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Abstract

Let Q+(3, q) be a hyperbolic quadric in PG(3, q) and T be the set of all lines of
PG(3, q) which are tangent to Q+(3, q). If k is the minimum size of a T -blocking
set in PG(3, q), then we prove that q2 + 1 ≤ k ≤ q2 + q. When q = 3, we show that:
(i) there is no T -blocking set of size 10, and (ii) there are exactly two T -blocking
sets of size 11 up to isomorphism. By means of the computer algebra systems GAP
[13] and Sage [9], we find that there exist no T -blocking sets of size q2 + 1 for each
odd prime power q ≤ 13.
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1 Introduction

Throughout, q is a prime power. Let PG(3, q) be the three dimensional projective space
defined over a finite field of order q and Q+(3, q) be a hyperbolic quadric in PG(3, q). One
can refer to [6] for the basic properties of the points, lines and planes of PG(3, q) with
respect to the quadric Q+(3, q). Every line of PG(3, q) meets Q+(3, q) in 0, 1, 2 or q + 1
points. We denote by E (respectively, T1, S, T0) the set of lines of PG(3, q) that intersect
Q+(3, q) in 0 (respectively, 1, 2, q+ 1) points. The elements of E are called external lines,
those of S secant lines and those of T := T0 ∪ T1 tangent lines. If L ∈ Ti with i ∈ {0, 1},
then L is also called a Ti-line. The T0-lines are precisely the lines contained in Q+(3, q),
and so we have |T0| = 2(q+1). As every point of Q+(3, q) is contained in q−1 T1-lines, we
have |T1| = (q+1)2(q−1) and hence |T | = (q+1)(q2 +1). We also have |S| = 1

2
q2(q+1)2

and |E| = (q2 + 1)(q2 + q + 1)− (q + 1)(q2 + 1)− 1
2
q2(q + 1)2 = 1

2
q2(q − 1)2.

For a given nonempty set L of lines of PG(3, q), a set X of points of PG(3, q) is called
an L-blocking set if each line of L meets X. The first step in the study of blocking sets
has been to determine the smallest cardinality of a blocking set and to characterize, if
possible, all blocking sets of that cardinality. If L is the set of all lines of PG(3, q) and X
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is an L-blocking set, then |X| ≥ q2 + q + 1 and equality holds if and only if X is a plane
of PG(3, q). This follows from a more general result by Bose and Burton [4, Theorem
1]. Biondi et al. characterized the minimum size E-blocking sets in [2, Theorem 2.4] for
q ≥ 9 odd and in [1, Theorem 1.1] for q ≥ 8 even (also see [10, Section 3] for a different
proof which works for all even q). When q > 2 is even, the minimum size (E ∪S)-blocking
sets were determined in [12, Theorem 1.3] using the properties of generalized quadrangles.
For L ∈ {S, T ∪ S, E ∪ S}, the minimum size L-blocking sets are described in [11] for
all q. When q is even, the minimum size (E ∪ T )-blocking sets are characterized in [10,
Proposition 1.5].

Suppose q is even and let ζ denote the symplectic polarity of PG(3, q) associated with
the quadric Q+(3, q). With the symplectic polarity ζ, there is associated a symplectic
generalized quadrangle W (q), whose points are the points of PG(3, q) and whose lines
are the lines of PG(3, q) that are totally isotropic with respect to ζ, with incidence being
containment (see [8] for more on generalized quadrangles). The lines of W (q) are precisely
the elements of T . If X is a T -blocking set in PG(3, q), then |X| ≥ q2 + 1 and equality
holds if and only if X is an ovoid1 of W (q). There are two families of ovoids known, namely
the classical ovoids (being elliptic quadrics of the ambient projective space PG(3, q)) and
the Ree-Tits ovoids (which exist only when q > 2 is a nonsquare).

In the q odd case, nothing seemed to be known for the minimum size T -blocking sets.
If k is the minimum size of such a blocking set, then the following bounds hold by Lemmas
2.1 and 2.2 in the next section:

q2 + 1 ≤ k ≤ q2 + q.

Calling two T -blocking sets X1 and X2 isomorphic if there is an automorphism of PG(3, q)
stabilizing Q+(3, q) and mapping X1 to X2, we prove the following (without the aid of a
computer) for the case q = 3.

Theorem 1.1. Suppose that q = 3. Then there is no T -blocking set of size 10 in PG(3, 3).
Up to isomorphism, there are two T -blocking sets of size 11 in PG(3, 3).

In Lemma 2.1 of the next section, we show that a T -blocking set of size q2 + 1 is an
ovoid of the subgeometry of PG(3, q) defined by the tangent lines. In Section 4 of [3],
computer code in Sage [9] can be found for classifying ovoids of point-line geometries.
With the aid of this code and some computations in GAP [13], we were able to show the
nonexistence of T -blocking sets of size q2 + 1 for certain small values of q, see [5].

Theorem 1.2. There exist no T -blocking sets of size q2 + 1 in PG(3, q) for each odd
prime power q ≤ 13.

In Section 2, we prove a few basic results. In Section 3, we construct two nonisomorphic
T -blocking sets in PG(3, 3) each of size 11. Finally, in Section 4, we prove the nonexistence
of T -blocking sets of size 10 and classify the T -blocking sets of size 11 in PG(3, 3).

1An ovoid of a point-line geometry is a set of points meeting each line in a singleton.
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2 Preliminaries

As in Section 1, consider a hyperbolic quadric Q+(3, q) in PG(3, q). A lower bound for
the sizes of T -blocking sets is easily derived from the fact that there are (q + 1)(q2 + 1)
tangent lines in total and q + 1 tangent lines through a given point.

Lemma 2.1. Let X be a T -blocking set in PG(3, q). Then |X| ≥ q2 + 1, with equality if
and only if every tangent line contains a unique point of X.

Proof. Each of the (q+ 1)(q2 + 1) tangent lines contains at least one point of X. As every

point of PG(3, q) is contained in precisely q+1 tangent lines, we have |X| ≥ (q+1)(q2+1)·1
q+1

=

q2 + 1. Equality holds if and only if every tangent line contains a unique point of X.

With the quadricQ+(3, q), there is naturally associated a polarity ζ which is symplectic
if q is even and orthogonal if q is odd. For every point x of Q+(3, q), xζ is a plane which is
tangent to Q+(3, q) at the point x and intersects Q+(3, q) in the union of two lines through
x. The q + 1 tangent lines through x are precisely the lines through x contained in xζ .
By the following lemma, the size of a T -blocking set is bounded above by q2 + q.

Lemma 2.2. Let π be a plane of PG(3, q) which is tangent to Q+(3, q) at the point x.
Then π \ {x} is a T -blocking set of size q2 + q.

Proof. We have |π\{x}| = q2+q. As every line meets π, every tangent line not containing
x meets π \ {x}. If L is a tangent line containing x, then L is contained in xζ = π and
hence contains points of π \ {x}. So, π \ {x} is a T -blocking set.

Suppose q is odd. For every point x of PG(3, q) \ Q+(3, q), xζ is a nontangent plane
with x /∈ xζ and the set Ox := xζ ∩ Q+(3, q) is a conic of xζ . The q + 1 tangent lines
through x are precisely the lines through x meeting Ox. The conic Ox is an ovoid of
Q+(3, q), that is, a set of points intersecting each T0-line in a unique point. The map
x 7→ Ox defines a bijection between PG(3, q) \Q+(3, q) and the set of conics contained in
Q+(3, q). When q = 3, we note that the set of conics contained in Q+(3, 3) coincides with
the set of ovoids of Q+(3, 3). If x ∈ PG(3, q) \ Q+(3, q), then the number of secant lines

through x is equal to |Q+(3,q)\Ox|
2

= (q+1)q
2

and the number of external lines through x is

equal to (q2 + q + 1)− (q + 1)− (q+1)q
2

= (q−1)q
2

.
Since q is odd, every point of xζ \ Ox lies on 0 or 2 T1-lines contained in xζ . Such a

point is called interior to Ox in the first case and exterior to Ox in the latter. There are
q(q − 1)/2 interior points and q(q + 1)/2 exterior points in xζ with respect to Ox. Every
interior point lies on (q + 1)/2 external lines and (q + 1)/2 secant lines contained in xζ .
Every exterior point lies on (q − 1)/2 external lines and (q − 1)/2 secant lines contained
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in xζ . Every external line contained in xζ contains (q+ 1)/2 interior points and (q+ 1)/2
exterior points. Every secant line contained in xζ contains (q − 1)/2 interior points and
(q − 1)/2 exterior points. One can refer to [7] for these basic properties.

Lemma 2.3. Suppose x ∈ PG(3, q) \ Q+(3, q) with q odd. Then each line of PG(3, q)
through x, which is external to Q+(3, q), meets xζ in a point interior to Ox.

Proof. Let L be an external line through x. Since x /∈ xζ , L contains exactly one point
of xζ . Denote this point by z. We show that z is interior to Ox.

Suppose this is not true. Then z is exterior to Ox. Let M be a T1-line through z
in xζ and π be the plane generated by L and M . Then π is a nontangent plane, as it
contains the external line L. On the other hand, if y is the unique point of the intersection
M ∩Ox, then the T1-line M1 := xy is contained in π. So π is also the plane generated by
the tangent lines M and M1. It follows that π is the plane which is tangent to Q+(3, q)
at the point y, a contradiction.

Again under the assumption that x ∈ PG(3, q) \Q+(3, q) with q odd, we denote by Ex
the set of lines in PG(3, q) through x that are external to Q+(3, q), and by Ix the set of
interior points in xζ with respect to the conic Ox. We have |Ex| = q(q− 1)/2 = |Ix|. As a
consequence of Lemma 2.3, we have the following.

Corollary 2.4. Suppose x ∈ PG(3, q) \ Q+(3, q) with q odd. Then the map from Ex to
Ix, sending each line in Ex to its point of intersection with Ix, is bijective.

Proof. By Lemma 2.3, the map is well-defined and is injective. Since |Ex| = |Ix|, the map
is surjective also.

In the special case that q = 3, the following can be said.

Lemma 2.5. Suppose q = 3. Let π1 be a nontangent plane and O1 be the conic π1 ∩
Q+(3, 3) in π1. Fix a line L in π1 which is external to O1. Then there exists exactly one
more nontangent plane π2 satisfying the following:

(1) L is an external line in π2 with respect to the conic O2 := π2 ∩Q+(3, 3).

(2) If a ∈ L is exterior (respectively, interior) to O1 in π1, then it is also exterior
(respectively, interior) to O2 in π2.

In fact, if a ∈ L is exterior to O1 in π1, then the two T1-lines through a not in π1 are
contained in π2.

Proof. Let x be the point in PG(3, 3)\Q+(3, 3) such that Ox = O1. Such a point x exists,
since the map α 7→ Oα := αζ ∩Q+(3, 3) is a bijection between PG(3, 3) \Q+(3, 3) and the
set of conics contained in Q+(3, 3). We have π1 = xζ . Write L = {a, b, z1, z2}, where a, b
(respectively, z1, z2) are exterior (respectively, interior) to O1 in π1. By Corollary 2.4, the
lines T1 := xz1 and T2 := xz2 are external lines.

Let π2 be the plane generated by the line L and the point x. Then π2 is a nontangent
plane in which L is external to the conic O2 := π2 ∩ Q+(3, 3). The lines T1 and T2 in π2
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are external to O2. Thus, for i ∈ {1, 2}, L and Ti are two external lines in π2 through zi.
It follows that both z1 and z2 are interior to O2 in π2. This implies that both a and b
must be exterior to O2 in π2. Hence π2 satisfies the conditions (1) and (2).

Out of the four T1-lines through a (respectively, through b), two are contained in π1
and the other two are in π2 (as π1 ∩ π2 = L is not a T1-line). This must hold for any
nontangent plane satisfying the conditions (1) and (2). This fact implies the uniqueness
of π2 satisfying (1) and (2).

3 Two constructions of T -blocking sets

In this section, we construct two nonisomorphic T -blocking sets of size 11 each in PG(3, 3).

3.1 First construction

Consider a point x ∈ PG(3, 3) \ Q+(3, 3) and let Ix = {z1, z2, z3}. Fix a line L in the
plane xζ which is external to Ox. Then L contains exactly two points of Ix, say z2 and
z3. Let L be the unique line in Ex such that L meets xζ in z1, see Corollary 2.4. Define
the following set:

B1 := Ox ∪ L ∪
(
L \ {x}

)
.

We prove the following.

Proposition 3.1. B1 is a T -blocking set of size 11 in PG(3, 3).

Proof. Clearly, |B1| = 11. Let A = xζ \B1. Then A consists of four exterior points, each
of which is different from the two exterior points contained in L. Since every tangent line
meets xζ , it is enough to prove that each T1-line through a point of A meets B1.

Take a point a ∈ A and a T1-line T through a. If T is contained in xζ , then observe that
T meets B1 in two points, one from Ox and the other one is an exterior point contained
in L. So assume that T is not contained in xζ . We show that T contains a point of
B1 \ xζ = L \ {x, z1}.

Let M be the line in xζ through a and z1. Then M is either external or secant to Ox

in xζ , as it contains the interior point z1. Since M has to intersect the external line L in
xζ in a point different from a and z1, it follows that M can not be secant to Ox. So M is
external to Ox in xζ and hence contains an interior point different from z1. Without loss,
we may assume that M contains z2 as the second interior point.

Setting π1 = xζ and taking the external lineM of π1 in Lemma 2.5, we get a nontangent
plane π2 containing M such that z1, z2 are interior points and a is an exterior point in π2
with respect to the conic O2 := π2 ∩Q+(3, 3). Note that T is a T1-line through a in π2.

Let M (6= M) be the second line in π2 through z1 which is external to O2. Out of
the three lines through z1 external to Q+(3, 3), the line M is common to both the planes
π1 = xζ and π2. The plane xζ contains one more external line through z1. So M must
be the external line through x which corresponds to the point z1 under the map defined
in Corollary 2.4. It follows that M = L. As xz1 and xz2 are external lines in π2 (by
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Corollary 2.4), x must be interior to O2 in π2. Since the T1-line T and the external line
L in π2 meet in a point exterior to O2, it follows that T contains a point of L \ {x, z1}.
This completes the proof.

3.2 Second construction

Fix a point x ∈ PG(3, 3)\Q+(3, 3) and let Ix = {z1, z2, z3}. Let y be a point in xζ exterior
to Ox. Let L1 and L2 be the two T1-lines through y which are not contained in xζ . For
i ∈ {1, 2}, let wi be the tangency point of Li in Q+(3, 3). Define the following set:

B2 := Ox ∪ Ix ∪
(
L1 \ {y, w1}

)
∪
(
L2 \ {y, w2}

)
.

We prove the following:

Proposition 3.2. B2 is a T -blocking set of size 11 in PG(3, 3).

Proof. Clearly, |B2| = 11. Let D = xζ \B2. Then D consists of the six exterior points in
xζ with respect to Ox. Since every tangent line meets xζ , it is enough to prove that each
T1-line through a point of D meets B2.

Take a point a ∈ D and a T1-line T through a. If T is contained in xζ , then T meets
B2 in the unique point of T ∩Ox. So assume that T is not contained in xζ . If a = y, then
T is either L1 or L2 and hence meets B2 at two points. Assume that a 6= y. Since both a
and y are exterior to Ox, the line M := ay in xζ is either tangent or external to Ox.

Case I: M is tangent to Ox. Let π be the nontangent plane generated by the lines T
and M . Denote by Oπ the conic π ∩Q+(3, 3) in π. The point y in π is exterior to Oπ. So
there exists one more T1-line in π (different from M) containing y. Since π ∩ xζ = M , it
follows that either L1 or L2 is a line in π. Without loss, we may assume that L1 is a line
in π. The lines T and L1 intersect in π in a point different from y and w1. So T meets
B2 at a point of L1 \ {y, w1}.

Case II: M is external to Ox. Setting π1 = xζ and taking the external line M of π1 in
Lemma 2.5, we get a nontangent plane π2 through M containing the lines T, L1 and L2.
Now it can be seen that T intersects L1 (respectively, L2) in π2 at a point different from
y and w1 (respectively, w2). So T meets B2 at two points, one from L1 \ {y, w1} and one
from L2 \ {y, w2}.

Thus B2 is a T -blocking set of PG(3, 3) of size 11. This completes the proof.

3.3 The blocking sets B1 and B2 are nonisomorphic

Proposition 3.3. The two blocking sets B1 and B2 are nonisomorphic.

Proof. Write B2 as a disjoint union B2 = (B2 ∩ xζ) ∪ (B2 \ xζ). Observe that any line
meets B2 \xζ in at most two points. Let R be a line external to Q+(3, 3). If R is a line in
xζ , then R meets B2 at exactly two points of B2∩xζ (which come from Ix) and is disjoint
from B2 \xζ . Suppose that R is not a line in xζ . Then R contains at most one point from
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B2 ∩ xζ and at most two points from B2 \ xζ . So R is not contained in B2. Thus every
external line meets B2 in at most three points.

However, from the construction of B1, it is clear that B1 contains a line external to
Q+(3, 3). So B1 and B2 are nonisomorphic.

4 T -blocking sets of sizes 10 and 11 in PG(3, 3)

Consider a hyperbolic quadric Q+(3, 3) in PG(3, 3). We label the points of Q+(3, 3) by xij
where i, j ∈ {1, 2, 3, 4} such that two distinct points xij and xi′j′ of Q+(3, 3) are incident
with a T0-line if either i = i′ or j = j′.

We denote by O∗ the ovoid {x11, x22, x33, x44} of Q+(3, 3). There are nine ovoids of
Q+(3, 3) that are disjoint from O∗. These are:

O1 = {x12, x21, x34, x43}, O2 = {x13, x31, x24, x42}, O3 = {x14, x41, x23, x32},
O4 = {x12, x24, x43, x31}, O5 = {x12, x23, x34, x41}, O6 = {x13, x24, x32, x41},
O7 = {x13, x21, x34, x42}, O8 = {x14, x21, x32, x43}, O9 = {x14, x23, x31, x42}.

Lemma 4.1. There are four collections, each of six ovoids from {O1, O2, . . . , O9}, such
that every point of Q+(3, 3) \ O∗ is contained in precisely two ovoids of a given collec-
tion. These four collections are C∗ = {O4, O5, O6, O7, O8, O9}, {O1, O2, O5, O6, O8, O9},
{O1, O3, O4, O6, O7, O9} and {O2, O3, O4, O5, O7, O8}.

Proof. It is easily verified that each of these four collections satisfies the required condition.
Conversely, suppose that C 6= C∗ is a collection of six ovoids satisfying the condition of
the lemma. As C 6= C∗, at least one of O1, O2, O3 is contained in C. Now, any partition of
Q+(3, 3)\O∗ in three ovoids must contain either one or three ovoids of the set {O1, O2, O3},
implying that at least one of O1, O2, O3 is not contained in C.

Suppose O1 ∈ C and O2 6∈ C. As each of x13, x31 should be contained in two ovoids of
C, we then must have O4, O6, O7, O9 ∈ C. At this stage, x12 and x21 are already contained
in two ovoids of the collection C, implying that O5 and O8 do not belong to C. So, C is
necessarily equal to {O1, O3, O4, O6, O7, O9}.

By symmetry we then see that C always contains precisely two ovoids of the set
{O1, O2, O3}. If O1, O2 ∈ C and O3 6∈ C, then a similar reasoning as above shows
that C = {O1, O2, O5, O6, O8, O9}. Similarly, if O2, O3 ∈ C and O1 6∈ C, then C =
{O2, O3, O4, O5, O7, O8}.

Invoking Lemma 4.1, the verification of the following lemma is straightforward.

Lemma 4.2. Suppose C is a collection of six ovoids from {O1, O2, . . . , O9} such that every
point of Q+(3, 3) \ O∗ is contained in precisely two ovoids of C. Let S denote the set of
all points x ∈ Q+(3, 3) \ O∗ such that {x} is the intersection of two distinct ovoids of C.
Then S = Q+(3, 3) \ O∗ if C = C∗, and S = O if C 6= C∗, where O is the unique element
of {O1, O2, O3} not contained in C.
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Lemma 4.3. Let x be a point of Q+(3, 3) and let L1 = {x, y1, y2, y3} and L2 = {x, z1, z2, z3}
be the two T1-lines through x. Then the following hold:

(1) {Oy1 , Oy2 , Oy3} (resp. {Oz1 , Oz2 , Oz3}) is a set of ovoids of Q+(3, 3) through x par-
titioning the set of points of Q+(3, 3) noncollinear with x.

(2) If i, j ∈ {1, 2, 3}, then Oyi ∩Ozj contains precisely two points (one of which is x).

Proof. (1) As L1 is a T1-line, we see that x ∈ Oyi for every i ∈ {1, 2, 3}. Now, take an
arbitrary point u ∈ Q+(3, 3) noncollinear with x. Then uζ does not contain x and so
intersects L1 in a unique point yi. The point yi is the unique point v of L1 \{x} for which
u ∈ vζ . So, {Oy1 , Oy2 , Oy3} partitions the set of points of Q+(3, 3) noncollinear with x. A
similar argument holds for the line L2.

(2) There are six ovoids through the point x. One coincides with Oyi , two (Oyr , Oys)
intersect Oyi in {x} where {i, r, s} = {1, 2, 3}, and the remaining three (necessarily Oz1 ,
Oz2 , Oz3) intersect Oyi in two points (one of which is x).

4.1 Nonexistence of T -blocking sets of size 10

The following result proves the nonexistence of T -blocking sets of size 10 in PG(3, 3).

Proposition 4.4. There are no T -blocking sets of size 10 in PG(3, 3).

Proof. Suppose X is a T -blocking sets of size 10 in PG(3, 3). By Lemma 2.1, we then know
that each tangent line contains a unique point of X. In particular, O := X∩Q+(3, 3) is an
ovoid of Q+(3, 3) and Y := X \Q+(3, 3) is a set of 6 points outside Q+(3, 3) intersecting
each T1-line in a unique point. Without loss of generality, we may suppose that O = O∗.
We show the following properties for the collection C = {Oy | y ∈ Y }:

(a) all ovoids of C are disjoint from O;

(b) any two ovoids of C cannot intersect in a singleton;

(c) every point of Q+(3, 3) \O is contained in precisely two ovoids of C.

If Oy with y ∈ Y contains a point x ∈ O, then the tangent line xy would contain two
points of X = O ∪ Y , namely x and y, a contradiction. If Oy1 ∩ Oy2 is a singleton {x},
where y1, y2 ∈ Y with y1 6= y2, then Lemma 4.3 would imply that there is a T1-line through
x containing y1 and y2, a contradiction. Finally, every point x ∈ Q+(3, 3)\O is contained
in two T1-lines, each containing exactly one point of Y , showing that x is contained in
precisely two ovoids of C.

By Lemmas 4.1 and 4.2, we however know that there are no collections C of six ovoids
that satisfy the above properties (a), (b) and (c).
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4.2 Classification of the T -blocking sets of size 11

In the rest of the paper, we classify the T -blocking sets of size 11 in PG(3, 3). We show
that there are only two such T -blocking sets up to isomorphism, necessarily isomorphic
to the blocking sets B1 and B2 constructed in Section 3.

Lemma 4.5. If X is a T -blocking set of size 11 in PG(3, 3), then |X \Q+(3, 3)| ∈ {6, 7}
and |X ∩Q+(3, 3)| ∈ {4, 5}.

Proof. Since |X ∩ Q+(3, 3)| ≤ |X| < 12, there exists a line L in Q+(3, 3) meeting X
in either 1 or 2 points. Suppose every line of Q+(3, 3) meets X in 2 points. Then
|X ∩ Q+(3, 3)| = 8. If L is a line of Q+(3, 3) and L \ X = {a, b}, then each of the
four T1-lines meeting {a, b} contains at least one point of X \ Q+(3, 3). Any collection
of four points of X \Q+(3, 3) that arise in this way are mutually distinct, implying that
|X| = |X ∩Q+(3, 3)|+ |X \Q+(3, 3)| ≥ 8 + 4 = 12, which is a contradiction.

Hence, there exists a line L inQ+(3, 3) meetingX in a unique point. If L\X = {a, b, c},
then there are six T1-lines meeting {a, b, c} and each of these six T1-lines contains at least
one point of X \ Q+(3, 3). Any collection of six points of X \ Q+(3, 3) that arise in this
way are mutually distinct, implying that |X \ Q+(3, 3)| ≥ 6. As |X ∩ Q+(3, 3)| ≥ 4, we
thus have that |X \Q+(3, 3)| ∈ {6, 7} and |X ∩Q+(3, 3)| ∈ {4, 5}.

Proposition 4.6. If X is a T -blocking set of size 11 in PG(3, 3), then |X ∩Q+(3, 3)| = 4
and |X \Q+(3, 3)| = 7.

Proof. Suppose that this is not the case. Then |X ∩Q+(3, 3)| = 5 and |X \Q+(3, 3)| = 6
by Lemma 4.5. As each T0-line contains a point of X, there are precisely two T0-lines L1

and L2 that contain exactly two points of X (while every other T0-line intersects X in a
singleton). The lines L1 and L2 belong to distinct parallel classes of lines of Q+(3, 3). We
distinguish two cases.

Case I. The singleton L1 ∩ L2 is not contained in X. Without loss of generality, we
may suppose that X ∩ Q+(3, 3) = {x12, x13, x21, x31, x44}. The reasoning in Lemma 4.5
leading to the inequality |X \ Q+(3, 3)| ≥ 6 shows that if L is a T0-line meeting X in
a singleton, then any T1-line meeting L \ X cannot contain more than one point of X,
and any T1-line meeting L ∩X cannot contain a point of X \ Q+(3, 3). As any point of
Q+(3, 3) \ {x11} is contained in a T0-line intersecting X in a singleton, we thus see from
Lemma 4.3 that any two ovoids Oy1 and Oy2 , where y1, y2 ∈ X \Q+(3, 3), cannot intersect
in a singleton distinct from {x11}. Also, no ovoid Oy with y ∈ X \ Q+(3, 3) can contain
a point of X ∩ Q+(3, 3). It can be seen that there are exactly six ovoids of Q+(3, 3)
disjoint from X ∩ Q+(3, 3) and so these ovoids are precisely the six ovoids Oy, where
y ∈ X \Q+(3, 3). But that is impossible as two of these ovoids, namely {x11, x23, x34, x42}
and {x14, x23, x32, x41}, intersect in the singleton {x23} 6= {x11}.

Case II. The singleton L1 ∩ L2 is contained in X. Without loss of generality, we may
suppose that X ∩ Q+(3, 3) = O∗ ∪ {x12}. The reasoning in Lemma 4.5 leading to the
inequality |X \ Q+(3, 3)| ≥ 6 shows that if L is a T0-line meeting Q+(3, 3) ∩ X in a
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singleton, then each of the T1-lines meeting L \ X cannot contain more than one point
of X. As any point of Q+(3, 3) \ {x12} is contained in a line of Q+(3, 3) intersecting
X in a singleton, we thus see from Lemma 4.3 that any two ovoids Oy1 and Oy2 , where
y1, y2 ∈ X \Q+(3, 3), cannot intersect in a singleton distinct from {x12}.

Put C = {Oy | y ∈ X \ Q+(3, 3)}. Then C is a set of six ovoids of Q+(3, 3), no two of
which intersect in a singleton distinct from {x12}. Moreover, each point x ∈ Q+(3, 3) \X
is contained in precisely two T1-lines and hence in precisely two ovoids of C.

We count the number of pairs (L, x), where L is a T1-line disjoint from X ∩Q+(3, 3)
and x ∈ L ∩ X. There are |Q+(3, 3) \ X| · 2 = 22 possibilities for L, and each such L
contains a unique point of X, implying that there are 22 such pairs. On the other hand,
there are 6 possibilities for x ∈ X \Q+(3, 3).

Since 6 · 3 = 18, there are at least 22 − 18 = 4 points of X \ Q+(3, 3) whose induced
ovoids are disjoint from Q+(3, 3) ∩X. There are six ovoids of Q+(3, 3) that are disjoint
from X ∩Q+(3, 3):

A1 = {x13, x24, x31, x42}, A2 = {x14, x23, x32, x41}, A3 = {x13, x21, x34, x42},

A4 = {x13, x24, x32, x41}, A5 = {x14, x23, x31, x42}, A6 = {x14, x21, x32, x43}.

Among the six ovoids that we have to choose for the set C, at least four come from the
collection {A1, A2, . . . , A6}. As exactly two of the six ovoids of C contain x13, at most two
of A1, A3, A4 can occur in C. Similarly, by considering the point x14, we see that at most
two of A2, A5, A6 can occur in C. We can conclude that precisely two of A1, A3, A4, as
well as precisely two of A2, A5, A6 belong to C. As A3 ∩ A4 and A5 ∩ A6 are singletons
distinct from {x12}, the ovoids A1 and A2 must belong to C. Then the fact that A3 ∩A5,
A3 ∩ A6 and A4 ∩ A6 are singletons distinct from {x12} implies that A3 and A6 cannot
belong to C. So, C certainly contains the ovoids A1, A2, A4 and A5.

We still need to find two additional ovoids for C. As the points x21, x34 and x43 are
not contained in A1∪A2∪A4∪A5 and need to be covered twice, each of these two ovoids
should contain these points. But that is impossible as there is only one ovoid containing
these three points, namely {x12, x21, x34, x43}.

In the sequel, we suppose that X is a set of 11 points of PG(3, 3) that is a T -blocking
set. Then |X ∩ Q+(3, 3)| = 4 and |X \ Q+(3, 3)| = 7 by Proposition 4.6. In fact,
U1 := X∩Q+(3, 3) is an ovoid of Q+(3, 3). Denote by U2 the subset of Q+(3, 3) consisting
of the following points:

• points of X ∩Q+(3, 3) contained in a T1-line that contains points of X \Q+(3, 3),

• points of Q+(3, 3) \ X contained in a T1-line that contains at least two points of
X \Q+(3, 3).

Lemma 4.7. The set U2 is an ovoid of Q+(3, 3).

Proof. Let L be a line of Q+(3, 3) and put {xL} := L ∩ U1. For every y ∈ X \ Q+(3, 3)
denote by y′ the unique point of L∩Oy, that is, the unique point y′ of L for which yy′ is
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a T1-line. Each T1-line meeting L \ {xL} contains at least one point of X \Q+(3, 3), and
so each point of L \ {xL} is the image of at least two points of X \ Q+(3, 3) under the
map y 7→ y′. So, precisely one of the following two cases occurs:

(a) The point xL is the image of precisely one point of X \ Q+(3, 3) and each of the
three points of L \ {xL} is the image of precisely two points of X \Q+(3, 3).

(b) There exists a unique point x′L on L \ {xL} which is the image of precisely three
points of X \ Q+(3, 3), each of the two remaining points of L \ {xL} is the image
of precisely two points of X \ Q+(3, 3). In this case, the point xL itself is not the
image of any point of X \Q+(3, 3).

In case (a), we see that xL is the unique point of U2 on L. In case (b), we see that x′L
is the unique point of U2 on L. Since L ∩ U2 is always a singleton, we conclude that U2

must be an ovoid of Q+(3, 3).

Now, if C is the collection of the seven ovoids Oy, where y ∈ X \ Q+(3, 3), then the
following properties hold:

(P1) No point of U1 \ U2 is contained in an ovoid of C.

(P2) Every point of U1 ∩ U2 is contained in precisely one ovoid of C.

(P3) Every point of Q+(3, 3) \ (U1 ∪ U2) is contained in precisely two ovoids of C.

(P4) Every point of U2 \ U1 is contained in precisely three ovoids of C.

(P5) No two ovoids of C intersect in a singleton {x}, where x ∈ Q+(3, 3) \ (U1 ∪ U2).

(P6) No three ovoids of C can mutually intersect in the same singleton {x}, where x ∈
U2 \ U1.

Proposition 4.8. Suppose that U1 and U2 are two (not necessarily distinct) ovoids of
Q+(3, 3). Let Y be a set of seven points of PG(3, 3) \Q+(3, 3) and put C := {Oy | y ∈ Y }.
If C satisfies the properties (P1) – (P6) above, then U1 ∪ Y is a T -blocking set of size 11.

Proof. We have |U1 ∪ Y | = 11. Since U1 is an ovoid of Q+(3, 3), every T0-line meets U1

at a unique point. Every T1-line through a point of U1 obviously meets U1. By (P4) and
(P6), every T1-line through a point of U2 \ U1 contains a point of Y . By (P3) and (P5),
every T1-line through a point of Q+(3, 3) \ (U1 ∪ U2) contains a point of Y .

We now use the above result to classify the T -blocking sets of size 11 in PG(3, 3).
We assume that U1 and U2 are two ovoids of Q+(3, 3) and that C is a collection of seven
ovoids of Q+(3, 3) satisfying the properties (P1) – (P6) above. If Y is the set of seven
points of PG(3, 3) \Q+(3, 3) for which the collection {Oy | y ∈ Y } coincides with C, then
X = U1 ∪ Y is a T -blocking set of size 11 by Proposition 4.8. Without loss of general-
ity, we may suppose that U1 = O∗ = {x11, x22, x33, x44}. Then the nine ovoids disjoint
from U1 = {x11, x22, x33, x44} are O1, O2, . . . , O9 as defined in the beginning of this section.

The ovoid U2 can have five positions with respect to U1 (up to isomorphism):
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I: U2 = {x11, x22, x33, x44} = U1,

II: U2 = {x11, x22, x34, x43},

III: U2 = {x11, x23, x34, x42},

IV: U2 = {x12, x21, x34, x43},

V: U2 = {x12, x23, x34, x41}.

Treatment of Case I

In this case, (P2) implies that the points of U1 ∩U2 = U1 = U2 are partitioned by certain
ovoids of C. The partition has shape 4, 2 + 2, 2 + 1 + 1 or 1 + 1 + 1 + 1, leading to four
subcases.

(Ia) Suppose the mentioned partition has shape 4. Then U1 = U2 ∈ C. Again (P2)
implies that every ovoid of C \ {U1} is disjoint from U1 = U2. By (P3), C \ {U1} is a
collection of six ovoids as in Lemma 4.1. A contradiction is then readily obtained from
Lemma 4.2 and property (P5).

(Ib) Suppose the mentioned partition has shape 2 + 2. Without loss of generality, we
may suppose that {x11, x22, x34, x43} and {x33, x44, x12, x21} belong to C. By (P2), each of
the remaining five ovoids of C is disjoint from U1 = U2. So we need to find five additional
ovoids from the collection {O1, O2, . . . , O9}. By (P3) and (P5), the second ovoid of C
through x12 must contain x21 and therefore be equal to O1 = {x12, x21, x34, x43}. As x12,
x21, x34 and x43 have already been covered twice, the remaining four ovoids should be
contained in {x13, x14, x23, x24, x31, x32, x41, x42} and hence equal to O2, O3, O6 and O9.
One readily verifies that the collection consisting of the seven ovoids {x11, x22, x34, x43},
{x33, x44, x12, x21}, O1, O2, O3, O6 and O9 satisfies the properties (P1) – (P6).

(Ic) Suppose the mentioned partition has shape 2+1+1. Without loss of generality, we
may suppose that {x11, x22, x34, x43} is present in C. Then the ovoid {x12, x21, x33, x44} is
not in C. By (P3) and (P5), the second ovoid of C through x34 must contain x43 and hence
coincides with O1 = {x12, x21, x34, x43}. Note that each of x34, x43 has now been covered
twice, while each of x12 and x21 only once. Therefore the second ovoid of C through x12,
which cannot intersect {x12, x21, x34, x43} in a singleton, must also contain x21. But that
is impossible as the two ovoids through {x12, x21}, namely O1 and {x12, x21, x33, x44} are
already forbidden.

(Id) Suppose the mentioned partition has shape 1+1+1+1. Without loss of generality,
we may suppose that {x11, x23, x34, x42} belongs to C. Each y ∈ {x23, x34, x42} is contained
in a second ovoid of C which meets {x11, x23, x34, x42} in a second point y′ ∈ {x23, x34, x42}.
But then the pairs {y, y′} would partition {x23, x34, x42}, an obvious contradiction.
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Treatment of Case II

We have U2 = {x11, x22, x34, x43}. If U2 ∈ C, then by (P1) – (P4), C \ {U2} is a collection
of six ovoids as in Lemma 4.1. A contradiction is then readily obtained from Lemma 4.2
and property (P5). So, U2 6∈ C. By (P1) and (P2), it follows that the unique ovoid of C
containing x11 is either {x11, x23, x34, x42} or {x11, x24, x32, x43}. In view of the symmetry
3 ↔ 4, we may without loss of generality suppose that {x11, x23, x34, x42} is the unique
ovoid of C containing x11. There are still six ovoids to choose for C, one of them contains
x22 and the other five are contained in the collection {O1, O2, . . . , O9}. None of these
six ovoids can intersect {x11, x23, x34, x42} in the singleton {x23} or the singleton {x42},
implying that O2 and O3 do not belong to C. So, we need to take five ovoids among
the seven ovoids O1, O4, O5, O6, O7, O8, O9. Since O4 ∩ O5 = {x12}, O5 ∩ O6 = {x41},
O4 ∩ O6 = {x24} and O7 ∩ O9 = {x42}, (P5) implies that none of the pairs {O4, O5},
{O5, O6}, {O4, O6}, {O7, O9} can be contained in C. So, two among O4, O5, O6 cannot be
in C, as well as one among O7, O9. So, it is impossible to find the five required ovoids
from the collection {O1, O4, O5, · · · , O9}.

Treatment of Case III

We have U2 = {x11, x23, x34, x42}. If U2 ∈ C, then by (P1) – (P4), C \ {U2} is a collection
of six ovoids as in Lemma 4.1. A contradiction is then readily obtained from Lemma
4.2 and property (P5). So, U2 6∈ C. Then, using (P1) and (P2), the unique ovoid of
C containing x11 must be {x11, x24, x32, x43}. Each point y ∈ {x24, x32, x43} is contained
in a second ovoid of the collection C which meets {x11, x24, x32, x43} in a second point
y′ ∈ {x24, x32, x43}. Then the pairs {y, y′} would partition {x24, x32, x43}, an obvious
contradiction.

Treatment of Case IV

We have U2 = {x12, x21, x34, x43}. By (P1), all ovoids of C are disjoint from U1. So we
have to choose seven ovoids for C among the nine ovoids O1, O2, . . . , O9. By (P4), there
are three ovoids of C containing x12. So the ovoids O1, O4 and O5 belong to C. As
O4 ∩ O6 = {x24} and O4 ∩ O9 = {x31}, the ovoids O6 and O9 are not in C by (P5).
Hence, C = {O1, O2, O3, O4, O5, O7, O8}. One readily verifies that this collection of ovoids
satisfies the properties (P1) – (P6).

Treatment of Case V

Here U2 = {x12, x23, x34, x41}. By (P1), all ovoids of C are disjoint from U1. So we have to
choose seven ovoids for C among the nine ovoids O1, O2, . . . , O9. Since O4 ∩ O6 = {x24},
O4∩O8 = {x43} and O4∩O9 = {x31}, O4 cannot occur in C by (P5). Since O6∩O7 = {x13}
and O6∩O8 = {x32}, we then know that also O6 cannot occur in C. So, we should have that
C = {O1, O2, O3, O5, O7, O8, O9}. But that is impossible again by (P5) as O7∩O8 = {x21}.
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Let X1 = U1 ∪ Y1 = O∗ ∪ Y1, where Y1 is the set of seven points of PG(3, 3) \
Q+(3, 3) for which the collection {Oy | y ∈ Y1} consists of the ovoids {x11, x22, x34, x43},
{x33, x44, x12, x21}, O1, O2, O3, O6 and O9 of Q+(3, 3). Similarly, let X2 = U1 ∪ Y2 =
O∗ ∪ Y2, where Y2 is the set of seven points of PG(3, 3) \Q+(3, 3) for which the collection
{Oy | y ∈ Y2} coincides with {O1, O2, O3, O4, O5, O7, O8}. Note that X1 is associated with
the seven ovoids corresponding to subcase (Ib) in the treatment of Case I and X2 is
associated with the seven ovoids in the treatment of Case IV.

By the above discussion, we thus know:

Proposition 4.9. Up to isomorphism, X1 and X2 are the two T -blocking sets of size 11
in PG(3, 3).

Our intention is now to identify the two blocking sets X1 and X2 with that of B1

and B2 constructed, respectively, in Sections 3.1 and 3.2. We shall rely on the following
lemma.

Lemma 4.10. Every ovoid O of Q+(3, 3) is contained in precisely four partitions of
Q+(3, 3) into ovoids. Three of these are induced by external lines.

Proof. Without loss of generality, we may suppose that O = O∗. The partitions then have
the form {O∗, Oi, Oj, Ok}, where i, j, k ∈ {1, 2, . . . , 9} with i < j < k. It is straightforward
to verify that these partitions are {O∗, O1, O2, O3}, {O∗, O1, O6, O9}, {O∗, O2, O5, O8} and
{O∗, O3, O4, O7}. Now, let x denote the unique point of PG(3, 3) \ Q+(3, 3) for which
Ox = O = O∗. There are three external lines through x. If {x, u1, u2, u3}, {x, u4, u5, u6}
and {x, u7, u8, u9} are these external lines, then the nine ovoids {Ou1 , Ou2 , . . . , Ou9} are
mutually distinct. So, {O∗, O1, O6, O9}, {O∗, O2, O5, O8} and {O∗, O3, O4, O7} must be
the partitions among the four that are induced by external lines.

Proposition 4.11. There exist two mutually disjoint external lines K, L and a point
x ∈ K such that X1 = Ox ∪ (K \ {x}) ∪ L.

Proof. Let K denote the external line determined by the ovoids O∗, O1, O6, O9, and
denote by x the unique point of K for which Ox = O∗. Among the four partitions of
Q+(3, 3) into ovoids containing O2, {O∗, O1, O2, O3} is not induced by any external line
(see the proof of Lemma 4.10). So, again by Lemma 4.10, the partition of Q+(3, 3) by the
ovoids {x11, x22, x34, x43}, {x33, x44, x12, x21}, O2, O3 is induced by some external line, say

L. Then we have K ∩ L = ∅ and X1 = Ox ∪
(
K \ {x}

)
∪ L.

By Proposition 3.3, we know that the two blocking sets B1 and B2 constructed in
Sections 3.1 and 3.2 are nonisomorphic. In fact, by the proof of that proposition, we
know that B2 does not contain any external line, while B1 does. Comparing this with
Propositions 4.9 and 4.11, we then conclude that the blocking set X1 is isomorphic to B1

and that the blocking set X2 is isomorphic to B2.
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