:

(1) For every point x in P’ the function fy : P — N defined by f,(y) == d(z,y) — d(x,P) is a
valuation of N.

(2) For every pair of distinct collinear points x1 and xo in N, the valuations fy, and fy, are
neighboring.

(3) Say every line of N is incident with three points and let {x1,x2, 23} be a line of N'. Then
far * foo = fos- In particular, if two of fz,, fzy, fzs coincide then they are all equal.



Proof. See [1, Lemma 2.2]. O

Lemma 2.2. Let N = (P,L,Z) be a near polygon which is an isometrically embedded full
subgeometry of a near 2d-gon N' = (P',L',T'), and for every point = of N', let f, be the
valuation of N as defined in Lemma[2.1. Then:

(1) If x is a point of N such that d(z, P) =i, then My, <d—1.

(2) Ifz is a point at distance 1 from N such that |Oy,| = 1, then there is a unique point ma(x)
in N collinear with x.

Proof. This immediately follows from the definition of the map f,. O

Let N be a near polygon that has three points on each line and let V be the set of valuations
of N. The valuation geometry of N is the partial linear space V defined by taking the set V as
points and the triples {f1, fo2, f3} of pairwise distinct and neighbouring valuations that satisfy
f1* fo = f3 as lines. We observe that Aut(N) acts on the valuation geometry V by the map
(f,0) € Vx Aut(N) = fof~! (and thus f(z) = (fo0~1)(8(x)), Vo € P Vf € V VO € Aut(N)).
When computing valuations we will only record the information about different orbits under this
action by giving each orbit a different label (see eg. Table (1)) and noting the essential properties
of the valuations in that orbit. Similarly, the lines of V will be given a type, which is just a
sorted tuple of the type of points on that line, and we record the information about the number
of V-lines of a given type incident to a fixed valuation of a given type in a separate table (see
eg. Table . Say N is a full isometrically embedded subgeometry of another near polygon N”.
Then by Lemma the points and lines of N induce points and lines of the valuation geometry
VY of N. We define the type of a point or line in A/ to be the type of the corresponding point
or line of V. Note that the points/lines of N’ of the same type are not necessarily isomorphic
under the action of Aut(N”’). Lines of the valuation geometry V of a fixed near polygon N will
be referred to as V-lines and the valuation of A/ induced by a point = of N’ (see Lemma
will be denoted by f.

3 Near hexagons of order (2,2)

In this section we classify all near hexagons N of order (2,2). We know that if every pair
of points in A at distance 2 from each other have a unique common neighbour, then N is a
generalized hexagon. In that case we can use the result of Cohen and Tits [10] to say that A/
is either isomorphic to the split Cayley hexagon H(2) or its dual H(2)P. Similarly, if every
pair of points in N at distance 2 have more than one common neighbour then we can use [5,
Theorem 1.1] to conclude that N' must be isomorphic to Lg x L x Lg (number (xi) in their
classification). We will prove that these are the only possible cases. First we need a basic result
on near polygons with an order.

Lemma 3.1 ([11, Theorem 1.2]). Let N = (P,L,I) be a finite near 2d-gon, d > 1, of order
(s,t) and let x be a point of N'. Then

—1 d(z,y)
>(5)

yeP



Proof. By (NP2), for every line L the sum }_, 7 L(%)d(z’y) is 0. Therefore, we have

0:ZZ(:})C{(%ZHzzz<j>d(%y):(t+l)z<_81>d(x7y).

LeLyTL yeP LIy yeP
O

Lemma 3.2. Let N be a finite near hexagon of order (s,t) and Q a quad of N that has order
(s,t'). Thent' <t.

Proof. We know that ¢’ < t. For the sake of contradiction, assume that ¢ = ¢. Let z be a point
of Q. Since all lines of N through z are already contained in @, x cannot be collinear with any
point that is not contained in (). But then, there cannot be any points of A/ that lie outside Q,
as the collinearity graph of A is connected. Thus ' = @, which is a contradiction. ]

Lemma 3.3. Let N be a near hexagon of order (2,2). Then the number of common neighbours
of a pair of points at distance 2 from each other is a constant ¢ € {1,2}.

Proof. Let v denote the total number of points of N = (P, L,Z). For a fixed point x let n;(z)
denote the number of points at distance i € {0, 1,2,3} from z. For all z € P, we have ng(x) = 1,
ni(z) = 6, and thus

na(x) +n3(z) =v—"17. (1)

By Lemma |3.1| we have
m(z) | no(x)  n(z)
no(x) — 5 + T 0. (2)

Solving equations and we get that ng(z) = (v+9)/3 and n3(z) = (2v — 30)/3 for all
x € P. Therefore these numbers only depend on v, and we can define constants

no=1,n,=6,n2=(v+9)/3,n3 = (2v — 30)/3. (3)

By Lemma [3.2]all quads of A are grid-quads (= Lg x Lg). For a point z, let N(z) be the number
of grid-quads that contain x. Then the number of points at distance 2 from z that are contained
in a grid along with z is equal to 4N (x) since there is a unique quad through a pair of points at
distance 2 which have more than one common neighbour. Double counting edges between I' ()
and T'o(x) we get that 2-4N(z) + 1 (ng —4N(x)) = ny - 4, and hence N(z) = (63 —v)/12. So,
the total number of grid-quads through a point is a constant given by N := (63 — v)/12.

It is known that there cannot be more than one quad through a pair of intersecting lines
(see eg. [II, Thm. 1.4]). Since the number of lines through each point is 3, we must have
N € {0,1,2,3}. Since v = 63 — 12N, using double counting we get that the total number of
grid-quads in N is

N(63 — 12N) /9.

This number is not an integer if N € {1,2}. Therefore, N must be 0 or 3. If N is 0, then there
are no quads, and hence every two points at distance 2 from each other have a unique common
neighbour. Say N is equal to 3 and let x,y be a pair of points at distance 2 from each other.



Every line through x is contained in precisely two of the three grid-quads through x. Thus for
every neighbour z of x, the two lines through z that contain a point of I'y(z) are contained in
grids through x. This implies that there is a grid through x and y, i.e., the number of common
neighbours between = and y is 2. O

Corollary 3.4. Every near hexagon of order (2,2) is isomorphic to one of the following: H(2),
H(2)P, Ly x L3 x Ls.

It is known that the generalized hexagon H(2)” has subgeometries isomorphic to H(2,1),
while H(2) does not have such subgeometries. We can thus finish the proof of Theorem by
showing that also L x L3 x L3 does not contain any subgeometry isomorphic to H(2,1). So,
let H1 = H(2,1) be a subgeometry of Ho = L3 x L3 x Ls. We know that #; has 21 points
and Hy has 27 points. Each point of H; is collinear with exactly two points of Ha \ H1. Since
|H2 \ H1| = 6, there must be a point in Hs \ H; collinear with at least (21 x 2)/6 = 7 points of
Hi. This contradicts the fact that Hy has order (2,2).

4 Characterization of the Hall-Janko near octagon

For this section let A/ be a near octagon of order (2,4) with a generalized hexagon H isomorphic
to H(2)P isometrically embedded in it. The valuation geometry V of H is described in Tables
and [2[ (see [I] for details). From Table [2| it can be seen that the set of valuations of type A
and B form a subspace of V, and hence we can define a full subgeometry V4 g of V induced by
these valuations. In this section we will show that A is isomorphic to Va,p. Since HJ is a near
octagon of order (2,4) with H(2)? isometrically embedded in it, this will prove Theorem

| Type | # | My [ Oy | [Hy| | Value distribution |

A 63 | 3 | 1 | 31 [1,6,24,32]
B || 252 | 3 | 1 | 47 [1,14,32,16]
C [ 22 2] 1 [ 23 [1,22,40,0]
D |[1008] 2 | 5 | 31 [5,26,32,0]

Table 1: The valuations of H(2)P

Lemma 4.1. (a) Each point of N is at distance at most 2 from H.
(b) Points at distance 1 from H must be of type A, B or C.
(¢) Points at distance 2 from H must be of type C' or D.

Proof. Since the maximum value of a valuation of H is at least 2 (see Table 1)) and the diameter
of N is 4, by Lemma [2.21) the distance of any point of A" to H is at most 2. This proves (a).
Again by Lemma [2.2{1), if a point z of AV lies at distance 2 from H, then f, has maximum value
at most 2, implying that x can only be of type C or D.

Now, let x be a point of type D at distance 1 from H. The five points with f,-value 0 in
‘H must be collinear with = and necessarily be of type A (all points in H are of type A). By
Lemma this gives rise to five distinct V-lines of type ADD through a valuation of type D in
the valuation geometry V of H, which contradicts the corresponding entry in Table O



| Type [A|B[C| D]
AAA 3] [ | -
ABB |2 [1| | -
AcC 2 | 1]
ADD 24| | |3
BBB || - | 4| - | -
BeCe |~ [1]2] -
BDD | — [ 4] - | 2
coo || - 8
CCD |~ | [40] 5
CDD || - 42
DDD |~ | |~ |10

Table 2: The lines of the valuation geometry V of H(2)"

Lemma 4.2. Each point of N at distance 1 from H must be of type A or B.

Proof. Let = be a point of type C' at distance 1 from H. By Lemma [2.2{2) and Table [1} there
is a unique point z’ in H collinear with x. Again from Table [1| we see that there are 22 points
with fg-value 1 in H, which must necessarily be at distance 2 from x. Six of these points are
neighbours of 2’ in H and these are the only ones that have a common neighbour with z that
lies inside H (namely 2’). The remaining 16 points give rise to neighbours of x that lie outside
H. Since the order of N is (2,4) and 2’ lies in H there are only 9 neighbours of x that lie outside
‘H. Therefore, at least one such neighbour y must be collinear with more than one point in .
By Lemma [4.1] the point y must be of type A, B or C and for each of these possibilities we have
|Oy,| = 1. This contradicts Lemma [2.2/2). O

Lemma 4.3. If z, y are two points of N, not contained in H, of type A and B respectively,
then x and y cannot be collinear.

Proof. Let x, y be such points and suppose they are collinear. By Lemma they must be at
distance 1 from H. The three valuations induced by the three points on the line zy must be
distinct (see Lemma [2.1)) and therefore, the line 2y gives rise to a V-line of H = H(2)”. From
Table [2] it follows that the line xy is of type ABB. Let y' be the unique neighbour of y in H.
Then by a similar reasoning the line yy’ is also of type ABB. But, in the valuation geometry
there is a unique line of type ABB through a valuation of type B. Therefore, the points x and
' induce the same type A valuation, which shows that Oy, = {y'} and hence, z and y' are
collinear. This contradicts (NP2). O

Lemma 4.4. If z is a point of type B in N, then it has a unique neighbour in H and all the
other neighbours of x must induce distinct type B valuations of H.

Proof. Let x be such a point, necessarily at distance 1 from H by Lemma[d.1] By Lemmal[2.2|2)
and Table [1} it has a unique neighbour, say 2/, in H. There are 14 points with f,-value 1 in H
and 6 of them are the neighbours of z’. The remaining 8 must give rise to neighbours of z lying
outside H. Let y be such a neighbour. By Lemmas and y must be of type B and then



by Lemma (2) it cannot lie on the line zz’. Therefore, we get 8 type B neighbours of = each
corresponding to a distinct valuation of H (since the set Oy is distinct for each such valuation).
The third point on the line zz’ must also be of type B and induce a valuation distinct from all

other type B neighbours of z. Since the order of A is (2,4), we have accounted for all neighbours
of x. O

The following is an immediate consequence of Lemma [4.4
Corollary 4.5. There are no lines in N of type BCC or BDD.

Lemma 4.6. There is no point in N of type C or D.

Proof. Let x be such a point, necessarily at distance 2 from H (see Lemmas and . We
treat the two cases separately.

Case 1: Let = be of type D. By Table[l, |H NT2(x)| = 5. Every line through x that contains
a point in I'1(H) must be of the type ADD by Table [2| Lemma and Corollary Since
each of these lines has exactly one point which lies in I'; (), and since that point (of type A)
has a unique neighbour in H, it must be the case that all five lines through x are of type ADD.
In fact, this also shows that these five lines correspond to five distinct lines in the valuation
geometry. But we know from Table [2] that there are only three lines of type ADD through a
point of type D in the valuation geometry, a contradiction.

Case 2: Let x be of type C. Since |Oy,| = 1, we have Oy, =T's(x) NH = {2’} for some 2’ € H.
Since there are no points of type D (by Case 1) and no lines of type BCC (by Corollaulry7 all
lines through x must be of type ACC or CCC by Table |2l Each of the type A neighbours of z
induces the valuation f,, of H. Therefore, besides the 6 neighbours of 2’ in H, every point of H
that has f,-value 1 must be at distance 2 from a type C neighbour of x. There are 16 =22 — 6
points with fi-value 1 in H that are not neighbour of 2’. Since there are at most 9 type C
neighbours of z, there must be a type C neighbour y of x which is at distance 2 from two
distinct points of H. This contradicts the fact that |Oy, | =1 (y is a type C point). O

By Lemmas [2.2)2), and we have:

Corollary 4.7. Every point x of N not contained in H has type A or B, and lies at distance 1
from a unique point of H (the projection of x in H ).

Lemma 4.8. Let Q be a quad of N that intersects H nontrivially. Then Q NH is either a
singleton or a line.

Proof. Say QN H is not a singleton. Since Q) NH is a subspace, it suffices to show that there are
no two non-collinear points in Q@ NH. Let x, y be two non-collinear points in Q NH. Since @ is
a non-degenerate generalized quadrangle, there are at least two common neighbours of x and y
in Q. Since points at distance 2 in % = H(2)” have a unique common neighbour and QNH is a
convex subspace, at least one of these common neighbours must lie outside . This gives rise to
a point at distance 1 from H with two neighbours (x and y) in A, which contradicts Corollary
4.7 O

Lemma 4.9. If x is a point of type A in N which is not contained in H, then there exists a
unique W (2)-quad Q containing x and its projection =’ in H. For this quad Q we have:

(a) Q intersects H in a line M.



(b) Let My and Ms be the two lines through x’ in H other than M. Then the two lines through
x that are not contained in QQ can be labeled L1 and Lo such that L1, My are parallel and at
distance 1 from each other, and Lo, Mo are parallel and at distance 1 from each other.

Proof. Let z be a point of type A outside H and let 2’ be the unique point in H collinear with
x. We have f, = f,». Each of the four lines through z which lie outside H are of type AAA by
Lemmas [£.3] and From Table [2] we see that there are only three distinct lines of type AAA
through a valuation of type A in the valuation geometry. Therefore, there exists two lines K7,
K through x which lie in I'; (H) and induce the same set of valuations on H. Let {f1, fo, f3}
be this set with f; = f, = fu. Since all three lines through z’ which lie inside H correspond to
distinct lines of type AAA in the valuation geometry, at least one of them, say M, must induce
the set {f1, fa, f3} of valuations.

Let y # 2/ be a point on M. Then y is collinear with a point on K and a point on K5 both
of which induce the valuation equal to f,. Therefore, x, y are two points at distance 2 in a near
polygon with at least three common neighbours. From the existence result of quads, it follows
that x and y lie in a unique quad Q. By the classification of quads of order (2,¢) and Lemma
@ must be isomorphic to W (2), the unique generalized quadrangle of order (2,2). From
Lemma [4.8] it follows that Q@ N"H = M and hence, for each point on M, the two lines through
it going out of H are contained in ). Hence none of the points on M can be contained in a
W (2)-quad other than Q.

Now let L be a line through x not contained in ). L necessarily induces a set of valuations
other then {fi, f2, f3}. There are only two other possibilities and both of them are induced by
lines through z’ contained in #H, but not in Q. Therefore there must be a line L' through 2/
inducing the same set of valuations as L. The correspondence L — L’ between the set of lines
through = not contained in @ and the set of lines through 2’ in H distinct from M is a bijection
as otherwise there would exist another W (2)-quad through the line zz’ but we have already
proved that there is a unique such quad. ]

Lemma 4.10. There is no point in N of type A outside H.

Proof. Let x be a point of type A outside H. By Lemma it lies in a unique W(2)-quad Q
which intersects H in a line L. By Lemma and Corollary all points of @\ L have type A.
Let 2’ be the projection of z in H and 3’ a neighbour of 2/ in H lying on a line through x’ other
than L. By Lemma there exists a unique neighbour y of 1/ outside H and collinear with x.
Again by Lemma [4.3] and Corollary [4.7] the point y has type A. So, by Lemma there exists
a unique W (2)-quad S containing y and 3. The W (2)-quads @ and S are disjoint.

Suppose p is a neighbour of 2’ contained in @\ L. As p has type A, there exists by Lemma
a unique line through p disjoint from # that is parallel and at distance 1 from the line z'y/,
implying that there is a common neighbour of p and ' in S\ ‘H. This implies that we can label
the two lines of @ through 2’ distinct from L = Q NH by T} and T and the two lines of S
through 3/ distinct from SNH by Uy and Us such that Ty, U; are parallel and at distance 1 from
each other, and 75, Uy are parallel and at distance 1 from each other.

Now, consider a point z in S which is not collinear with g’. If z is at distance 1 from Q
(necessarily from a point of type A of @ \ L), then by Lemma its projection 2’ € SNH is
collinear with a point on the line L in H, contradicting the fact that H is a generalized hexagon.
So z (as well as every point of S non-collinear with 3’) must be at distance at least 2 from Q.
The two lines of S through ¢ distinct from S N H are parallel and at distance 1 from a line of
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Q. So, taking the projection of z on these two lines, we see that there are two points in @) at
distance 2 from z. It is known that the point z induces a classical or an ovoidal valuation of @)
(see e.g. [1I, Thm. 1.22]). Since there are two points in @ at distance 2 from z, the point z
must induce an ovoidal valuation of (). Since there are five points in an ovoid in Q (= W (2)),
each of the five lines through z must contain a (necessarily unique) point at distance 1 from
Q. Thus the projection of z on H, 2/, must be collinear with a point in Q. Now, all the lines
through 2z’ are either in H or in S. Since S and @ are disjoint and H is a generalized hexagon,
we have a contradiction. O

Therefore, N has the following description:
e cach point of N is at distance at most 1 from H;
e cach point of N that lies in H induces a valuation of type A, and
e cach point of N that does not lie in A induces a valuation of type B.

Obviously, distinct points of A/ induce distinct type A valuations. To prove that N is isomorphic
to V4 p, we first show that no two points in A can induce the same type B valuation of #,
which will give us a bijection between the point sets of these geometries.

Lemma 4.11. If g1 and go are two distinct valuations of type B collinear to each other in the
valuation geometry, then we have [{x e N\ H : fa = g1} = {z e N\ H : fo = g2}

Proof. Let g1, g2 be two such valuations of type B. Say a point y in A induces the valuation
g1 of H. If g1 and go lie on V-line of type ABB, then the third point on the line joining y and
the unique neighbour of y that lies in H induces the valuation go, giving us a bijection between
{reN\H: fo=g}and {r e N\ H: fr = g2}. So, say g1 and g lie on V-line of type BBB.
Then by Lemma [£.4] we know that each of the four lines through y which do not intersect H
must induce distinct V-lines of type BBB. But we know from Table [2| that there are exactly
four such V-lines containing g;, and hence gy is contained in exactly one of them. Therefore,
there must be precisely one neighbour of y in N'\ H which induces the valuation go. This gives
a bijection between {x e N\ H: fr = g1} and {z e N\ H : fo = go}. O

Lemma 4.12. The subgeometry of V defined on the type B valuations by the lines of type ABB
and BBB is connected.

Proof. This is checked by computer computation, see [3]. O

Corollary 4.13. For each type B valuation f of H, there exists exactly one point x € N with
fm = f

Proof. Since each point of H is collinear with precisely four points of N\ H, and each point of
N\ H has a unique neighbour in H, we have |N'\ H| = 4 x |H| = 252. By Lemmas and
we know that for every pair of type B valuations there exist equally many points in A/ which
induce those valuations. But from Table [1| we can see that there are exactly 252 valuations of
type B. Therefore each type B valuation is induced exactly once. O
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Now we can prove that A is isomorphic to V4 p as follows. Map every point = of N to the
valuation of type T' € { A, B} that it induces. Since no two points of N induce the same valuation
(see Corollary , for every line L = {x,y, 2z} of N the triple {fs, fy, f.} is a V-line. Map
every line of AV to this corresponding line of V4 p. Since N and V4 p have the same number of
points and the same order (2,4) the above maps between the point and line sets of N and V4 p
are bijections and define an isomorphism between the two geometries. Thus, every near polygon
of order (2,4) that contains an isometrically embedded generalized hexagon H isomorphic to
H (2)P must be isomorphic to V4 g, which proves Theorem

5 Characterization of the G2(4) near octagon

For this section let N/ be a near octagon with three points on each line containing a suboctagon
‘H isomorphic to HJ isometrically embedded in it. The valuation geometry V of H = HJ is
given in Tables [3] and The main purpose of this section is to show that if A has order
(2,10), then N is isomorphic to the G2(4) near octagon. In [2, Appendix] it was shown that
the G2(4) near octagon can be constructed by taking the valuations of type A, B and C as
points and the V-lines of type AAA, ABB, ACC, BBC and CCC as lines. Therefore, we will
show that if N has order (2,10), then it consists of points of type A, B or C and lines of type
AAA,ABB,ACC,BBC or CCC, with each type occurring exactly once. First we derive some
general results that are true for any near octagon N with three points on each line that contains
‘H as a full isometrically embedded subgeometry and later restrict ourselves to the case when
N has order (2,10). Lemmas to are proved using the computer model of the valuation
geometry that we have constructed, see [3].

’ Type H # ‘ My ‘ |O¢| ‘ value distribution ‘

A [315] 4 | 1 | [1,10,80,160,64]
B || 630 | 3 | 1 | [1,10,112,192,0]
C [ 3150 3 | 1 | [L,26,128,160,0]
D |[1008] 2 | 5 | [5,110,200,0,0]
E |[2016 | 2 | 25 | [25,130,160,0,0]

Table 3: The valuations of Hall-Janko near octagon HJ

Lemma 5.1. Let f be a valuation of type C and let g # f and h # [ be valuations of type B
or C lying on distinct V-lines through f. Then g and h are non-collinear.

Lemma 5.2. Let f be a valuation of type B and let x € H be the unique point in O¢. Then the
map {f,g,h} — OrUO,UO}, is a bijection between the set of five V-lines of type BBB through
f and the set of five lines of H through x.

Lemma 5.3. Let f be a valuation of type C. Then there is a unique V-line {f, g,h} of type
CCC through f such that O UO4U Oy, is a line of H). For every other V-line {f,g',h'} of type
CCC through f, the set Oy U Oy U Oy is a set of three pairwise non-collinear points.

A V-line {f, g,h} of type CCC will be called special if Oy U O4U Oy, is a line of HJ. If that
is not the case, then {f,g,h} will be called an ordinary V-line. This concept of special and
ordinary is then extended to the lines of A/ that induce V-lines of type CCC.
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’TypeHA

AAA || 5| — | — | — | -
1
5

ABB
ACC
BBB || - | 5| | |-
BBC | - [10] 1
cee [~ =19 -1+
CDD [ - |- |4

DDD |- [ - [-]6 |-
DEE |- | - |- [ 1|1
EEE | - | - |- | -

Table 4: The lines of the valuation geometry V of HJ

Lemma 5.4. The subgeometry of V defined on the type C valuations by the lines of type ACC
and the ordinary lines of type CCC' is connected.

Remark: Lemmas [5.1] and [5.3] could alternatively be verified by a geometric reasoning inside
the G2(4) near octagon, keeping in mind its above mentioned construction using the valuations
of type A, B and C of HJ.

Lemma 5.5. Every point of N is at distance at most 2 from H. Points of H are of type A,
points at distance 1 from H are of type B or C' and those at distance 2 are of type D or E.

Proof. Since H is isometrically embedded in N, all points of H induce type A valuations. From
Lemma [2.2(1) and the column My of Table [3] we see that the points in I'y(#) cannot be of
type A, and the points in I'y(H) must be of type D or E. If x € T'1(H), then there exists a
line through x that intersects H, which must necessarily be of type ABB or ACC by Table
implying that x has type B or C. O

Corollary 5.6. Every point of N at distance 1 from H is collinear with a unique point of H.

Proof. Such points are of type B or C' and valuations of type B and C have exactly one point
of value 0 (see column |Oy| in Table [3). O

Lemma 5.7. There are no points of type E in N.

Proof. Let x be a type E point of A'. By Lemma [5.5]  must be at distance 2 from H. Let y
be a neighbour of  which lies at distance 1 from H. Then z has type B or C' by Lemma [5.5
Since the valuations f, and f, are not equal, the line zy gives rise to a V-line in the valuation
geometry of HJ (see Lemma [2.1). But, by Table |4] there are no V-lines with both type E and
type T points on it, for T' € {B,C'}. O

Let x be a point of N at distance 1 from H which by Lemma 5.5 is of type B or C. We will
call the unique point of #H collinear with = (see Corollary the projection of x, and denote
it by m(z). From now onward we implicitly use the fact that points at distance 1 from H are of
type B or C. For a line L = {x,y, z} contained in I'1(H) we define the projection 7(L) of L to
be the set {m(x),7(y), 7(z)} of points of H. Since N is a near polygon, m(L) and L have the
same size for every line L in I';(H). But, this projection may or may not be a line of H.
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Lemma 5.8. Let x be a type B point of N and let y be a point on a line through x which does
not intersect H. Then y is at distance 1 from H and the projections w(x) and w(y) are collinear.

Proof. The point y must be of type B or C since there are no V-lines containing both type B
and type T points for T € {D, E} (see Table {4)) and hence at distance 1 from A by Lemma
The projections 7(z) and 7(y) have f,-values 0 and 1, respectively. Since f, is of type B,
there are exactly ten points of H that have f,-value 1 (see Table . Clearly, every point in H
at distance 1 from m(x) has fy-value 1. Since H has order (2,4), there are precisely ten such
points and hence 7(y) must be one of them. O

Corollary 5.9. If x is a point of type B in N, then every line through = that does not intersect
H is parallel to and at distance 1 from a unique line of H.

Lemma 5.10. Every type B point x of N is incident with a line of type BBC.

Proof. Let x be a point of type B. Then every point of H at distance 1 from 7(x) has f,-value
1. Since O, = {m(x)} every point of H at distance 2 from 7(x) should have f,-value 2, and
since H is a regular near octagon with parameters (2,4;0, 3), there are 80 such points. By Table
there are 112 points of H with f,-value 2. Let y be one of the other 112 — 80 = 32 points with
fz-value 2 at distance at least 3 from w(x). Since f;(y) = 2, we have d(z,y) = 3. Let z,u,v,y
be a path of length 3 connecting x and y. By Lemmas and the point v has type A, B
or C. We will show that u is of type C, hence proving that the line xu is of type BBC.

If u is of type A, then u = 7(z), which would be in contradiction with d(=w(z),y) > 2.
Suppose u is of type B, and hence at distance 1 from H. From Corollary we see that
m(u) and 7(z) are collinear (or equal). We cannot have v = m(u) as that would imply that
d(m(z),y) < 2. Therefore, v lies outside H and y must be equal to 7(v). Again by Corollary [5.9)
y = m(v) and 7(u) must be collinear (or equal), which contradicts the fact that d(7(z),y) > 2.
So, u is of type C. O

Corollary 5.11. There exist type C points in N .

Proof. As there exist points at distance 1 from H, there exist points of type B or C. The
existence of type B points implies the existence of type C points by Lemma [5.10] O

Lemma 5.12. Let x be a point of N of type C and let Ly, Lo be two distinct lines of type CCC
through x. Then the V-lines corresponding to Ly and Lo must be distinct.

Proof. Let Ly = {x,y,2} and Lo = {x,y, 2’}. Assume that they correspond to the same V-line
so that f, = fy and f, = f». Let u := m(z) = n(2’). Since zzuz’ is a quadrangle, the point y
must be collinear with the third point on the line uz’, call it v. Therefore, the valuations f, and
fy = fy are collinear in V. The collinearity of f, and f,, in V contradicts Lemma by taking

f:leag:fy’andh:fv- O

On the valuations of type C' we can define a subgeometry of V' induced by the lines of type
ACC and the ordinary lines of type CCC. Let this subgeometry be denoted by Vo and its
collinearity graph by I'y. Similarly, we can define a subgeometry N¢ of N by taking the points
of type C' and the lines that correspond to lines of Vo. Let I'y be the collinearity graph of Ne.
Since type C points exist in N, the graph I'y is nonempty.

Lemma 5.13. The graph 'y is a cover of the graph I'y by the map x — f,.
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Proof. Let x be a point of type C' in N/. There are 16 points of f,-value 1 that are not collinear
with 7(z) (see Table[3). Denote this set of 16 points by U. If u € U, then d(z,u) = 2. Denote
by v a common neighbour of z and u. Since v # 7(z), v € ‘H and uw = 7w(v). Since u # 7(z),
the point v cannot be contained on the line z7(z), and so xv is a line disjoint from H. Since
7(z) and 7(v) = u are not collinear, Lemma implies that v has type C' and hence that zv is
a (necessarily ordinary) line of type CCC.

By Lemmas and Table [] there are at most 8 ordinary lines of type CCC' through
x, each of which determines two points of the set U. Since |U| = 16, it follows that there
are precisely 8 ordinary lines of type CCC through z and they correspond bijectively to the
8 ordinary V-lines of type CCC through f,. This proves that the map x — f, is a local
isomorphism between I's and I'y. The fact that this map is surjective now follows from the
connectedness of I'1, see Lemma ]

Corollary 5.14. If I's is an i-cover of I'1 for some i > 1, then each valuation of type C is
induced by precisely i type C points of N'. As a consequence, through each point of H, there are
precisely 5i lines of type ACC.

Proof. By Table [4 there are precisely 5 V-lines of type ACC' through a given valuation of type
A. Since each type C valuation occurs exactly 4 times, we have 5i type ACC lines in N through
a given point of H. O

Remark: All results in this section so far are valid for a general near octagon of order (2,t)
that contains an isometrically embedded sub near octagon isomorphic to HJ. In the following
lemma, we need the fact that N has order (2, 10).

Lemma 5.15. If N is of order (2,10), then each valuation of type T € {B,C} is induced exactly
once by a point of N

Proof. Let N be of order (2,10) and let x be an arbitrary point of H. Then there are exactly
11 — 5 = 6 lines through = that are not contained in H, each of which has type ACC or ABB.
Since type C points exist by Corollary[5.11] it follows from Corollary [5.14] that there are precisely
5 lines of type ACC through x in N, and hence the graph I's is a 1-cover of I';. Now the 6-th
line through = which is not contained in H must be of type ABB. Therefore, through every
point of H there are 5 lines of type ACC' and a unique line of type ABB. This shows that for
every valuation f of type B, we can find the unique point of A/ that induces f by first getting
the point y of H that induces the type A valuation on the unique V-line of type ABB through f
(see Table , and then picking the point on the unique line of type ABB through x in A that
induces the valuation f. O

For the rest of this section assume that A has order (2,10). From Lemma we know
that both type B and type C points exist in A/ and each type B or type C valuation of H is
induced by a unique point of N. Let z be a point of type B in N and let L, be the unique line
joining z and 7(x). From Corollary it follows that every other line through x gives rise to a
quad in NV that intersects H and contains L.

Lemma 5.16. Let Q be a quad of N that intersects H nontrivially. Then Q NH is either a
singleton or a line.

Proof. The proof is similar to that of Lemma O
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Lemma 5.17. Let Q be a quad of N that is not a grid and that intersects H in a line L. Then
there must exist both points of type B and points of type C in Q \ L.

Proof. For the sake of contradiction assume that all points of Q\ L are of a fixed type T' € {B, C'}.
Let « be a point of L. Since @ is not a grid, there exist two lines L; = {z,y, 2z} and Ly = {z,v/, 2’}
through x with y, ', 2, 2’ € Q\ L. Let w be a common neighbour of z and 2’ in @ which is different
from z. Then w € @\ L. From Lemma it follows that the lines wz and w2z’ correspond to
distinct V-lines, which are of type T'T'T by our assumption. Also note that m(wz) = 7(wz’) = L.
This contradicts Lemma [5.2] for T = B and Lemma [5.3 for T = C. O

Lemma 5.18. There are no Q(5,2)-quads in N that meet H in a line.

Proof. Let @ be a Q(5,2)-quad that meets H in a line L. By Lemma there is a point = of
type C in (). There is a unique line through x that intersects H in L, and hence lies in Q). Every
other line through x which is contained in @ projects to L. By Lemmas [5.3] and there is at
most one line of type CCC through x in Q. From Table 4 and Lemma it follows that there
is at most one line of type BBC through z in Q. Therefore, in total we have at most three lines
through x in @ which contradicts the fact that the order of a Q(5,2)-quad is (2,4). O

Lemma 5.19. Let x be a point of type B in N'. Then x cannot be contained in two lines Ly,
Lo such that Ly has type BBB, Lo has type BBC and 7w(Ly) = w(Ls).

Proof. Let Ly = {z,y,2} and Ly = {z,y’,2'} be two such lines, such that 7(y) = 7(y’) and
7(z) = w(2'). Say L is of type BBC and Lo of type BBB. Without loss of generality assume
that z is of type C. Then the lines ym(y) and y'n(y’') are of type ABB. By Table 4] there is
only one V-line of type ABB through a valuation of type A, and hence f, is equal to f, or f,»
where y” is the third point (of type B) on the line y'7(y"). This contradicts Lemma O

Lemma 5.20. Let x be a point of type B in N'. Then
(1) z is incident with a unique line of type ABB and ten lines of type BBC';

(2) these ten type BBC' lines through x correspond bijectively to the ten BBC' lines of the
valuation geometry V through f,, and they are partitioned into pairs by five W (2)-quads
passing through the line of type ABB through x.

Proof. There is a unique line through z that intersects H, namely the line joining x and m(x).
Every other line through z is of type BBB or BBC' which is entirely contained in I'1(H) and
is parallel to a line through m(z) in # (see Corollary [5.9). Let S denote the set of these other
lines through z. By Lemma distinct lines in S correspond to distinct V-lines. Let there
be i lines of type BBB in S, with ¢ < 5 by Table Since we cannot have two lines of type
BBC and BBB in S projecting to the same line of H by Lemma [5.19] and since there are no
Q(5,2)-quads by Lemma [5.18] there are at most 2(5 — 7) lines of type BBC in S, and hence in
total at most 2(5 — i) +i 4+ 1 = 11 — 4 lines through x. Therefore, we have i = 0 and each of
the 5 lines of H through 7(z) is parallel to exactly 2 lines of S. This gives rise to 5 W (2)-quads
through the line zm(x), that partition .S into pairs. O

We are now ready to prove Theorem From Lemma it follows that there are no lines
of type BBB in N. Since each of the type A, B and C valuations is induced by a unique point
of N and each V-line of type AAA, ABB and ACC is induced by a unique line of A, it suffices
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to show that also every V-line of type BBC and CCC is induced by a unique line of A/, and
that type D points do not exist in A (we have already proved in Lemma that type F points
do not exist).

Let {f,g,h} be a V-line of type BBC where f is of type B. Let x be the unique point in
N with f, = f. By Lemma [5.20] there exists a line L = {x,y, z} such that f, = g and f. = h.
This shows that each V-line of type BBC' is induced by a necessarily unique line of N.

Now, let x be a point of type C. Since I's is a 1-cover of I'1, there exist eight ordinary lines
of type CCC through z that bijectively correspond to the eight ordinary V-lines of type CCC
through f,. By Table [4] there exists a unique V-line of type BBC through f,, implying that in
N there is a unique line L of type BBC through z. By Lemma L lies in a W (2)-quad Q,
which must also contain the unique line of type ACC' through x. The third line in @) through
x must be a special line of type CCC as there is a unique type BBC' line through « and none
of the ordinary type CCC lines through = projects to a line of H. Therefore, the unique special
V-line of type CCC through f, is induced by a line of N. Since we have accounted for all 11
lines through a point of type C, there cannot be any lines of type C'D D, and hence there cannot
be any points of type D in A. This completes the proof as we have shown that A is isomorphic
to the G2(4) near octagon.
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