Extra computations for the \mathbb{G}_3 near hexagon

The near hexagon \mathbb{G}_3 has order (s,t) = (2,11) and contains v = 405 points. Let \mathcal{B} denote the smallest algebra that contains A and is closed under Hadamard multiplication of matrices. Then

$$I, \ A = A_{1a} + A_{1b} \in \mathcal{B}. \tag{1}$$

Since \mathcal{B} is closed under Hadamard multiplication, the fact that $a_1I + a_2A_{1a} + a_3A_{2a} + \cdots + a_{10}A_{3c} \in \mathcal{B}$ implies that $a_1^iI + a_2^iA_{1a} + a_3^iA_{2a} + \cdots + a_{10}^iA_{3c} \in \mathcal{B}$ for every $i \in \mathbb{N} \setminus \{0\}$. Since $A^2 = 24I + A + 2A_{2a} + 3A_{2b} + 5A_{2c} + 5A_{2d}$, Property (1) implies that

$$2A_{2a} + 3A_{2b} + 5(A_{2c} + A_{2d}) \in \mathcal{B}$$
⁽²⁾

and hence also that

$$4A_{2a} + 9A_{2b} + 25(A_{2c} + A_{2d}) \in \mathcal{B},\tag{3}$$

$$8A_{2a} + 27A_{2b} + 125(A_{2c} + A_{2d}) \in \mathcal{B}.$$
(4)

The properties (2), (3) and (4) imply that

$$A_{2a}, A_{2b}, A_{2c} + A_{2d} \in \mathcal{B}.$$
 (5)

Since $AA_{2a} = 6A_{1a} + 2A_{1b} + 2A_{2a} + 9A_{3a} + 3(A_{3b} + A_{3c})$ and $A_{2a} \in \mathcal{B}$, we have $6A_{1a} + 2A_{1b} + 9A_{3a} + 3(A_{3b} + A_{3c}) \in \mathcal{B}$ and hence

$$6^{i}A_{1a} + 2^{i}A_{1b} + 9^{i}A_{3a} + 3^{i}(A_{3b} + A_{3c}) \in \mathcal{B}$$
(6)

for every $i \in \mathbb{N} \setminus \{0\}$. Property (6) implies that

$$A_{1a}, A_{1b}, A_{3a}, A_{3b} + A_{3c} \in \mathcal{B}.$$
 (7)

Since $AA_{3a} = 2A_{2a} + 2A_{2c} + 3A_{3a} + A_{3b}$ and $A_{2a}, A_{3a} \in \mathcal{B}$, we have $2A_{2c} + A_{3b} \in \mathcal{B}$ and hence also that $4A_{2c} + A_{3b} \in \mathcal{B}$. The latter properties imply that

$$A_{2c}, A_{3b} \in \mathcal{B}.$$
(8)

As $A_{2c} + A_{2d}$, $A_{3b} + A_{3c}$, A_{2c} and A_{3b} belong to \mathcal{B} , we also have

$$A_{2d}, \ A_{3c} \in \mathcal{B}. \tag{9}$$

We conclude that all A_* 's belong to \mathcal{B} .