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Abstract

This paper addresses and partially solves a 35 year open problem in the theory
of tetrahedrally closed line systems of Euclidean spaces. The study of those line
systems was initiated by Shult and Yanushka in [26], who not only constructed
several interesting examples of them but also showed that they were related to so-
called near hexagons with three points per line. Shult and Yanushka also showed
how tetrahedrally closed line systems can be constructed from such near hexagons,
but it was very soon clear that their proof contained an essential error. The present
paper fixes the original result for a large class of near hexagons, namely for those
that have an order. The used techniques will allow us to improve other results
from the literature. In particular, we will generalize the well-known Haemers-Roos
inequality for generalized hexagons of order (s, t) to arbitrary near hexagons with
an order.
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1 Introduction

Consider the n-dimensional Euclidean space Rn with origin o, and suppose L is a nonempty
set of lines through o. If L1, L2 ∈ L, then θL1,L2 ∈ [0, π

2
] denotes the angle between

the lines L1 and L2. The set L is called a line system of type (a1, a2, . . . , ak), where
0 ≤ a1, a2, . . . , ak ≤ 1, whenever cos(θL1,L2) ∈ {a1, a2, . . . , ak} for any two distinct lines
L1 and L2 of L. Line systems of type (a1, a2, . . . , ak) of Rn are equivalent with systems of
vectors of type (a1, a2, . . . , ak) of Rn. Such systems of vectors of Rn are nonempty sets Σ
of vectors of Rn that satisfy the following:

• −v̄ ∈ Σ for every v̄ ∈ Σ;
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• the (squared) norm v̄ · v̄ of any v̄ ∈ Σ is a nonzero constant c;

• if v̄1, v̄2 ∈ Σ and v̄2 6∈ {v̄1,−v̄1}, then |v̄1·v̄2|
c
∈ {a1, a2, . . . , ak}.

Line systems of type (a1) are also known as equiangular line systems. Such line systems
were first studied by Haantjes [14] and van Lint & Seidel [20], and have ever since been
investigated by several other researchers, see e.g. [13, 25] and the references therein. They
are also related to other combinatorial objects, like two-graphs [24].

Line systems of type (0, 1
2
) were first studied by Cameron et al. [5] and those of

type (0, 1
3
) by Shult and Yanushka [26], and subsequently by Neumaier [22] and Cuypers

[9]. Many interesting examples of such line systems exist. The line system spanned by
the root systems of the Lie algebras of type An, Dn, E6, E7 or E8 are examples of line
systems of type (0, 1

2
). Constructions of line systems of type (0, 1

3
) can be found in Shult

and Yanushka [26] and Cuypers [9], with many of the described examples arising from
the well known Leech lattice [19, 8].

The angle θ ∈ [0, π] for which cos(θ) equals −1
2

(respectively, −1
3
) is the angle sub-

tended by two chords drawn from the barycenter of an equilateral triangle (respectively,
tetrahedron) to two of its corner vertices. In [5], the notion of a star-closed line system
was introduced, meaning that if two lines inclined at π

3
are present in the line system, then

the unique third line in the plane they generate inclined at π
3

with both of them is also
present. A similar notion was introduced in [26]. A line system (of type (0, 1

3
)) of Rn is

said to be tetrahedrally closed whenever it has 0, 1, 2 or 4 lines in common with every set
of four lines obtained by connecting o with the four corners of some tetrahedron centered
at o. A system Σ of vectors of type (0, 1

3
) of Σ is called tetrahedrally closed whenever the

corresponding line system is tetrahedrally closed. Assuming that all norms of the vectors
of Σ equal a constant c > 0, then this is equivalent to the condition that if v̄1, v̄2, v̄3 ∈ Σ
with v̄1 · v̄2 = v̄1 · v̄3 = v̄2 · v̄3 = − c

3
, then also v̄1 + v̄2 + v̄3 ∈ Σ.

The study of tetrahedrally closed line systems of type (0, 1
3
) was initiated in [26].

Besides classification results, Shult and Yanushka showed that these line systems were
closely related to star-closed line systems of type (0, 1

2
, 1

4
) and to a certain class of point-

line geometries which they called near polygons.
Suppose Σ is a tetrahedrally closed system of norm 3 vectors of type (0, 1

3
) of Rn.

Then v̄1 · v̄2 ∈ {0, 1,−1, 3,−3} for any two vectors v̄1, v̄2 ∈ Σ. Let v̄ ∈ Σ and put
PΣ,v̄ := {ū ∈ Σ | v̄ · ū = −1}. Let LΣ,v̄ denote the set of all triples {v̄1, v̄2, v̄3} ⊆ PΣ,v̄ such
that {v̄, v̄1, v̄2, v̄3} defines a tetrahedron centered at o. We say that Σ satisfies Property
(Pv̄) if LΣ,v̄ 6= ∅ and for any two vectors ū1, ū2 ∈ PΣ,v̄ with ū1 · ū2 = 1 there exists a vector
w̄ ∈ PΣ,v̄ such that ū1 · w̄ = ū2 · w̄ = −1.

Proposition 1.1 ([26, Proposition 3.10]) If Σ satisfies Property (Pv̄) for some v̄ ∈ Σ,
then the point-line geometry SΣ,v̄ with point set PΣ,v̄ and line set LΣ,v̄ satisfies the following
property:

(NP ) for every point p and every line L, there exists a unique point on L that is nearest
to p (with respect to the distance in the collinearity graph).
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Moreover, the diameter of SΣ,v̄ is either 1, 2 or 3, and every line of SΣ,v̄ is incident with
precisely three points. Two points w̄1 and w̄2 of SΣ,v̄ lie at distance 0, 1, 2 or 3 from each
other depending on whether w̄1 · w̄2 is equal to 3, −1, 1 or 0.

A point-line geometry of diameter d satisfying Property (NP) is called a near 2d-gon or
a near polygon if the value of d is not specified. A near polygon is said to have order
(s, t) if every line is incident with precisely s+ 1 points and if every point is incident with
precisely t + 1 lines. Near polygons are related to the generalized polygons of Tits [27],
to the polar spaces of Tits and Veldkamp [28, 30], to distance-regular graphs [3] and to
finite simple groups. While dual polar spaces [4] and generalized polygons (which can be
seen as special classes of near polygons) are related to classical groups and exceptional
groups of Lie type, there are also several near polygons corresponding to sporadic simple
groups, like the U4(3) or Aschbacher near hexagon [1], the Hall-Janko or Cohen-Tits near
octagon [6, 7] and the G2(4) near octagon [2].

The point-line geometry Sv̄ defined in Proposition 1.1 is called a local near polygon of Σ.
In [26, Proposition 3.14], Shult and Yanushka proved that every near 2k-gon, k ∈ {1, 2, 3},
with three points per line occurs as a local near polygon of some tetrahedrally closed
system of norm 3 vectors of type (0, 1

3
). However, soon after their paper was published,

it turned out that their arguments contained an essential error. The nature of this error
is explained by Neumaier [22, p. 566] who also observed that the result remains valid for
those near hexagons for which the collinearity graph is distance-regular (there are nine
such geometries). In the present paper we will fill this 35 year old gap in the original
proof, at least for those near hexagons that have an order:

Theorem 1.2 Let S be a finite near 2k-gon of order (2, t) with k ∈ {1, 2, 3}. Then S
occurs as a local near polygon of some tetrahedrally closed system of norm 3 vectors of
type (0, 1

3
).

In Section 3 we will be able to compute certain intersection numbers in a finite near
hexagon S of order (s, t). This information will be used in Section 4 where we will show
that a certain matrix associated with S is idempotent and thus also positive semidefi-
nite. In Section 5, Theorem 1.2 will be proved from the fact that this matrix is positive
semidefinite.

The fact that the matrix is positive semidefinite has additional consequences. It allows
to improve a result on generalized polygons obtained by Haemers and Roos [16]. Tits
[27] showed that for every prime power q there exists a generalized hexagon of order
(s, t) = (q, q3), the so-called dual twisted triality hexagon associated with the simple
group 3D4(q3). These dual twisted triality hexagons are extremal in the sense that t
attains its maximal possible value for given s. Indeed, Haemers and Roos [16] proved
that the inequality t ≤ s3 holds in any generalized hexagon of order (s, t) with s > 1. The
question whether the dual twisted triality hexagons are the only generalized hexagons
of order (s, s3), s > 1, remains as of today one of the most important problems in the
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theory of generalized polygons. In Section 6, we generalize the Haemers-Roos bound for
generalized hexagons to arbitrary near hexagons with an order, by proving the following:

Theorem 1.3 Let S be a finite near hexagon of order (s, t) with s 6= 1. Let x and y be
two opposite points of S. Let N denote the number of geodesics connecting x and y, and
put t2 := N

t+1
− 1. Then

t2 · (s2 + s+ 1)− s3 ≤ t ≤ s3 + t2 · (s2 − s+ 1).

If S is a generalized hexagon, then t2 = 0 for any choice of the points x and y, and in
this case, Theorem 1.3 reduces to the Haemers-Roos inequality t ≤ s3. In case S is a
regular near hexagon, i.e. a finite near hexagon with an order (s, t) such that any two
points at distance 2 have precisely t2 + 1 common neighbours for a certain constant t2,
then t2 equals t2 for any choice of the points x and y. In this case, the upper bound in
Theorem 1.3 becomes t ≤ s3 + t2(s2 − s+ 1). This upper bound is known as the Mathon
or Haemers-Mathon bound. It can be derived using the theory of distance-regular graphs,
see [15, 21, 23]. This theory of distance-regular graphs can no longer be used here as
the collinearity graph of the near hexagon is not necessarily distance-regular. However,
besides geometric and counting arguments, the proof of the present paper still relies on
methods from algebraic combinatorics.

For s > 1, we will see that t2 ≤ s2. Taking into account Theorem 1.3, we thus find
that t ≤ s4 + s2. So, for any given s > 1 there can only be a finite number of finite near
hexagons of order (s, ∗). In Section 6, we will also be able to treat the case where t attains
the upper bound s4 + s2. We will prove the following.

Theorem 1.4 Let S be a finite near hexagon of order (s, t) with s 6= 1. Then t ≤ s4 +s2,
with equality if and only if S is a Hermitian dual polar space of rank 3.

In particular, Theorem 1.4 says that finite near hexagons of order (2, t) can only exist for
t ≤ 20. This improves the upper bound t ≤ 33 which was achieved in [10, page 120] by
means of other techniques.

2 Preliminaries

In the present paper, we will always consider a point-line geometry as a pair S = (P ,L),
where P is the nonempty point set and the line set L is a collection of subsets of P . If
x and y are two points of S, then d(x, y) denotes the distance between x and y in the
collinearity graph. If x is a point and Y a nonempty set of points of S, then we define
d(x, Y ) := min{d(x, y) | y ∈ Y }. If x is a point of S and i ∈ N, then Γi(x) denotes the set
of points at distance i from x.

Recall that a point-line geometry with finite diameter d is called a near 2d-gon if for
every point x and every line L of S, there exists a unique point on L nearest to x. A near
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0-gon in this context is just a point (no lines) and a near 2-gon is a line. The near quadran-
gles are precisely the generalized quadrangles and the degenerate generalized quadrangles
(consisting of a number of lines through a point). More generally, a generalized 2d-gon is
a near 2d-gon that satisfies the following additional properties:

(GP1) every point is incident with at least two lines;

(GP2) if x and y are two points of S at distance i ∈ {1, 2, . . . , d− 1} from each other, then
there exists a unique neighbour of y at distance i− 1 from x.

The near polygons with only lines of size 2 are precisely the bipartite graphs of finite
diameter.

Suppose S is a near polygon. A quad of S is a set Q of points satisfying the following:

• if a line of S has two points in Q, then all its points are in Q;

• Q is convex, meaning that every point on a shortest path (or geodesic) between two
points of Q is also contained in Q;

• the subgeometry of S determined by those points and lines of S that are contained
in Q is a (nondegenerate) generalized quadrangle.

If every line of S is incident with at least three points, then there exists a constant tQ
such that every point of Q is incident with precisely tQ + 1 lines of Q. The following two
propositions are taken from Shult and Yanushka [26].

Proposition 2.1 ([26, Proposition 2.5]) Suppose x1 and x2 are two points at distance
2 in a near polygon S and y1 and y2 are two distinct common neighbours of x1 and x2. If
at least one of the lines x1y1, y1x2, x2y2, y2x2 contains at least three points, then x1 and
x2 are contained in a unique quad.

Proposition 2.2 ([26, Proposition 2.6]) Suppose S is a near polygon having at least
three points on each line. Then precisely one of the following two cases occurs for a
point-quad pair (p,Q):

(a) There exists a unique point x′ in Q nearest to x. In this case, d(x, y) = d(x, x′) +
d(x′, y) for any point y ∈ Q.

(b) The points in Q nearest to x from an ovoid, i.e. a set of points of Q intersecting
each line of Q in a singleton.

If case (a) of Proposition 2.2 occurs, then x is called classical with respect to Q. If case
(b) occurs, then x is called ovoidal with respect to Q.
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Proposition 2.3 Suppose S = (P ,L) is a finite near hexagon of order (s, t) having v
points. Put

n0 := 1, n1 := s(t+ 1), n2 :=
v

s+ 1
− 1 + s2t− st, n3 :=

sv

s+ 1
− s− s2t.

Then |Γi(x)| = ni for every point x and every i ∈ {0, 1, 2, 3}.

Proof. For every point x of S and every i ∈ {0, 1, 2, 3}, we define ni(x) := |Γi(x)|. Since

every line L of S contains a unique point nearest to x, the sum
∑

y∈L(−1
s
)d(x,y) is equal

to 0. So, 0 =
∑

L∈L
∑

y∈L(−1
s
)d(x,y) =

∑
y∈P

∑
L3y(−

1
s
)d(x,y) = (t + 1) ·

∑
y∈P(−1

s
)d(x,y),

implying that n0(x) − n1(x)
s

+ n2(x)
s2
− n3(x)

s3
= 0. Since n0(x) = 1, n1(x) = s(t + 1) and

n0(x) + n1(x) + n2(x) + n3(x) = v, we derive that ni(x) = ni for every i ∈ {0, 1, 2, 3}. �

Proposition 2.4 Suppose S is a finite near hexagon of order (s, t) with s > 1 and x is
a point of S. If R denote the set of quads through x, then∑

R∈R

t2R = t(t+ 1)− n2

s2
,

where n2 is the constant mentioned in Proposition 2.3.

Proof. If R ∈ R, then |Γ2(x) ∩ R| = s2tR, and so the number of points of Γ2(x) that
are contained in a quad together with x is equal to

∑
R∈R s

2tR, and the number of other
points of Γ2(x) is equal to n2 −

∑
R∈R s

2tR. Now, counting in two different ways the
number of connections between Γ1(x) and Γ2(x), we find

s(t+ 1) · st =
∑
R∈R

s2tR(tR + 1) + n2 −
∑
R∈R

s2tR,

from which it readily follows that
∑

R∈R t
2
R = t(t+ 1)− n2

s2
. �

3 Calculation of some intersection numbers

In this section, we suppose that S is a finite near hexagon of order (s, t) having v points.
By Proposition 2.3, there exist constants ni, i ∈ {0, 1, 2, 3}, such that ni = |Γi(x)| for
every point x of S and every i ∈ {0, 1, 2, 3}. These constants are equal to

n0 = 1, n1 = s(t+ 1), n2 =
v

s+ 1
− 1 + s2t− st, n3 =

sv

s+ 1
− s− s2t.

Suppose x and y are two points of S at distance δ from each other. For all i, j ∈ {0, 1, 2, 3},
let aij be the intersection number |Γi(x)∩Γj(y)|. We determine here all aij’s for 0 ≤ i, j ≤
2. We deal separately with the various possibilities for δ ∈ {0, 1, 2, 3}.

First, suppose δ = 0. Then aij = ni · δij for all i, j ∈ {0, 1, 2}, where δij denotes the
Kronecker delta.
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Suppose δ = 1. By the triangle inequality, we have a00 = a02 = a20 = 0. Since
Γ1(x)∩Γ0(y) = {y} and Γ0(x)∩Γ1(y) = {x}, we have a01 = a10 = 1. By (NP), the points
at distance 1 from x and y are precisely the points of the line xy distinct from x and y
implying that a11 = s− 1. By (NP), the points of Γ1(x) ∩ Γ2(y) are precisely the points
collinear with x not contained on the line xy, showing that a12 = st. By symmetry, also
a21 = st. By (NP), the points of Γ2(x)∩ Γ2(y) are precisely the points not on the line xy
that are collinear with one of the s−1 points of xy \{x, y}, implying that a22 = (s−1)st.

Suppose δ = 2, and put a11 := |Γ1(x) ∩ Γ1(y)| = t2 + 1. Obviously, a02 = a20 = 1 and
by the triangle inequality we have a00 = a10 = a01 = 0. If z ∈ Γ1(x) ∩ Γ2(y), then by
(NP), the line xz contains a point collinear with y, implying that xz is one of the t2 + 1
lines through x meeting Γ1(y). Conversely, each line through x meeting Γ1(y) contains
s − 1 points of Γ1(x) ∩ Γ2(y). It follows that a12 = (s − 1)(t2 + 1). By symmetry, also
a21 = (s− 1)(t2 + 1). We will now compute a22.

If s = 1, then S is a bipartite graph implying that Γ2(x)∩Γ2(y) = P \{x, y}, where P
is the part of the bipartite graph containing x and y. In this case S has order (1, t), and
so both parts of S have equal size, implying that a22 = |Γ2(x) ∩ Γ2(y)| = v

2
− 2. Assume

therefore that s ≥ 2.
If t2 ≥ 1, then x and y are contained in a unique quad Q by Proposition 2.1. If t2 = 0,

then x and y have a unique neighbour u, and we define Q := xu ∪ uy. Also in the latter
case, Q is convex. Let R1 denote the set of all quads through x meeting Q in a line
and let R2 denote the set of all quads through x meeting Q in the singleton {x}. Then
R := R1 ∪ R2 is the set of all quads through x. Regardless of whether t2 = 0 or t2 ≥ 1,
we always have ∑

R∈R

t2R = t(t+ 1)− t22 −
n2

s2

by Proposition 2.4. We count the number N1 of points in Γ2(x)∩Γ2(y)∩Q. If t2 = 0, then
obviously N1 = 0. If t2 ≥ 1, then Q is a generalized quadrangle of order (s, t2) containing
(s+1)(st2+1) points and henceN1 = (s+1)(st2+1)−2−2s(t2+1)+t2+1 = s2t2−st2−s+t2.

We count in two different ways the number N2 of pairs (u, z), where z ∈ (Γ2(x) ∩
Γ2(y)) \Q and u ∈ Γ1(x) ∩ Γ1(z).

If u ∈ Γ1(x) ∩ Γ2(y), then by (NP) the line xu contains a unique point collinear with
y, implying that u ∈ Q. If u have been chosen in such a way and z ∈ Γ1(u) ∩ Γ2(y), then
uz contains a point collinear with y, implying that z ∈ Q since it is on a shortest path
between u ∈ Q and y ∈ Q. So, there are no such pairs (u, z) with u ∈ Γ1(x) ∩ Γ2(y).

For each of the s(t− t2) points u of Γ1(x)∩Γ3(y), there are t possibilities for z, namely
one on each line through u distinct from ux. Note that if u and z have been chosen in the
above way, then z 6∈ Q. Indeed, if z would belong to Q, then as Q is convex, we would
also have u ∈ Q, which is impossible as y ∈ Q and d(u, y) = 3.

For each of the t2 + 1 points u of Γ1(x) ∩ Γ1(y), there are s(t − t2) possibilities for z
if t2 ≥ 1 and s(t − 1) possibilities if t2 = 0. Indeed, the number of lines through u not
contained in Q is equal to t − t2 (if t2 ≥ 1) or t − 1 (if t2 = 0), and on each such line,
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there are s points in (Γ2(x) ∩ Γ2(y)) \Q. So, the total number N2 of pairs is equal to

N2 =

{
s(t− t2)t+ (t2 + 1)s(t− t2) if t2 ≥ 1,
s(t− t2)t+ (t2 + 1)s(t− 1) = st2 + st− s if t2 = 0.

Remark that N1 + N2 = s2t2 − st2 − s + t2 + s(t − t2)t + (t2 + 1)s(t − t2), regardless of
whether t2 = 0 or t2 ≥ 1.

We now count the number of pairs in another way. If R ∈ R1, then R contains a unique
point y′ collinear with y and so y is classical with respect to Q. Since d(x, y) = 2, the
point y′ is also collinear with x. In R, there are precisely stR points of (Γ2(x)∩Γ2(y))\Q,
namely the stR neighbours of y′ in R that are not contained on the line xy′. If R ∈ R2,
then R does not contain a point of Γ1(y), implying that y is ovoidal with respect to R,
i.e. Γ2(y) ∩ R is an ovoid of R containing stR + 1 points. In R, there are then precisely
stR points of (Γ2(x) ∩ Γ2(y)) \ Q, namely the stR points of (Γ2(y) ∩ R) \ {x}. We thus
see that among the a22 −N1 points of (Γ2(x) ∩ Γ2(y)) \Q, there are

∑
R∈R stR points z1

that are contained in a quad together with x and a22−N1−
∑

R∈R stR points z2 that are
not contained in a quad together with x. For each such z1 ∈ R ∈ R, there are tR + 1
possibilities for u and for each such z2 there is a unique possibility for u. Hence, the total
number of pairs is also equal to N2 =

∑
R∈R stR(tR + 1) + a22 − N1 −

∑
R∈R stR. This

implies that

a22 = N1 +N2 −
∑
R∈R

st2R.

Taking into account that

N1 +N2 = s2t2 − st2 − s+ t2 + s(t− t2)t+ (t2 + 1)s(t− t2),∑
R∈R

t2R = t(t+ 1)− t22 −
n2

s2
,

n2 =
v

s+ 1
− 1 + s2t− st,

we can compute that

a22 = s2t2 − 2st2 − s+ t2 + st− t− 1

s
+

v

s(s+ 1)
.

Observe that the latter number remains valid if s = 1. Indeed, above we already showed
that a22 = v

2
− 2 if s = 1.

Finally, suppose that δ = 3. By the triangle inequality, we have a00 = a01 = a02 =
a10 = a20 = a11 = 0. On each line through x, there is a unique point at distance 2 from
y, implying that a12 = |Γ1(x) ∩ Γ2(y)| = t + 1. Similarly, we have that a21 = t + 1. We
will now compute a22.

If s = 1, then since S is a bipartite graph, we have a22 = |Γ2(x)∩ Γ2(y)| = 0. Assume
therefore that s ≥ 2.

Let R1 denote the set of quads through x containing a point of Γ1(y), and let R2

denote the set of all remaining quads through x. Again, R := R1 ∪ R2 is the set of all
quads through x.
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Lemma 3.1 The number of shortest paths between x and y is equal to t+ 1 +
∑

R∈R1
tR.

Proof. For every point u ∈ Γ2(x)∩ Γ1(y), let u′ denote a common neighbour of u and x.
Then there are t+1 shortest paths between x and y of the form xu′uy. For every R ∈ R1,
the point x and the unique point u ∈ Γ1(y)∩R have tR common neighbours distinct from
u′, giving rise to tR extra shortest paths between x and y. By Proposition 2.1, we know
that we have accounted for all shortest paths between x and y now. So, the total number
of them should be t+ 1 +

∑
R∈R1

tR. �

Lemma 3.2 We have a22 = (s− 1)
(

(t+ 1)2 −
∑

R∈R t
2
R

)
.

Proof. We count in two different ways the number of pairs (u, z) satisfying z ∈ Γ2(x) ∩
Γ2(y) and u ∈ Γ1(x) ∩ Γ1(z).

We show that there are (s − 1)(t + 1)t such pairs (u, z) where u ∈ Γ1(x) ∩ Γ3(y).
Indeed, there are (s − 1)(t + 1) points u ∈ Γ1(x) ∩ Γ3(y), and for a given u there are t
possibilities for z, namely one on each line through u distinct from ux.

We show that there are (s−1)(t+1+
∑

R∈R1
tR) such pairs (u, z) with u ∈ Γ1(x)∩Γ2(y).

If (u, z) is such a pair, then the fact that d(u, y) = d(z, y) = 2 implies that the line uz
contains a point u′ collinear with y, implying that xuu′y is a shortest path from x to
y. Conversely, if xuu′y is a shortest path from x to y and z is one of the s − 1 points
of uu′ \ {u, u′}, then (u, z) is a suitable pair. From Lemma 3.1, it now follows that the
number of suitable pairs (u, z) with u ∈ Γ1(x)∩Γ2(y) is equal to (s−1)(t+1+

∑
R∈R1

tR).

So, the total number of suitable pairs is equal to (s − 1)
(

(t + 1)2 +
∑

R∈R1
tR

)
. We

now count the number of pairs (u, z) in a different way.
If R ∈ R1, then y has distance 1 from a unique point y′ of R, implying that y is

classical with respect to R. Since d(x, y) = 3, we have d(x, y′) = 2. The quad R contains
(s− 1)(tR + 1) points z of Γ2(x) ∩ Γ2(y) (namely the points of R \ {y′} collinear with y′,
but not with x) and each of these points is collinear with tR + 1 points u ∈ Γ1(x).

If R ∈ R2, then y is ovoidal with respect to R, and so R contains stR + 1 points
of Γ2(y), tR + 1 of which are collinear with x, implying that there are (s − 1)tR points
z ∈ R∩Γ2(x)∩Γ2(y). Moreover, each such point z is collinear with tR+1 points u ∈ Γ1(x).

Since each of the a22−(s−1)·
∑

R∈R1
(tR+1)−(s−1)·

∑
R∈R2

tR points of Γ2(x)∩Γ2(y)
not contained in a quad together with x is collinear with a unique point u ∈ Γ1(x), we
see that the number of suitable pairs is also equal to

a22 − (s− 1)
∑
R∈R1

(tR + 1)− (s− 1)
∑
R∈R2

tR + (s− 1)
∑
R∈R1

(tR + 1)2

+(s− 1)
∑
R∈R2

tR(tR + 1) = a22 + (s− 1)
∑
R∈R1

tR(tR + 1) + (s− 1)
∑
R∈R2

t2R.

Since this number is equal to (s−1)
(

(t+ 1)2 +
∑

R∈R1
tR

)
, we see that a22 = (s−1)

(
(t+

1)2 −
∑

R∈R t
2
R

)
. �
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δ = 0 0 1 2 δ = 2 0 1 2

0 1 0 0 0 0 0 1
1 0 s(t+ 1) 0 1 0 t2 + 1 (s− 1)(t2 + 1)

2 0 0 v
s+1
− 1 + s2t− st 2 1 (s− 1)(t2 + 1) s2t2 − 2st2 − s+ t2 + st− t− 1

s
+ v

s(s+1)

δ = 1 0 1 2 δ = 3 0 1 2

0 0 1 0 0 0 0 0
1 1 s− 1 st 1 0 0 t+ 1

2 0 st (s− 1)st 2 0 t+ 1
(s−1)(2s−1)

s
t+

(s2−1)(s−1)

s2
+

v(s−1)

s2(s+1)

Table 1: The intersection numbers aij for δ ∈ {0, 1, 2, 3}

Since
∑

R∈R t
2
R = t(t+ 1)− n2

s2
, we find that a22 = (s− 1)(t+ 1 + n2

s2
). If we replace in the

latter expression n2 by v
s+1
− 1 + s2t− st, then we find

a22 =
(s− 1)(2s− 1)

s
t+

(s2 − 1)(s− 1)

s2
+
v(s− 1)

s2(s+ 1)
.

Observe that the latter number remains valid if s = 1. Indeed, above we have already
shown that a22 = 0 if s = 1.

We summarize the values of aij in Table 1.

4 An idempotent matrix

In this section, S = (P ,L) denotes a finite near hexagon of order (s, t) having v points.
We will consider a particular ordering p1, p2, . . . , pv of the points, and use this ordering
to define real matrices Ai, i ∈ {0, 1, 2, 3}, whose rows and columns are indexed by the
points. For every i ∈ {0, 1, 2, 3} and all x, y ∈ P , we define

(Ai)xy =

{
1 if d(x, y) = i,
0 otherwise.

Then A1 equals the collinearity matrix A of S (with respect to the ordering) and A0

equals I, the v × v identity matrix. We also define

N :=
3∑
i=0

(−1

s
)iAi

and

α := n0 +
n1

s2
+
n2

s4
+
n3

s6
=

(s+ 1)2(s− 1)(s2 + 1) + st(s− 1)(s+ 1)2 + v

s5
> 0.

In this section, we prove the following result.

Proposition 4.1 We have N ·N = α ·N . As a consequence, N
α

is an idempotent matrix.
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Proof. For every point x of S, let χx be the row vector whose columns are indexed by

the v points of S (with respect to the above ordering), such that χx(z) := (−1
s
)d(x,z) for

every point z of S. If x and y are two points of S, then the standard inner product of the
two row vectors χx and χy is equal to

χx · χy =
∑

0≤i,j≤3

aij(−
1

s
)i+j,

where aij = |Γi(x) ∩ Γj(y)| for all i, j ∈ {0, 1, 2, 3}. Taking into account that

ai3 = ni − ai0 − ai1 − ai2, a3i = ni − a0i − a1i − a2i, a33 = 2n3 − v +
2∑

i,j=0

aij,

for every i ∈ {0, 1, 2} and making use of Proposition 2.3, we see that

χx · χy =
( 2∑
i,j=0

kijaij

)
− v

s6
+
(

2n0(−1

s
)3 + 2n1(

1

s
)4 + 2n2(−1

s
)5 + 2n3(

1

s
)6
)

= − v

s6
+

2∑
i,j=0

kijaij,

where kij = (−1
s
)i+j − (−1

s
)i+3 − (−1

s
)j+3 + 1

s6
for all i, j ∈ {0, 1, 2}, i.e.

k00 =
(s3 + 1)2

s6
, k01 = k10 = −(s2 − 1)(s3 + 1)

s6
, k02 = k20 =

(s+ 1)(s3 + 1)

s6
,

k11 =
(s2 − 1)2

s6
, k12 = k21 = −(s+ 1)(s2 − 1)

s6
, k22 =

(s+ 1)2

s6
.

Using the contents of Table 1, it is straightforward (but somewhat tedious) to compute

that χx · χy = α · (−1
s
)d(x,y) for every two points x and y of S. If x is a point of S, then

the row x of the matrix N coincides with χx. As N is a symmetric matrix, we thus have
that N ·NT = N2 = α ·N . �

Remark. For a finite near 2d-gon of order (s, t), we can define similarly as above matrices
Ai, i ∈ {0, 1, . . . , d}, and put N :=

∑d
i=0(−1

s
)iAi. For several known examples of such

near 2d-gons, the author verified that N2 = αN for some α ∈ Q. The explanation of this
fact seems to come from the following result.

Lemma 4.2 If there exists a polynomial p∗(x) ∈ Q[x] such that N = p∗(A), then N2 =
αN for some α ∈ Q.

Proof. It can be shown, see Proposition 1 of [11], that AN = −(t + 1)N . This implies
that N2 = p∗(A)N = p∗(−(t+ 1))N = αN , where α = p∗(−(t+ 1)) ∈ Q. �
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For many near 2d-gons, e.g. those with a distance-regular collinearity graph, it can be
shown that there exist polynomials pi(x) ∈ Q[x] (i ∈ {0, 1, . . . , d}) such that Ai = pi(A),
so that one can take p∗(x) =

∑d
i=0(−1

s
)ipi(x). However, to prove that these polynomials

exist seems to be a hard problem for general finite near polygons with an order (the
author does not have a clue on how to approach this problem). Despite the fact that the
existence of these polynomials pi(x) was not proved here, it was still possible (for the near
hexagon case) to show that N2 = αN for some α ∈ Q.

We also note that if there exists a polynomial p∗(x) ∈ Q[x] such that N = p∗(A), then
the idempotent matrix N

α
with α = p∗(−(t+ 1)) can be regarded as the projection matrix

on the eigenspace of the smallest eigenvalue −(t+ 1) of A.

5 Application to tetrahedrally closed line systems

Every tetrahedron T centered at the origin o of the Euclidean 3-space R3 determines a
tetrahedrally closed system ΣT of norm 3 vectors of type (0, 1

3
) for which all four local near

polygons are lines of size 3. There are up to isomorphism three generalized quadrangles
of order (2, ∗) (namely, the (3× 3)-grid, W (2) and Q(5, 2)), and by Shult and Yanushka
[26] or Cuypers [9] we already know that each of them occurs as a local near polygon of
a suitable tetrahedrally closed system of norm 3 vectors of type (0, 1

3
). So, it suffices to

prove Theorem 1.2 in the case of near hexagons.

Suppose S = (P ,L) is a finite near hexagon with three points per line and denote by
d(·, ·) the distance function in S. Put P = {p1, p2, . . . , pv} with v = |P| and denote by∞
a symbol that is not contained in P . Similarly as in Section 4, we can define real v × v
matrices A0, A1, A2, A3, N with respect to the ordering (p1, p2, . . . , pv) of the points. We
now define an additional matrix M which has dimensions (v + 1) × (v + 1) and whose
rows and columns are indexed by the set {∞} ∪ P using the ordering (∞, p1, p2, . . . , pv).
The matrix M is defined as follows:

• M∞,∞ := 3;

• M∞,x := −1 and Mx,∞ := −1 for every point x ∈ P ;

• Mx,x := 3 if x ∈ P , Mx,y := −1 if x, y ∈ P with d(x, y) = 1, Mx,y := 1 if x, y ∈ P
with d(x, y) = 2, and Mx,y := 0 if x, y ∈ P with d(x, y) = 3.

Let P denote the following real (v + 1)× (v + 1)-matrix:

P :=



1 1
3

1
3
· · · 1

3
1
3

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


.
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It is straightforward to verify that P T ·M · P is the following block matrix:(
3 0
0 8

3
·N

)
So, the matrix M is positive-semidefinite if and only if N is positive semidefinite.

Proposition 5.1 The following are equivalent:

(1) S is some local near polygon of a tetrahedrally closed system of norm 3 vectors of
type (0, 1

3
).

(2) The matrix N is positive semidefinite.

Proof. We use some of the notation introduced in Proposition 1.1. Suppose S = SΣ,v̄,
where Σ is a tetrahedrally closed system of norm 3 vectors of type (0, 1

3
) of Rn satisfying

Property (Pv̄) where v̄ is some vector of Σ. By Proposition 1.1, we then know that M
is a Gram matrix of the set {v̄} ∪ PΣ,v̄, implying (see e.g. [18, Section 7.2]) that M and
hence also N are positive semidefinite.

Conversely, suppose that N and hence also M are positive semidefinite matrices. If
n is the rank of M , then by [18, Section 7.2], there exists a collection Σ of vectors in
Rn for which M is a Gram matrix. The remainder of the proof follows the arguments of
Shult and Yanushka exposed in Proposition 3.14 of their paper [26] and is added here for
reasons of completeness.

Denote by v̄ ∈ Σ the vector corresponding to the first row and column of M . Every
vector of Σ\{v̄} then corresponds to a point of S which we will denote by θ(v̄). We define

Σ := Σ ∪ −Σ,

where −Σ := {−ū | ū ∈ Σ}. Since all diagonal entries of M are equal to 3 and all non-
diagonal entries are equal to −1, 1 or 0, we see that Σ ∩ (−Σ) = ∅ and Σ is system of
norm 3 vectors of type (0, 1

3
). Since all non-diagonal elements in the first row and column

of M are equal to −1, we see that PΣ,v̄ = {ū ∈ Σ | v̄ · ū = −1} = Σ \ {v̄}.
We prove that Σ satisfies Property (Pv̄). If {p1, p2, p3} is a line of S and v̄i = θ−1(pi)

for every i ∈ {1, 2, 3}, then ū1 · ū2 = −1 for any two distinct vectors ū1, ū2 ∈ {v̄, v̄1, v̄2, v̄3},
implying that {v̄, v̄1, v̄2, v̄3} defines a tetrahedron. This implies that LΣ,v̄ 6= ∅. If w̄1 and
w̄2 are two vectors of PΣ,v̄ = Σ \ {v̄} satisfying w̄1 · w̄2 = 1. Then the points p1 = θ(w̄1)
and p2 = θ(w̄2) of S lie at distance 2 from each other. If p3 denotes a common neighbour
of p1 and p2, and w̄3 := θ−1(p3), then w̄3 · w̄1 = w̄3 · w̄2 = −1. We conclude that Σ indeed
satisfies Property (Pv̄).

Suppose {v̄, v̄1, v̄2, v̄3} ⊆ Σ determines a tetrahedron. Then v̄1, v̄2, v̄3 ∈ Σ \ {v̄} and
v̄1 · v̄2 = v̄1 · v̄3 = v̄2 · v̄3 = −1, implying that the points p1 = θ(v̄1), p2 = θ(v̄2) and
p3 = θ(v̄3) of S are mutually collinear, i.e. they form a line of S. Above, we have already
shown that every line of S arises from such a tetrahedron. So, the map θ defines an
isomorphism between the point-line geometries SΣ,v̄ and S.
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It remains to show that Σ is tetrahedrally closed, i.e. we need to show that if W =
{w̄1, w̄2, w̄3, w̄4} is a collection of four vectors defining a tetrahedron such that w̄1, w̄2, w̄3 ∈
Σ, then also w̄4 ∈ Σ. This property holds for W if and only if it holds for −W :=
{−w̄1,−w̄2,−w̄3,−w̄4}. So, we may suppose that a majority of the vectors w̄1, w̄2, w̄3

belong to Σ. Without loss of generality, we may suppose that w̄1, w̄2 ∈ Σ. We then
necessarily have −v̄ 6∈ {w̄1, w̄2, w̄3}. We distinguish three cases.

• Suppose v̄ ∈ {w̄1, w̄2, w̄3}, say w̄1 = v̄. Then w̄2, w̄3 ∈ Σ \ {v̄} and the points θ(w̄2),
θ(w̄3) of S are collinear. If θ(w̄′4) with w̄′4 ∈ Σ \ {v̄} denotes the third point on
the line joining them, then {w̄1, w̄2, w̄3, w̄

′
4} defines a tetrahedron, implying that

w̄4 = w̄′4 ∈ Σ ⊆ Σ.

• Suppose {w̄1, w̄2, w̄3} ⊆ Σ \ {v̄}. Then {v̄, w̄1, w̄2, w̄3} determines a tetrahedron,
implying that w̄4 = v̄ ∈ Σ.

• Suppose {w̄1, w̄2} ⊆ Σ \ {v̄} and w̄3 ∈ −Σ \ {−v̄}. Put p1 = θ(w̄1), p2 = θ(w̄2)
and p3 = θ(−w̄3). As w̄1 · w̄2 = −1 and w̄1 · (−w̄3) = w̄2 · (−w̄3) = 1, we have
d(p1, p2) = 1 and d(p3, p1) = d(p3, p2) = 2. If p denotes the third point on the line
p1p2, then (NP) implies that p3 is collinear with p. Denote by p4 the third point on
the line p3p, and let w̄′4 ∈ −Σ \ {−v̄} such that θ(−w̄′4) = p4. From d(p3, p4) = 1
and d(p1, p4) = d(p2, p4) = 2, it follows that w̄1 · w̄′4 = w̄2 · w̄′4 = w̄3 · w̄′4 = −1, i.e.
{w̄1, w̄2, w̄3, w̄

′
4} determines a tetrahedron. Hence, w̄4 = w̄′4 ∈ Σ.

�

Theorem 1.2 of Section 1 is an immediate consequence of Propositions 4.1 and 5.1, taking
into account that any idempotent matrix is also positive semidefinite.

6 A generalization of the Haemers-Roos inequality

We continue with the notation of Section 4. In particular, S = (P ,L) is a finite near
hexagon of order (s, t). If X is a set of points of S, then γX denotes the characteristic
vector of X, i.e. the row matrix whose columns are indexed by the points of S (respecting
the earlier mentioned ordering of points) such that γX(y) = 1 if y ∈ X and γX(y) = 0 if
y ∈ P \X. If X is the singleton {x}, then we denote γX also by γx.

Consider two opposite points x and y of S, and put Z1 := Γ1(x) ∩ Γ2(y), Z2 :=
Γ2(x) ∩ Γ1(y). We show that if z1 ∈ Z1 and z2 ∈ Z2, then d(z1, z2) ∈ {1, 3}. By the
triangle inequality, we know that d(z1, z2) ∈ {1, 2, 3}. If d(z1, z2) ≤ 2, then (NP) and the
fact that d(z1, y) = 2 implies that there exists a unique point z′2 on the line yz2 collinear
with z1. This point lies at distance at most 2 from x and hence coincides with z2, implying
that d(z1, z2) = 1.

Since the matrix N
α

is idempotent (Proposition 4.1), it is positive semidefinite, implying
that also N is positive semidefinite (as α > 0). It follows that for all X1, X2, X3, X4 ∈ R,

(X1γx +X2γy +X3γZ1 +X4γZ2) ·N · (X1γx +X2γy +X3γZ1 +X4γZ2)
T ≥ 0,
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i.e.,
[X1 X2 X3 X4] ·M · [X1 X2 X3 X4]T ≥ 0,

where

M =


1 − 1

s3
− t+1

s
t+1
s2

− 1
s3

1 t+1
s2

− t+1
s

− t+1
s

t+1
s2

(t+1)(s2+t)
s2

γ · (−1
s
) + ((t+ 1)2 − γ) · (− 1

s3
)

t+1
s2

− t+1
s

γ · (−1
s
) + ((t+ 1)2 − γ) · (− 1

s3
) (t+1)(s2+t)

s2

 ,
with γ denoting the number of shortest paths connecting x and y. It follows that M is also
positive semidefinite matrix. By Sylvester’s criterion for positive semidefinite matrices [18,
Theorem 7.2.5], we then know that

det(M(1)) ≥ 0, det(M(2)) ≥ 0, det(M(3)) ≥ 0, det(M(4)) ≥ 0,

where M(i) is the submatrix of M defined by the first i rows and first i columns of M .
If s = 1, then det(M(1)) = 1 and det(M(2)) = det(M(3)) = det(M(4)) = 0, and so

the inequalities for det(M(i)) are always fulfilled.
Suppose therefore that s ≥ 2. Then det(M(1)) = 1, det(M(2)) = 1− 1

s6
> 0 and

det(M(3)) =
t+ 1

s8
(s2 − 1)2(s4 + s2 − t),

implying that
t ≤ s4 + s2.

If x and y are two points at distance 2 having at least two common neighbours, then
Proposition 2.1 implies that x and y are contained in a unique quad of order (s, txy) for
some txy ∈ N \ {0}. By Higman [17, (6.4)], we know that txy ≤ s2. This implies that
every two opposite points of S are connected by at most (t + 1)(s2 + 1) shortest paths,
i.e.

γ ≤ (t+ 1)(s2 + 1).

We compute

det(M(4)) = − 1

s12
(s2−1)3

(
(t+1)2−(s2+s+1)(γ−s(t+1))

)
·
(

(t+1)2−(s2−s+1)(γ+s(t+1))
)
,

= − 1

s12
(s2 − 1)3(t+ 1)2 ·

(
t+ 1− (s2 + s+ 1)(γ − s)

)
·
(
t+ 1− (s2 − s+ 1)(γ + s)

)
,

where γ := γ
t+1
≤ s2 + 1. The latter inequality implies that (s2 + s + 1)(γ − s) ≤

(s2 − s+ 1)(γ + s). The fact that det(M(4)) ≥ 0 then implies that

(s2 + s+ 1)(γ − s) ≤ t+ 1 ≤ (s2 − s+ 1)(γ + s).

If we put t2 := γ − 1, then we find

(s2 + s+ 1)t2 − s3 ≤ t ≤ s3 + t2(s2 − s+ 1). (1)
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As mentioned earlier, the upper bound for t generalizes the Haemers-Roos inequality
for generalized polygons [16] and the Haemers-Mathon bound for regular near hexagons
[15, 21, 23]. The lower bound for t generalizes a lower bound obtained in [12]. In fact,
the techniques we invoked in this section are similar to some of the techniques used in
[12] and [29].

We will now deal with the case where t attains the upper bound s4 + s2 (under the
assumption that s > 1). If t = s4 + s2, then (1) implies that t2 = s2, i.e. γ = s2 + 1 and
γ = (t+ 1)(s2 + 1). By the above we then know that every two points at distance 2 have
precisely s2 + 1 common neighbours. This implies that every two points at distance 2 are
contained in a unique quad of order (s, s2), or equivalently, that every two intersecting
lines are contained in a unique quad of order (s, s2). For every point x, consider now
the point-line geometry Sx with point set Lx = {L ∈ L | x ∈ L} and line set Lx :=
{LQ |Q a quad through x}, where LQ is the set consisting of all lines through x contained
in Q. The point-line geometry Sx satisfies the following properties:

• there are s4 + s2 + 1 points and every line contains s2 + 1 points;

• every two distinct points are incident with a unique line.

So, Sx is a Steiner system S(2, s2 + 1, s4 + s2 + 1) and hence a projective plane of order
s2. As this holds for all points x of S, the near hexagon S must be a dual polar space by
Shult and Yanushka [26, Lemma 2.21]. By the classification of polar spaces (Veldkamp
[30], Tits [28]), we then know that S must be a Hermitian dual polar space, i.e. s is a
prime power and S is isomorphic to DH(5, s2).
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