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Abstract

We prove the non-existence of maximal partial spreads of size 76 in PG(3, 9).
Relying on the classification of the minimal blocking sets of size 15 in PG(2, 9) [22],
we show that there are only two possibilities for the set of holes of such a maximal
partial spread. The weight argument of Blokhuis and Metsch [3] then shows that
these sets cannot be the set of holes of a maximal partial spread of size 76. In [17],
the non-existence of maximal partial spreads of size 75 in PG(3, 9) is proven. This
altogether proves that the largest maximal partial spreads, different from a spread,
in PG(3, q = 9) have size q2 − q + 2 = 74.

1 Introduction

A maximal partial spread in PG(3, q) is a set S of mutually skew lines such that any line
of PG(3, q) intersects at least one of the lines of S. The deficiency δ of a maximal partial
spread in PG(3, q) of size n is the integer δ = q2 + 1 − n. A spread is a set of q2 + 1
mutually skew lines in PG(3, q). Maximal partial spreads were first studied by Mesner
in 1967 [21]. He observed that if you pick a line `1 in PG(3, q), and then a second line
`2 skew to the first line, and then a third line `3 skew to these two lines, and so on, then
this process either terminates before a certain bound, or can be continued until you get a
spread.

Bruen extended Mesner’s result. He showed in 1971 [5] that q+
√

q < |S| ≤ q2+1−√
q

for a maximal strictly partial spread S in PG(3, q).
Many constructions of maximal partial spreads of size q2−q+2 in PG(3, q) are known

[5, 6, 7, 20].
There have been several improvements to these results, see [3]. The best upper bound

for maximal strictly partial spreads in PG(3, q) is now given by Blokhuis. It follows from
his results on blocking sets [2] that |S| < p2 +1− p+1

2
for a maximal strictly partial spread

S in PG(3, p), p prime.
In [15] it was shown that this bound cannot be improved in general. An example of

a maximal partial spread in PG(3, q), for q = 7, of size 45 = q2 − q + 3 = q2 − q+1

2
was

found.
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Maximal partial spreads in PG(3, 8) with deficiency δ ≤ q − 2 have been studied by
Barát, Del Fra, Innamorati and Storme [1]. Here it was shown that the largest strictly
maximal partial spreads of PG(3, 8) have size q2 − q + 2.

The next open problem to settle is the question of the existence of a maximal partial
spread of size 75 or 76 in PG(3, 9).

In the construction of a maximal partial spread of size 45 in PG(3, 7) [15], the set of
points not lying on a line of the maximal partial spread was first constructed. Such points
are called holes of the maximal partial spread. It can be proved, see the next section or
[9], that the set of holes must satisfy certain conditions. The study of the set of holes has
been a useful tool in proving (non-)existence of maximal partial spreads, see e.g. [9], [4]
and [3].

We will show that, in case of a maximal partial spread of size 76 in PG(3, 9), two
non-isomorphic candidate sets for the set of holes satisfying all these conditions exist.

The weight argument of Blokhuis and Metsch [3] then can be used to eliminate the
existence of maximal partial spreads of size 76 in PG(3, 9).

In [17], the non-existence of maximal partial spreads of size 75 in PG(3, 9) is proven.
This altogether proves that the largest maximal partial spreads, different from a spread,
in PG(3, q = 9) have size q2 − q + 2 = 74.

Let us also mention that Glynn proved in 1981 that no maximal partial spread in
PG(3, q) has a size smaller than 2q [8] and that several maximal partial spreads of size
at most q2 − q + 2 have been constructed, see [10], [11], [12], [13] and [14].
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2 Preliminaries

For a general introduction to this subject, see e.g. [18].
To any partial spread S of PG(3, q) of deficiency δ corresponds a colouring of the

points and the planes of PG(3, q) in the colours white and black. A white plane is a plane
not containing a line of S, while a black plane contains a line of S. Similarly, a white point
is a point not lying on a line of S, while a black point lies on a line of S. In the literature,
the white points are also called the holes of S.

The following properties are well-known:
(i) Any white plane contains δ + q white points;
(ii) Any black plane contains δ white points.
Since the definition of a partial spread is self-dual, also the dual properties are valid:
(iii) Any white point is contained in q + δ white planes;
(iv) Any black point is contained in δ white planes.

By simple counting arguments, see [9], it is easy to prove that
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(v) The number of white points is δ(q + 1);
(vi) The number of white planes is δ(q + 1).

A line with exactly α white points will be called a line of weight α or an α-line. In [9], it
was proved that

(vii) Any α-line is contained in exactly α white planes;
(viii) The weight α of a line either equals q + 1 or is less than or equal to δ;
(ix) The partial spread S is maximal if and only if there is no (q + 1)-line.
There are a number of almost trivial consequences of the conditions (i), (ii), (iii) and

(iv). We will use the following lemmas. To make this paper more self-contained we give
the proofs of them. Similar proofs can also be found in [16].

Lemma 1 The set of white points of any white plane constitutes a blocking set of the
plane.

Proof. The intersection line of a white plane π and any other plane, black or white, is a
ν-line with ν ≥ 1. Hence, π cannot contain any 0-line. �

Lemma 2 The intersection point of a δ-line, δ ≤ q, and any white plane π is a white
point.

Proof. We may assume that the δ-line ` is not contained in the white plane π.
Assume that the intersection point of ` and π is a black point P . Consider a black

plane πB through `. The plane πB intersects π at a line containing the point P . By
the previous lemma any line through P in π contains at least one white point. Conse-
quently, the black plane πB will contain at least δ+1 white points, which is impossible. �

We will use the following description of the points in PG(3, q) and PG(2, q).
We consider the affine geometry AG(3, q). The points of this geometry are described by

3-tuples (x, y, z), where x, y, z ∈ GF (q). We extend AG(3, q) to the projective geometry
PG(3, q) by adjoining the slopes of the lines of AG(3, q).

The point (x, y), x, y ∈ GF (q), of the plane at infinity will be the slope of the lines:

{(x1, x2, x3) | (x1, x2, x3) = (a, b, 0) + t(x, y, 1), t ∈ GF (q)}, (a, b, 0) ∈ AG(3, q).

The point x, x ∈ GF (q), of the line at infinity will be the slope of the line

{(x1, x2, x3) | (x1, x2, x3) = (a, b, 0) + t(1, x, 0), t ∈ GF (q)}, (a, b, 0) ∈ AG(3, q).

The point ∞ of the line at infinity will be the slope of the line

{(x1, x2, x3) | (x1, x2, x3) = (a, b, 0) + t(0, 1, 0), t ∈ GF (q)}, (a, b, 0) ∈ AG(3, q).

We will say that the first set of lines are the vertical lines, the remaining set of lines the
horizontal lines, and the line 0∞ is the line at infinity.

The description of the points of the projective plane PG(2, q) is similar. The points
are 2-tuples (x, y), x, y ∈ GF (q), of the affine plane AG(2, q) and the points of the line at
infinity are the slopes of the lines of the affine plane.

The finite field GF (9) will be considered. We will let GF (9) = {aι + b | a, b ∈ Z3},
where ι2 = 2ι + 1.
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3 Proof of the results

Throughout this section we assume that there is a maximal partial spread in PG(3, 9)
of size 76 and therefore of deficiency δ = 6. In a white plane, the white points form a
non-trivial blocking set of size 15. The non-trivial blocking sets of size 15 were classified
by Pambianco and Storme [22].

(1) The first example is a non-trivial blocking set which consists of a Baer subplane
PG(2, 3) plus two extra points.

(2) The second example is the projective triangle [19, Lemma 13.6]. This is the set
of points projectively equivalent to the set {∞} ∪ {(x2, 0) | x ∈ GF (9)} ∪ {(0, y2) | y ∈
GF (9)} ∪ {d | d = −x2, x ∈ GF (9)}.

There are exactly three non-concurrent 6-secants to the projective triangle. The inter-
section points of two of these 6-secants are called the vertices of the projective triangle.

A vertex lies on two 6-secants, four 2-secants and four tangents to the projective
triangle. A non-vertex point of the projective triangle lies on one 6-secant, four 3-secants,
one 2-secant and four tangents.

(3) There is also a third sporadic example.
In PG(2, 9), there is a unique complete 6-arc [19, p. 386]. The 15 bisecants to this

complete 6-arc form a minimal blocking set in the dual projective plane.
So, dualizing, a sporadic example of a minimal blocking set of size 15 arises.
The characteristic properties of this sporadic example are:

1. There are exactly six 5-secants to this blocking set which form a complete 6-arc of
lines.

2. There are ten 3-secants to the blocking set. These ten 3-secants form a dual conic.

3. And furthermore, there are fifteen 2-secants to the blocking set. These fifteen

2-secants are the secants to a complete 6-arc in PG(2, 9).

Our first goal is to prove that there is no white plane in which the white points form
a Baer subplane plus two points. Such a blocking set always has 4-lines.

3.1 There are no 4-lines

Proposition 1. If there is a maximal partial spread in PG(3, 9) of deficiency δ = 6, then
there will be no 4-line.

Proof. Assume that there is a 4-line `. Let π1, π2, . . . , π6 be the black planes of `. There
will be two white points Pi1 and Pi2 in each of the sets πi \ `, i = 1, 2, . . . , 6.

Let P be any black point of `. There is, by (vii) of Section 2, at least one white plane
that contains P and the point P11. The line ` contains six black points. Hence there will
be at least six white planes through P11 that meet ` at a black point.
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Each of these six white planes contains, by (vii) of Section 2, at least one white point
of each of the black planes π2, π3, . . . , π6. It follows that at least three of these six white
planes share the same white point P21 with π2 \ `. Denote these three planes by π′

i1
, π′

i2

and π′

i3
. These planes must share a white point with each of the planes π3, π4, . . . , π6.

If there is no white point of π3 on the common intersection line P11P21 of the planes π′

i1
,

π′

i2
and π′

i3
, then these three planes must share three distinct white points with π3 \ `. As

π3 \ ` only contains two white points, this is impossible. So the line P11P21 is an α-line
with α ≥ 6. As there is no α-line with α > 6, we get that α = 6.

From above we know that there are three of the white planes through the line P11P21

such that each one of them contains a black point of `. Hence at most three of the six
white planes through P11P21 contain a white point of `. It follows that at least one of the
black planes through the line P11P21 will contain a white point of `. This plane will have
at least seven white points. This is impossible for a black plane. �

3.2 Two distinct cases

The preceding result implies that the white points in a white plane form a minimal
blocking set; either the projective triangle or the sporadic example. The projective triangle
has three non-concurrent 6-lines and the sporadic example has six 5-lines, but no 6-lines.

Since the definition of maximal partial spreads is self-dual, also the dual result is valid.

Corollary 1. If there is a maximal partial spread of deficiency δ = 6 in PG(3, 9), then
any white point is contained in three 6-lines or six 5-lines.

Presently, it is still possible that both types of minimal blocking sets occur in the
distinct white planes. We show this possibility does not occur.

Proposition 2. Assume that there is a maximal partial spread of deficiency δ = 6 in
PG(3, 9). If there is a 6-line in PG(3, 9), then there will be no 5-line.

Proof. Let ` be a 6-line and consider the white planes π1, π2, . . . , π6 through `. These
planes contain all the white points. Any white point of the white planes πi, i = 1, 2, . . . , 6,
will, by the description of the projective triangle, lie on at least one 6-line. By Corollary
1, no white point will be contained in a 5-line. �

The preceding proposition implies that all the white planes either contain a projective
triangle of white points, or a sporadic minimal blocking set of white points. So, either all
white planes contain exactly three 6-lines or all white planes contain six 5-lines.

We discuss both cases below.

3.3 The case of three 6-lines in all white planes

We will show that if there is no 5-line, then we may form tetrahedra consisting of 6-lines.
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Lemma 3. Let the 6-lines `1, `2 and `3 be the sides of a projective triangle. Let Q = `1∩`2,
and let ` be the third 6-line through Q. Then there is a white point P on ` such that through
P there are two 6-lines that meet the line `3.

Proof. Let π denote the white plane containing the lines `1, `2 and `3. Through any
white point P of ` there are two other 6-lines. These two 6-lines meet, by Lemma 2, the
plane π at white points. These white points might be on the lines `1 or `2. The white
planes π1 and π2 containing the lines ` and `1, respectively ` and `2, contain only three
6-lines each. As the line ` contains six white points, we may thus choose P such that the
two 6-lines through P do not meet neither the line `1 nor the line `2. �

Lemma 4. Let the 6-lines `1, `2 and `3 be the sides of a projective triangle. Let Q = `1∩`2,
and let ` be the third 6-line through Q. Through any white point P on ` there are two
6-lines that meet the line `3.

Proof. Let π, π1 and π2 be as in the previous proof. By the preceding lemma, there is
a white point P0 of ` through which there are two 6-lines that meet the line `3. Let π0

denote the white plane that contains the line `3 and the point P0. Let P ′ 6= Q,P0 be any
other white point of `. Consider any of the two 6-lines through P ′ and distinct from `.
Denote this line by `′. By Lemma 2, the line `′ intersects the plane π in a white point P1.
If P1 is not contained in the line `3, then P1 ∈ `i, i = 1 or 2. The line `′ = P ′P1 intersects
the plane π0 at a white point. This white point must be on one of the two 6-lines from
P0 to the line `3. This 6-line must then be contained in the same plane as `, `′ and the
line `i. It follows that the plane πi contains four 6-lines, which is impossible. �

Lemma 5. To any white plane π containing three 6-lines `1, `2 and `3 constituting a
projective triangle in π with vertices P1, P2 and P3, there is a white point Q, Q 6∈ π, such
that the lines QPi, for i = 1, 2, 3, are 6-lines.

Proof. Consider the third 6-line ` meeting the intersection point P1 of the lines `1 and
`2, ` 6= `1, `2. From the previous lemma we deduce that there must be a white point Q on
` such that the line QP2, where P2 is the intersection point of `1 and `3, is a 6-line. Once
again using the previous lemma, we get that there is a 6-line `′ 6= ` passing through Q
and meeting the line `3. A final use of previous lemma, with the line QP2 playing the role
of the line ` in that lemma, there must be a 6-line `′′ 6= ` passing through Q and meeting
the line `2. By Corollary 1 there are only three 6-lines that meet the point Q. Hence the
line `′ equals the line `′′ and that line meets the intersection point P3 of the lines `2 and
`3. �

Corollary 2. Consider a tetrahedron in PG(3, 9) and the set of white points associated
with a maximal partial spread of size 76. If five of the lines of the tetrahedron are 6-lines
then also the sixth is a 6-line.
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Proof. Assume that P and Q are the vertices of the tetrahedron of which it is known
that all lines of the tetrahedron, with the exception of the line PQ, are 6-lines. The 6-lines
of the tetrahedron not meeting the point Q will constitute a projective triangle. We will
let the sides of this triangle correspond to the lines `1, `2 and `3 of Lemma 5. The point
Q will then correspond to the point Q in that lemma. �

We now show that in case q = 9, δ = 6, and if there is no 5-line, then there is up to
equivalence one and only one way to colour the points in white and black such that the
conditions (i), (ii), (iii) and (iv) of Section 2 are satisfied.

We will use the following lemma several times.

Lemma 6. Consider any white plane π. If you know
(a) which three lines `1, `2 and `3 of π are 6-lines,
(b) the six white points of the 6-line `1,
(c) one white point P2 ∈ `2, P2 6∈ `1, P2 6∈ `3,

then the white points of π are uniquely determined.

Proof. From the description of the projective triangle, for any white point W of `1 that
is not a vertex, the line P2W intersects `3 at a white point. To find the white points of
`2, consider lines through one of the white points of `3 and the white points of `1. �

We will use the following notations: `x = {(t, 0, 0) | t ∈ GF (9)} ∪ {0}, `y = {(0, t, 0) |
t ∈ GF (9)} ∪ {∞}, `z = {(0, 0, t) | t ∈ GF (9)} ∪ {(0, 0)}, and `∞ = 0∞. Let πz =
〈l∞, (0, 0, z)〉, z ∈ GF (9), πxz = 〈lx, lz〉, πyz = 〈ly, lz〉, and π∞ denotes the plane at
infinity. Then l∞x = πxz ∩ π∞ and l∞y = πyz ∩ π∞.

Without loss of generality, and using the description of the projective triangle, we may
assume that the plane π0 is a white plane and that the white points of this plane are the
points in the union of the sets {∞}, {(x2, 0, 0) | x ∈ GF (9)}, {(0, y2, 0) | y ∈ GF (9)} and
{d | d = −x2, x ∈ GF (9)}. (We note that −1 is a square of GF (9).)

We now use Lemma 5. The lines `1, `2 and `3 in that lemma will correspond to the
lines `x, `y and `∞. Without loss of generality we may let Q be the point (0, 0). Hence
the lines `z, `∞x and `∞y will be 6-lines.

From the proof of Proposition 2 and using a perspectivity with axis π0 and center
(0, 0), we may assume that the points {(0, 0, z2) | z ∈ GF (9)} ∪ {(0, 0)} are the white
points of the line `z and, then by Lemma 6, the points {0} ∪ {(x2, 0) | x ∈ GF (9)} are
the white points of the line `∞x and similarly for the line `∞y .

The remaining 32 white points are on the white planes through the line at infinity.
As the planes πx2 , x ∈ GF (9), contain at least seven white points, these planes are the
white planes through the line at infinity. Each of the two 6-lines, distinct from the line at
infinity, of the white plane π12 meets, by Lemma 4, the point (0, 0, 1) and a white point
on the line at infinity. That point cannot be neither the point 0 nor the point ∞. Hence
there are only

(

4

2

)

= 6 possibilities for the 6-lines of the plane π12 . Let P1 and P2 denote
these intersection points with the line at infinity. For the plane πι2 , let Q1 and Q2 be the
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intersection points on the line at infinity for the two 6-lines of πι2 that meet the point
(0, 0, ι2). There are, by Corollary 2, only two possibilities for the set of points Q1 and Q2,
either

{Q1, Q2} = {P1, P2} or {Q1, Q2} = {∞, 0, ι2, ι4, ι6, 1} \ {P1, P2,∞, 0}.

Similarly for the planes πι4 and πι6 . So there are only a few possibilities to consider.
Searching through these very few cases we found some possible sets of white points satis-
fying the conditions (i), (ii), (iii) and (iv) of Section 2. These sets of white points can be
shown to be equivalent to the following set of white points:

In AG(3, 9): (0,0,0), (0,1,0), (0,ι6,0), (0,2,0), (0,ι2,0), (1,0,0), (ι6,0,0), (2,0,0), (ι2,0,0),
(0,0,1), (1,1,1), (2,2,1), (ι6,ι6,1), (ι2,ι2,1), (1,2,1), (2,1,1), (ι6,ι2,1), (ι2,ι6,1), (0,0,2), (1,1,2),
(2,2,2), (ι6,ι6,2), (ι2,ι2,2), (1,2,2), (2,1,2), (ι6,ι2,2), (ι2,ι6,2), (0,0,ι6), (1,ι6,ι6), (2,ι2,ι6),
(ι6,2,ι6), (ι2,1,ι6), (1,ι2,ι6), (2,ι6,ι6), (ι6,1,ι6), (ι2,2,ι6), (0,0,ι2), (1,ι2,ι2), (2,ι6,ι2), (ι6,1,ι2),
(ι2,2,ι2), (1,ι6,ι2), (2,ι2,ι2), (ι6,2,ι2), (ι2,1,ι2), and in π∞: (0,0), (1,0), (2,0), (ι6,0), (ι2,0),
(0,1), (0,2), (0,ι6), (0,ι2), ∞, 0, 1, 2, ι6 and ι2.

The weight argument of Blokhuis and Metsch proves that this set cannot be the set of
white points of a maximal partial spread of size 76. We slightly generalize the statement
of their weight argument.

Lemma 7. (Blokhuis and Metsch [3, Lemma 2.1]) Consider the affine space AG(d, q) in
which the coordinates of the points are described by the d-tuples (x1, . . . , xd) over GF (q).

Let f(x1, . . . , xd) = (
∏d

i=1
xi)

t, with 1 ≤ t ≤ q − 2, define a weight function on the
points of AG(d, q). For any set S of points, we define the weight of S to be the sum of
the weights of the points of S.

Then,
(1) the weight of AG(d, q) is zero,
(2) if dt < q − 1, then the weight of every affine subspace of AG(d, q) is zero.

Theorem 1 The preceding set cannot be the set of white points of a maximal partial
spread of size 76 in PG(3, 9).

Proof. Apply Lemma 7 for t = 2. Then the weight of AG(3, 9) is zero, the weight of
each line of the maximal partial spread is zero, and so the set of affine white points also
must have weight zero. But the exact calculation of the weight of the set of affine white
points gives a non-zero weight. �

3.4 The case of six 5-lines in all white planes

The set of holes in a white plane forms a sporadic minimal blocking set of size 15 in this
white plane. The following proposition describes coordinates for such a blocking set.
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Proposition 3. Assume that there is a maximal partial spread of deficiency δ = 6 in
PG(3, 9) and assume that there are no 6-lines. Then any white plane is isomorphic to
the plane π0 with the white points (0, 0, 0), (ι5, 0, 0), (2, 0, 0), (ι3, 0, 0), (0, ι5, 0), (0, 2, 0),
(0, ι3, 0), (ι5, ι5, 0), (1, ι3, 0), (ι3, 1, 0), 0, ι5, 2, ι3 and ∞.

Furthermore, any of the white points above is contained in exactly two of the 3-lines
of the plane and exactly two 5-lines.

To construct a set of 60 white points satisfying the conditions (i),(ii), (iii), (iv), we
will use the following two lemmas.

Lemma 8. Any white point of the set of white points associated with a maximal partial
spread of size 76 in PG(3, 9), is contained in exactly six 5-lines.

Proof. See Corollary 1. �

Lemma 9. Let S denote the set of white points associated with a maximal partial spread of
size 76 in PG(3, 9). Consider any 5-line ` and any two white planes π1 and π2 containing
`. Let P and Q be any two distinct white points of `. If Si, i = 1, 2, are the intersection
points of the two 5-lines, distinct from ` in πi, i = 1, 2, that pass through P and Q, then
the line S1S2 will be a 5-line.

Proof. Without loss of generality we may assume that the line ` is the line `x, π1 is the
plane πxy, π2 is the plane πxz, P the point (0, 0, 0), Q the point 0, S1 the point ∞ and S2

the point (0, 0) of the plane at infinity.
Further, without loss of generality, we may assume that the white points of πxy are

the white points described as in Proposition 3.
It is a triviality to see, by going through all possible cases, that we, without loss of

generality, may assume that the white points of the line `z are the points (0, 0, 0), (0, 0, ι3),
(0, 0, 2), (0, 0, ι5) and (0, 0).

The plane πyz will be a white plane. The white points of that plane will thus consti-
tute a blocking set. Using this fact, and again by going through all possible cases, it is a
triviality to see that the only possibility to make πyz into a white plane, with the white
points distributed on the lines `y and `z as described above, is to let the line `∞y , i.e. the
line S1S2, be a 5-line. �

We now construct the set of holes.
Without loss of generality we may assume that the line at infinity is a 5-line and that

the plane at infinity and the plane containing the points in the set π0 = {(x, y, 0) | x, y ∈
GF (9)} are white planes. From Proposition 3 we get that we, without loss of generality,
may assume that the white points of these planes are the points

(0,0,0), (ι5,0,0), (2,0,0), (ι3,0,0),(0,ι5,0), (0,2,0), (0,ι3,0), (ι5,ι5,0), (1,ι3,0), (ι3,1,0),
(0,0), (ι5,0), (0,ι5), (2,0), (0,2), (ι3,0), (0,ι3), (ι5,ι5), (1,ι3), (ι3,1), 0, ι5, 2, ι3, ∞.
Let `x and `∞x denote the two lines that meet the points 0 and (0,0,0), respectively 0

and (0, 0). Through each of the white points of these 5-lines there is another 5-line of the
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plane π0 and π∞. These 5-lines are easily found from the given set of white points of these
planes. By using Lemma 9, we get the 5-lines of the white plane πxz. Any two 5-lines of a
white plane intersect at a white point and through any white point of the white plane πxz

there are two 5-lines of the plane. Hence all white points of the plane πxz will be found
by using the 5-lines of πxz. This will give us another set of six white points, the points

(0,0,ι5), (ι5,0,ι5), (0,0,ι3), (1,0,ι3), (ι3,0,1), (0,0,2).
Similarly, for the plane πyz, we derive another set of three white points
(0,ι5,ι5), (0,1,ι3), (0,ι3,1).
Let πt denote the plane that contains the line at infinity and the point (0, 0, t). We

get from the white points already found that the planes πι5 , πι3 and π1 will contain more
than six white points and hence that they will be white planes.

The point (0, 0, ι5) is a white point of the plane πι5 . By Proposition 3, there are two
5-lines ` and `′ in πι5 that meet this point. These two 5-lines cannot meet the points 0 or
∞, as the planes πxz and πyz already contain two 5-lines meeting these points and these
5-lines do not meet the point (0, 0, ι5). The 5-lines ` and `′ meet the line at infinity at
two of the three other white points distinct from 0 and ∞. Denote the three white points
different from 0 and ∞ on the line at infinity by p1, p2 and p3, and assume that the lines
joining (0, 0, ι5) with p1 and p2 are 5-lines. Since the white point (0, ι5, ι5) belongs to the
line joining ∞ with (0, 0, ι5) which is not a 5-line, the 5-lines through the point (0, ι5, ι5)
meet the line at infinity in the point 0 and in p3. And similarly, since the white point
(ι5, 0, ι5) belongs to the line through (0, 0, ι5) and 0 which is not a 5-line, necessarily, the
5-lines through the point (ι5, 0, ι5) meet the line at infinity in the point ∞ and in p3.
Since p3 belongs to exactly two 5-lines in πι5 , p3 is necessarily the intersection of the line
at infinity with the line joining (0, ι5, ι5) with (ι5, 0, ι5). So p3 is uniquely determined and
so p1 and p2 are determined. The intersection point (ι5, ι5, ι5) of the two 5-lines through
respectively (0, ι5, ι5) and 0, and through (ι5, 0, ι5) and ∞, must be a white point. We get
that the only possibility for the plane πι5 to be a white plane is that the remaining white
points are the points (1,ι3,ι5), (ι3,1,ι5), (ι5,1,ι5), (1,ι5,ι5), (ι2,ι5,ι5), (ι5,ι2,ι5).

Similarly for the plane πι3 and π1. Continuing in the same manner, we finally end
up with the following set of white points. They will be: In AG(3, 9) the points: (0,0,0),
(ι5,0,0), (2,0,0), (ι3,0,0),(0,ι5,0), (0,2,0), (0,ι3,0), (ι5,ι5,0), (1,ι3,0), (ι3,1,0), (0,0,ι5), (ι5,0,ι5),
(0,ι5,ι5), (1,ι3,ι5), (ι3,1,ι5), (ι5,1,ι5), (1,ι5,ι5), (ι5,ι5,ι5), (ι2,ι5,ι5), (ι5,ι2,ι5), (0,0,ι3), (1,0,ι3),
(0,1,ι3), (1,1,ι3), (ι6,ι3,ι3), (ι3,5,ι3), (ι5,1,ι3), (1,ι5,ι3), (ι3,1,ι3), (1,ι3,ι3), (ι3,0,1), (0,ι3,1),
(ι3,ι3,1), (ι5,ι5,1), (ι3,ι5,1), (ι5,ι3,1), (1,ι7,1), (ι7,1,1) (1,ι3,1), (ι3,1,1), (ι,ι,ι), (ι5,ι5,ι2),
(ι3,ι3,ι6), (1,1,ι7), (0,0,2), in π∞: (0,0), (ι5,0), (0,ι5), (2,0), (0,2), (ι3,0), (0,ι3), (ι5,ι5),
(1,ι3), (ι3,1), 0, ι5, 2, ι3, ∞.

It is easily checked, by using computers, that this set satisfies the conditions (i),(ii),(iii)
and (iv) of Section 2, with the parameters q = 9 and δ = 6. However we now prove the
following theorem:

Theorem 2 The preceding set cannot be the set of holes of a maximal partial spread of
size 76 in PG(3, 9).
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Proof. Apply Lemma 7 for t = 2. Then the weight of the set of affine white points is
non-zero, and it should be zero. �

Corollary 3 There does not exist a maximal partial spread of size 76 in PG(3, 9).

Proof. There were only two possibilities for the set of white points and in both cases,
Lemma 7 showed that this set cannot be the set of white points of a maximal partial
spread of size 76. �

In [17], the non-existence of maximal partial spreads of size 75 in PG(3, 9) is proven.
There exist maximal partial spreads of size q2 − q + 2 = 74 in PG(3, 9), so this altogether
proves that the largest maximal partial spreads, different from a spread, in PG(3, q = 9)
have size q2 − q + 2 = 74.

Theorem 3 The largest maximal partial spreads, different from a spread, in PG(3, q = 9)
have size q2 − q + 2 = 74.
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