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Abstract

We classify the minimal blocking sets of size 15 in PG(2, 9). We show
that the only examples are the projective triangle and the sporadic ex-
ample arising from the secants to the unique complete 6-arc in PG(2, 9).
This classification was used to solve the open problem of the existence
of maximal partial spreads of size 76 in PG(3, 9). No such maximal par-
tial spreads exist [13]. In [14], also the non-existence of maximal partial
spreads of size 75 in PG(3, 9) has been proven. So, the result presented
here contributes to the proof that the largest maximal partial spreads in
PG(3, q = 9) have size q2

− q + 2 = 74.

1 Introduction

A spread of PG(3, q) is a set of q2+1 lines partitioning the point set of PG(3, q).
A partial spread of PG(3, q) is a set of pairwise disjoint lines of PG(3, q) not
forming a spread. A partial spread is called maximal when it is not contained
in a larger partial spread. Let S be a maximal partial spread of size q2 + 1− δ,
then δ is called the deficiency of S.

A lot of attention has been paid to the construction of maximal partial
spreads. Until recently, the largest known maximal partial spreads in PG(3, q),
q > 3, were constructed by Bruen [6], Bruen and Thas [7], Freeman [9] and
Jungnickel [19], and were maximal partial spreads of size q2 − q + 2.

This led to the conjecture that q2 − q + 2 is the largest size for a maximal
partial spread.

However, Heden recently found a maximal partial spread in PG(3, 7) of size
(q2 − q + 3 =)45 [12].

The validity of this conjecture for q = 8 was recently proved by Barát, Del
Fra, Innamorati and Storme [1].

Concentrating on q = 9, presently, it is known that the deficiency of a
maximal partial spread in PG(3, 9) satisfies δ ≥ 6.

So the first open case is whether there exists a maximal partial spread with
deficiency δ = 6.

The standard technique to study this problem is to rely on the link between
maximal partial spreads of PG(3, q) and blocking sets of PG(2, q).

A plane of PG(3, q) containing one line of a maximal partial spread S is
called a rich plane of S. In the other case, this plane is called poor. A point not
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lying on a line of S is called a hole of S.
Let S be a maximal partial spread of deficiency δ. Then a rich plane contains

δ holes and a poor plane contains q + δ holes. Moreover, the holes in a poor
plane Π form a blocking set in Π. This means that every line of Π contains at
least one hole. For proofs, we refer to [21, Lemma 2.1]. A trivial blocking set is
a blocking set containing a line.

When S is maximal, no line consists entirely of holes. This means that the
holes in Π form a non-trivial blocking set in Π.

Hence, lower bounds on the cardinality of non-trivial blocking sets in PG(2, q),
and information on the structure of minimal blocking sets in PG(2, q), yield in-
formation on maximal partial spreads in PG(3, q).

Presently, the following results are known on non-trivial blocking sets in
PG(2, q), which have led to the following results on maximal partial spreads in
PG(3, q).

Theorem 1.1 (1) (Bruen [5]) The smallest non-trivial blocking sets in PG(2, q),
q square, have cardinality q+

√
q+1 and are equal to Baer subplanes PG(2,

√
q).

(2) (Blokhuis, Storme, Szőnyi [4]) In PG(2, q), q non-square, q = ph, h > 2, p ≥
5, p prime, |B| ≥ q + q2/3 + 1 for every non-trivial blocking set B.
(3) (Blokhuis [2]) In PG(2, q), q prime, q > 2, |B| ≥ 3(q + 1)/2 for every non-
trivial blocking set B.
(4) (Blokhuis, Storme, Szőnyi [4]) In PG(2, q), q square, q = ph, h > 2, p ≥ 5, p
prime, every non-trivial blocking set B of cardinality |B| < q + q2/3 +1 contains
a Baer subplane.
(5) (Szőnyi [26]) In PG(2, q), q = p2, p prime, every non-trivial blocking set B
of cardinality |B| < 3(q + 1)/2 contains a Baer subplane.

Theorem 1.2 (Polverino, Polverino and Storme [22, 23, 24]) The smallest min-
imal blocking sets in PG(2, p3), p = ph

0
, p0 prime, p0 ≥ 7, with exponent e ≥ h,

are:
(1) a line,
(2) a Baer subplane of cardinality p3 + p3/2 + 1, when p is a square,
(3) a set of cardinality p3 + p2 + 1, equivalent to

{(x, T (x), 1)||x ∈ GF (p3)} ∪ {(x, T (x), 0)||x ∈ GF (p3) \ {0}},

with T the trace function from GF (p3) to GF (p),
(4) a set of cardinality p3 + p2 + p + 1, equivalent to

{(x, xp, 1)||x ∈ GF (p3)} ∪ {(x, xp, 0)||x ∈ GF (p3) \ {0}}.

Corollary 1.3 Let S be a maximal partial spread of PG(3, q) of deficiency δ.
Then
(1) δ ≥ √

q + 1 when q is square,

(2) δ ≥ q2/3 + 1 when q is non-square, q = ph, h > 2, p ≥ 5, p prime,
(3) δ ≥ (q + 3)/2 when q is an odd prime.
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Corollary 1.4 (Metsch and Storme [21]) (a) Suppose that δ is an integer and
q square, q = ph, h > 2, p ≥ 5, p prime, such that 0 < δ < q2/3 + 1.

If S is a maximal partial spread of PG(3, q) with q2 + 1 − δ lines, then
δ = s(

√
q + 1) for an integer s ≥ 2 and the set of holes is the disjoint union of

s Baer subgeometries PG(3,
√

q).
(b) Suppose that δ is an integer and q = p2, p prime, q > 4, such that

0 < 2δ ≤ q + 1.
If S is a maximal partial spread of PG(3, q) with q2 + 1 − δ lines, then

δ = s(
√

q + 1) for an integer s ≥ 2 and the set of holes is the disjoint union of
s Baer subgeometries.

Theorem 1.5 (Metsch and Storme [21]) Let S be a maximal partial spread
of PG(3, q3), q non-square, q = ph, h ≥ 1, p prime, p ≥ 7, of deficiency
δ ≤ q2 + q + 1. Then δ = q2 + q + 1 and the set of holes forms a projected
subgeometry PG(5, q) in PG(3, q3).

Theorem 1.6 (Metsch and Storme [21]) Let S be a maximal partial spread of
PG(3, q3), q = ph, h ≥ 2, h even, p prime, p ≥ 7, of deficiency δ ≤ q2 + q + 1.

Then, (1) δ ≡ 0 (mod q3/2 + 1), δ ≥ 2(q3/2 + 1), and the set of holes is the
union of disjoint subgeometries PG(3, q3/2), or (2) δ = q2 + q + 1 and the set
of holes forms a projected subgeometry PG(5, q) in PG(3, q3).

In the following theorems, for q = p3, p prime, p ≥ 17, δ0 is the largest integer
smaller than (3p3 + 27p2 − 5p + 25)/25. For p = 7, 11, 13, δ0 = 90, δ0 = 285
and δ0 = 441 respectively. For q = p3, p = ph

0
, p0 prime, p0 ≥ 7, h > 1, δ0 is

defined as the largest integer smaller than (3p3 +27p2−5p+25)/25 and smaller
than the value δ′ for which p3 + δ′ is the cardinality of the smallest non-trivial
minimal blocking set in PG(2, p3) of cardinality larger than p3 + p2 + p + 1.

Theorem 1.7 (Ferret and Storme [8]) Let p = ph
0
, p0 ≥ 7 a prime, h ≥ 1 odd.

The set of holes of a maximal partial spread in PG(3, p3) of deficiency δ ≤ δ0 is
the disjoint union of projected PG(5, p)’s of cardinality p5 +p4 +p3 +p2 +p+1,
and so δ = s(p2 + p + 1) for some integer s.

Theorem 1.8 (Ferret and Storme [8]) Let p = ph
0
, p0 ≥ 7 a prime, h > 1 even.

The set of holes of a maximal partial spread in PG(3, p3) of deficiency δ ≤ δ0

is the disjoint union of PG(3, p3/2)’s and of projected PG(5, p)’s of cardinality
p5 + p4 + p3 + p2 + p + 1 and so the deficiency δ of a maximal partial spread in
PG(3, p3) can be written as δ = r(p3/2 + 1) + s(p2 + p + 1) for some integers r
and s.

In PG(2, 8), the following results on the smallest non-trivial blocking sets
are known.

Theorem 1.9 (Innamorati and Zuanni [17]) Let B be a non-trivial minimal
blocking set of size 13 in PG(2, 8), then B is projectively equivalent to the set

{(t, t + t2 + t4, 1)||t ∈ GF (8)} ∪ {(t, t + t2 + t4, 0)||t ∈ GF (8) \ {0}}.
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Theorem 1.10 (Barát, Del Fra, Innamorati and Storme [1]) There do not exist
minimal blocking sets of size 14 in PG(2, 8).

The two preceding results led to the following sharp result on the size of the
largest maximal partial spreads in PG(3, 8).

Theorem 1.11 (Barát, Del Fra, Innamorati and Storme [1]) The largest max-
imal partial spreads in PG(3, 8) have size q2 − q + 2.

In all of the preceding results on maximal partial spreads in PG(3, q) of
deficiency δ, information on minimal blocking sets of size q + δ in PG(2, q) was
of crucial importance.

To prove the non-existence of maximal partial spreads of deficiency δ = 6 in
PG(2, 9) in [13], we will classify the non-trivial blocking sets of size 15 = q+δ in
PG(2, q = 9). We will show that next to the classical example of the projective
triangle, there is a unique second example.

The minimal blocking sets of size 15 in PG(2, q = 9) are minimal blocking
sets of size 3(q + 1)/2.

Regarding their classification in other planes PG(2, q), for small odd values
of q, we note that also in PG(2, 7) and in PG(2, 13), there is a unique example
different from the projective triangle. But in PG(2, q), q = 11, or q an odd prime
number satisfying 17 ≤ q ≤ 37, the projective triangles are the only examples
of minimal blocking sets of size 3(q +1)/2 (see Blokhuis, Brouwer and Wilbrink
[3]).

Regarding the classification of the largest maximal partial spreads in PG(3, 9),
we note that also the non-existence of maximal partial spreads of size 75 in
PG(3, 9) has been proven [14]. This altogether proves that the largest maximal
partial spreads in PG(3, q = 9) have size q2 − q + 2 = 74.

2 The known minimal blocking sets of size 15

Presently, there are two known examples of minimal blocking sets of size 15 in
PG(2, 9).

2.1 The projective triangle

The first example is the projective triangle [15, Lemma 13.6]. This is the set of
points projectively equivalent to the set

{(0, 1, a0), (1, 0, a1), (−a2, 1, 0)||a0, a1, a2 squares of GF (9)}.

There are exactly three non-concurrent 6-secants to the projective triangle.
The intersection points of two of these 6-secants are called the vertices of the
projective triangle.

A vertex lies on two 6-secants, four 2-secants and four tangents to the projec-
tive triangle. A non-vertex point of the projective triangle lies on one 6-secant,
four 3-secants, one 2-secant and four tangents.
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2.2 The sporadic blocking set

In PG(2, 9), there is a unique complete 6-arc [15, p. 386]. The 15 bisecants to
this complete 6-arc form a minimal blocking set in the dual projective plane.

So, dualizing this situation, a sporadic example of a minimal blocking set of
size 15 arises.

The characteristic properties of this sporadic example are:

1. There are exactly six 5-secants to this blocking set which form a complete
6-arc of lines.

2. There are ten 3-secants to the blocking set. These ten 3-secants form a
dual conic.

3. And furthermore, there are fifteen 2-secants to the blocking set. These
fifteen 2-secants are the secants to a complete 6-arc in PG(2, 9).

3 The classification of the minimal blocking sets
of size 15

From now on, let B be a minimal blocking set of size 15 in PG(2, 9). Since B is
non-trivial, a line L intersects B in at most 6 points. Namely, for a fixed point
p ∈ L \ B, the nine lines through p which are different from L all contain at
least one point of B, so L contains at most 6 points of B. Blocking sets of size
15 in PG(2, 9) having at least one 6-secant are called blocking sets of Rédei-type
[25].

3.1 Introductory results

Lemma 3.1 Every point of B lies on at least four tangents to B.

Proof: Let p ∈ B and let L be a tangent line to B at p. Consider PG(2, 9) \ L
and call this AG(2, 9). Then a set B \ L of size 14 remains.

A minimal blocking set in AG(2, 9) contains at least 17 points [18]. This
means that we need to add at least three points to B \ L to get a blocking set
in AG(2, 9).

The only external lines to B \ L in AG(2, 9) are the tangents to B at p
(different from L). Since at least three points need to be added to B \ L to
obtain a blocking set in AG(2, 9), there are at least three external lines to B \L
in AG(2, 9); so p lies already on at least three tangents to B, different from L.
Also L is a tangent line to B. Hence p lies on at least four tangents to B. �

Lemma 3.2 B has at least one secant with at least four points.

Proof: Suppose there are only 1-, 2- and 3-secants. Let the number of them
be denoted by a, b and c respectively. Then the following equations must hold
by standard counting arguments.
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a + b + c = 91

a + 2b + 3c = 150

2b + 6c = 210

From these equations, b = −33, which is a contradiction. �

3.2 There are at least 5- and/or 6-secants

Suppose that there are only 1-, 2-, 3- and 4-secants. Let the respective numbers
be a, b, c, d. Then the standard counting arguments imply that

b = −3a + 201

c = 3a − 188

d = −a + 78

So a ≥ 63.
It is impossible that there is a point lying on at least 9 tangents. Namely, if

a point p of B lies on at least 9 tangents, then the 14 other points of B lie on
the tenth line through p, which is impossible. If a point p not belonging to B
lies on 9 tangents, then the tenth line contains the 6 remaining points of B, but
this contradicts the fact that there are at most 4-secants to B. So, the tangents
form a (k, 8)-arc in the dual plane of PG(2, 9). Table 5.4 of [16] shows us that
a (k, 8)-arc in PG(2, 9) contains at most 65 elements, so there are at most 65
tangents to B.

So, there are only the following three possibilities:

a b c d
63 12 1 15
64 9 4 14
65 6 7 13

Lemma 3.3 Only the case (a, b, c, d) = (65, 6, 7, 13) occurs.

Proof: Otherwise, the number of 4-secants is at least 14. Two 4-secants always
intersect in a point of B. For assume they intersect in a point p not in B.
Then since the eight other lines through p all contain at least one point of B,
|B| ≥ 2 × 4 + 8 = 16, which is false.

Consider a 4-secant L. The (at least) 13 other 4-secants intersect L in a
point of B, so some point p of L ∩ B lies on at least five 4-secants, the line L
included. But then |B| ≥ 1 + 5× 3 = 16 when counting the number of points of
B on the lines through p, which is false. �

Let L be a 4-secant. Let L : Z = 0 where the coordinates of a point are
(x, y, z). Let r1 = (0, 1, 0), r2 = (1, 0, 0) be points of L not belonging to B. Let
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r3, r4, r5, r6 be the other points of S = L \B. We identify r1 with (∞), r2 with
(0), and the points (1, y, 0) with (y). We also identify the affine points (x, y, 1)
with (x, y). Let (ai, bi), i = 1, . . . , 11, be the points of B \ L.

Then the following result is valid.

Lemma 3.4 At most two of the points ri, i = 1, . . . , 6, lie on a 3-secant.

Proof: Suppose the points r1 and r2 lie on 3-secants to B. Let p = (0, 0) be
the intersection of these 3-secants. Since r1 and r2 are the points at infinity of
respectively the vertical and horizontal line through the origin p, the vertical
and horizontal line through the origin contain three affine points of B, and this
implies {ai||i = 1, . . . , 11} = {bi||i = 1, . . . , 11} = GF (9) where every non-zero
element appears once and where zero appears three times in the sequence of
elements ai, respectively bi.

This shows that
∏

11

i=1
(X − ai) =

∏
11

i=1
(X − bi) = X11 − X3.

Let
σk,l(a1, . . . , a11; b1, . . . , b11) =

∑
ai1 · · · aik

· bj1 · · · bjl

where the sum is over all index sets {i1, . . . , ik} and {j1, . . . , jl} being disjoint
subsets of {1, . . . , 11} of cardinality k and l, respectively.

Then
∏

i(X − ai) =
∏

i(X − bi) = X11 − X3 implies σ1,0 = σ0,1 = σ2,0 =
σ0,2 = 0.

We now use the lacunary polynomial associated with the set {(ai, bi)||i =
1, . . . , 11}. This is the polynomial

H(X,Y ) =

11∏

i=1

(X + aiY − bi) = X11 + a(Y )X10 + b(Y )X9 + · · · ,

where a(Y ) = σ1,0Y − σ0,1 and where b(Y ) = σ2,0Y
2 − σ1,1Y + σ0,2.

Since σ1,0 = σ0,1 = σ2,0 = σ0,2 = 0, a(Y ) is identically zero and b(Y ) = −cY ,
for some constant c.

So, H(X, y) = (X9 − X)(X2 − cy) for all (∞) 6= (y) ∈ S = L \ B since all
affine lines through such a point must contain a point of B.

If c 6= 0, then X2 − cy cannot have a double root for a fixed value y 6= 0, so
these points (y) lie on two 2-secants to the affine part. On the other hand, c = 0
would imply that all lines through p and a point of S are 3-secants. If p 6∈ B,
then |B| ≥ 1 + 3 × 6, which is false. So p ∈ B, but then B is not minimal. �

Lemma 3.5 It is impossible that B has at most 4-secants.

Proof: The preceding lemma shows that there are at least eight 2-secants to
B since we know that there are at least four points ri lying on two 2-secants
to B. But the number b of 2-secants is b = 6 (Lemma 3.3). So we have a
contradiction. �
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3.3 The computer search for a minimal blocking set of size
15 of Rédei-type

A minimal blocking set of size 15 of Rédei-type has at least one 6-secant L.
Using MAGMA [20], it was determined that there are two orbits of the group

PΓL(2,9) on the subsets of size 4 of a line L. This gives two possibilities for
the orbits of sets of 6 points on such a line. So there are two possibilities for
L ∩ B. The stabilizer group of the first 6-set acts transitively on the 6 points;
the stabilizer group of the other 6-set has two orbits on the 6-set.

Consider the affine plane PG(2, 9) \ L. This shares 9 points with B. Every
secant M to B \ L intersects L in a point of B. For let p be a point of L \ B.
Since L contains already 6 points of B, there only remain 9 other points in B,
and since every one of the nine lines through p different from L must contain at
least one point of B, these nine points of B \L must lie one by one on the nine
lines through p different from L. So a point of L \B does not lie on a secant to
B \ L; secants to B \ L intersect L in a point of L ∩ B.

Suppose the 9 points of B \ L form a 9-arc, then the four points of L \ B
extend this 9-arc to a 10-arc since they only lie on tangents to B \ L. A 9-arc
in PG(2, 9) consists of 9 points of a conic [16, p. 386], so can only be extended
by the tenth point of this conic to a 10-arc.

So there are at least three collinear points in B \ L. The line containing
these collinear points intersects L in a point of B. Using the preceding results
on the stabilizer groups of the two possibilities for the 6-sets B ∩ L, there are
in total three possibilities for this intersection point.

So it is possible to determine 9 points of B, without having too many pos-
sibilities.

The computer search showed that the projective triangles are the only ex-
amples.

Theorem 3.6 The projective triangles are the only minimal blocking sets of
size 15 in PG(2, 9) that are of Rédei-type.

3.4 The computer search for a minimal blocking set of size
15 having no 6-secants, but at least one 5-secant

First of all, MAGMA showed that the group PΓL(2,9) has two orbits on the
5-sets of a projective line. So, for the 5-secant L to B, there are two possibilities
for L ∩ B.

Consider now the affine part B \ L of size 10. Here, the following result of
Gács gives crucial information on the structure of this affine part.

Theorem 3.7 (Gács [10]) In PG(2, q), let B be a minimal blocking set of size
q +k, and suppose there is a line L intersecting B in exactly k−1 points. Then
there is a point p /∈ B such that every line joining p to a point of L \B contains
two points of B. Hence k ≥ (q + 3)/2.
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Using this result, we see that there is a point p not in B such that the five
lines joining p to the points of L\B each contain two points of B; so these lines
contain the 10 points of B \ L.

This information was used to conduct a computer search. The computer
search showed that the only example that satisfies this condition is the sporadic
example coming from the complete 6-arc in PG(2, 9).

Theorem 3.8 Every minimal blocking set in PG(2, 9) of size 15 having at least
one 5-secant, but no 6-secant, is projectively equivalent to the minimal blocking
set arising from the complete 6-arc in PG(2, 9).

4 Application

As indicated in the introduction, this classification of the minimal blocking sets
of size 15 in PG(2, 9) was used in [13] to prove the non-existence of maximal
partial spreads of size 76 (deficiency 6) in PG(3, 9).

Theorem 4.1 There do not exist maximal partial spreads of size 76 in PG(3, 9).

In [14], the non-existence of maximal partial spreads of size 75 in PG(3, 9)
has been proven. There exist in PG(3, q = 9) maximal partial spreads of size
q2 − q + 2 = 74. So the size of the largest maximal partial spreads is now also
known in PG(3, 9).

Theorem 4.2 The largest maximal partial spreads in PG(3, q = 9) have size
q2 − q + 2 = 74.
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