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Abstract

A triple (S, S,Q) consisting of a near polygon S, a line spread S of S and a set
Q of quads of S is called a polygonal triple if certain nice properties are satisfied,
among which there is the requirement that the point-line geometry S ′ formed by the
lines of S and the quads of Q is itself also a near polygon. This paper addresses the
problem of classifying all near polygons S that admit a polygonal triple (S, S,Q)
for which a given generalized polygon S ′ is the associated near polygon. We obtain
several nonexistence results and show that the G2(4) and L3(4) near octagons are the
unique near octagons that admit polygonal triples whose quads are isomorphic to the
generalized quadrangle W (2) and whose associated near polygons are respectively
isomorphic to the dual split Cayley hexagon HD(4) and the unique generalized
hexagon of order (4, 1).

Keywords: near polygon, generalized polygon, polygonal triple, G2(4) near octagon,
L3(4) near octagon
MSC2010: 05B25, 51E12, 51E25

1 Introduction

In [1] and [2], Anurag Bishnoi and the author constructed two new near octagons related
to the respective simple groups G2(4) and L3(4). These G2(4) and L3(4) near octagons
share many common properties. In fact, in [2], we described a family F of near octagons
to which both belong. If S = (P ,L, I) is a near octagon belonging to this family F , then
the structure of S with respect to any of its points x can be described by a diagram
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where s, t and t2 are positive integers such that t2 | t. In the diagram, the edges denote
lines and the big nodes denote points (belonging to the mentioned point sets). The
number of lines through a given point meeting the various sets are mentioned around the
big nodes, while the number of points on a given line contained in the various sets are
mentioned around the small nodes. The set Lx := {x} ∪ Γ′1(x) is a line through x, and
the collection of all lines Lx, x ∈ P , is a line spread S of S. Moreover, the point-line
geometry S ′ whose points are the lines of S and whose lines are all the quads of S is a
generalized hexagon of order (st2,

t
t2
− 1), if we take containment as incidence relation.

In the case of the G2(4) near octagon, we have (s, t2, t) = (2, 2, 10), all quads are
isomorphic to W (2) and the associated generalized hexagon S ′ is isomorphic to the dual
split Cayley generalized hexagon HD(4). In the case of the L3(4) near octagon, we have
(s, t2, t) = (2, 2, 4), all quads are isomorphic to W (2) and the associated generalized
hexagon S ′ is the unique generalized hexagon GH(4, 1) of order (4, 1).

The research of the present paper resulted from investigations whether it is possi-
ble to characterize the G2(4) and L3(4) near octagons as the unique members of the
family F for which (s, t2) = (2, 2) and whose associated generalized hexagons are respec-
tively isomorphic to HD(4) and GH(4, 1). To that end, we developed some algorithms
which in combination with computer computations allowed to verify this. The methods
can be applied to other generalized hexagons as well, and our hope was that new near
octagons could be found in this way. Unfortunately, this was not the case. Our computa-
tions indeed show that the G2(4) and L3(4) near octagons are the unique members of F
with (s, t2) = (2, 2) whose associated generalized hexagons are isomorphic to HD(4) and
GH(4, 1), respectively. We also show that there are no members in F with (s, t2) = (2, 2)
whose associated generalized hexagon is the split Cayley hexagon H(4). In principle, the
techniques can also be applied to other generalized hexagons, but we found the hexagons
to be too big for our computer computations. However, we are able to exclude some gen-
eralized hexagons by means of a number of divisibility conditions involving the parameters
s, t, t2 that we derive by means of algebraic combinatorial techniques.

The family F of near octagons belongs to a larger class of near polygons, namely those
that admit a so-called polygonal triple, and it will be more natural to derive our results
in this more general context.
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Suppose S = (P ,L, I) is a near (2d + 2)-gon, d ≥ 1, having a line spread S and a
family Q of quads for which the following hold:

(PT1) For every point x of S, the quads of Q through x all contain the unique line Lx of
S through x and partition the set of lines through x distinct from Lx.

(PT2) The point-line geometry S ′ with point set S, line set Q and natural incidence (i.e.
containment) is a near 2d-gon.

Then we call (S, S,Q) a polygonal triple with associated near polygon S ′. The elements
of Q are called the quads of the polygonal triple. For polygonal triples, Q is uniquely
determined by S and S as its consists of all quads of S containing a line of S. Polygonal
triples were introduced and studied in [4].

The polygonal triples (S, S,Q) for which all lines of S are thin or for which all quads
of Q are grids are easy to describe (see Section 2) and will therefore be called trivial. In
Section 5, we develop algorithms to classify (with the aid of a computer) polygonal triples
for which the associated near polygons are generalized polygons. This allows us to prove
the following results in Section 6.

Theorem 1.1 Suppose (S, S,Q) is a polygonal triple with associated near polygon S ′ such
that all quads of Q are isomorphic to W (2). Then the following hold.

• If S ′ ∼= HD(4), then S is isomorphic to the G2(4) near octagon.

• If S ′ ∼= GH(4, 1), then S is isomorphic to the L3(4) near octagon.

• S ′ cannot be isomorphic to H(4), T (4, 64), GO(4, 1), RT (4, 2), F(H(4)) and F(HD(4)).

In Theorem 1.1, the generalized polygons H(4), T (4, 64), GO(4, 1), RT (4, 2), F(H(4))
and F(HD(4)) are respectively isomorphic to the split Cayley generalized hexagon of order
(4, 4), the dual twisted triality hexagon of order (4, 64), the unique generalized octagon of
order (4, 1), the Ree-Tits octagon of order (4, 2), the flag geometry of H(4) and the flag
geometry of HD(4).

Theorem 1.1 covers precisely those cases where the quads of Q are isomorphic to W (2)
and S ′ is a known finite generalized 2d-gon1 with d ≥ 3. Note that as a line spread of
W (2) contains five lines, the generalized polygon S ′ should have five points per line, and
thus have order (4, t) for some t ∈ N \ {0}.

In Section 4, we show the nonexistence of certain polygonal triples (S, S,Q) by com-
puting the multiplicities of the eigenvalues of S and expressing that these are all nonneg-
ative integers. These nonexistence results already cover certain of the cases mentioned in
Theorem 1.1, namely the cases when S ′ is isomorphic to T (4, 64) or GO(4, 1).

We wish to note here that our characterization of the G2(4) near octagon is basically
computer free. Indeed, our algorithms already imply (without additional computer com-
putations) that there is at most one polygonal triple (S, S,Q) (up to some obvious form of

1The case d = 2 has been treated more generally in Theorem 5.5 of [4].
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isomorphism) for which al quads are isomorphic to W (2) and for which the corresponding
generalized hexagon S ′ is isomorphic to HD(4). However, also in this case, as a verifi-
cation of our methods, we have used our algorithms to reconstruct S from S ′ ∼= HD(4)
and to check that S is indeed a near octagon with similar properties as the G2(4) near
octagon.

2 Preliminaries

A connected partial linear space S = (P ,L, I) with nonempty point set P , line set L and
incidence relation I ⊆ P × L is called a near polygon if for every point x and every line
L, there exists a unique point πL(x) on L nearest to x. Here, distances are measured in
the collinearity graph Γ. If d is the diameter of Γ, then the near polygon is called a near
2d-gon. Very often, we regard the lines of a near polygon as sets of points; incidence is
then containment. A near polygon can be reconstructed from its collinearity graph, since
the lines are the maximal cliques of this graph.

If x and y are two points of a near polygon S, then we denote by d(x, y) the distance
between x and y in the collinearity graph. If x is a point of S, then Γi(x) with i ∈ N
denotes the set of points at distance i from x.

If L1 and L2 are two lines of a near 2d-gon S, then d(L1, L2) denotes the minimal
distance between a point of L1 and a point of L2. If d(L1, L2) = d− 1, then the lines L1

and L2 are called opposite. The lines L1 and L2 are called parallel if for every i ∈ {1, 2}
and every point xi ∈ Li, there exists a unique point x3−i ∈ L3−i at distance d(L1, L2) from
xi. Two opposite lines are always parallel. A set S of lines of S is called a line spread if
every point is contained in a unique line of S.

A near 2d-gon with d ≥ 2 is called a generalized 2d-gon if every point is incident with
at least two lines and if for every two points x and y at distance i ∈ {1, 2, . . . , d − 1},
there is a unique neighbour of y at distance i − 1 from x. For the definition of the
symplectic generalized quadrangle W (q) (with q a prime power), we refer to [8]. For the
definitions of the generalized polygons HD(4), H(4), T (4, 64) and RT (4, 2) mentioned in
Theorem 1.1, we refer to [12]. If S is a point-line geometry, then with the flag-geometry
F(S) of S, we mean the geometry whose points are the flags of S (i.e. the unordered
incident point-line pairs of S) and whose lines are the points and lines of S, with incidence
being reverse containment. The flag-geometries of the projective plane of order 4 and the
symplectic generalized quadrangle W (4) are precisely the generalized polygons GH(4, 1)
and GO(4, 1).

A set Q of points of a near polygon S is called a quad if the following three properties
hold:

• every line of S that has two points in Q has all its points in Q;

• if x and y are two points of Q at distance 2, then every common neighbour of x and
y is also contained in Q;
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• the point-line geometry Q̃ defined on Q by those lines that have all their points in
Q is a generalized quadrangle.

A quad Q of S is classical if for every point x of S, there exists a unique point πQ(x) ∈ Q
such that d(x, y) = d(x, πQ(x)) + d(πQ(x), y) for every point y ∈ Q.

We recall from [4] some properties of polygonal triples which will be useful later.
Suppose (S, S,Q) is a polygonal triple with associated near polygon S ′. Then any two
lines L1 and L2 of S are parallel, and the distance in S ′ between them is equal to d(L1, L2).
Every line of S not belonging to S is contained in a unique quad of Q. Regarding the
quads of Q, the following additional properties hold. For every quad Q ∈ Q, the set of
lines of S contained in Q is a line spread of Q̃. Every quad Q ∈ Q is classical in S, and
for every line L ∈ S, also πQ(L) := {πQ(x) |x ∈ L} is a line belonging to S.

A near polygon is said to have order (s, t) if every point is incident with precisely
t + 1 lines and if every line is incident with precisely s + 1 points. A finite near polygon
S is said to be regular with parameters s, t, ti, i ∈ {0, 1, . . . , d}, if S has order (s, t) and
if for every two points x and y at distance i, there are precisely ti + 1 lines through y
containing a point at distance i − 1 from x. We have t0 = −1, t1 = 0 and td = t. A
finite generalized 2d-gon of order (s, t) is regular with parameters ti equal to 0, for every
i ∈ {1, 2, . . . , d− 1}.

Suppose S = (P ,L, I) is a near polygon. Let Γ be the bipartite graph defined on the
set P := P×{+,−} by calling two distinct vertices (x1, ε1) and (x2, ε2) adjacent whenever
d(x1, x2) ≤ 1 and ε2 = −ε1. As Γ is bipartite, it is the collinearity graph of a near polygon
S. If we put Lx := {(x,+), (x,−)} for every x ∈ P , then the set S := {Lx |x ∈ P} is
a line spread of S and the set Q := {L × {+,−} |L ∈ L} is a set of quads. By [5],
(S, S,Q) is a polygonal triple with associated near polygon isomorphic to S, and every
near polygon with two points on each line admitting a polygonal triple is obtained in the
above described way.

Suppose S is a near polygon and s ∈ N \ {0}. By considering s+ 1 isomorphic copies
of S and joining the corresponding points to form lines of size s + 1, we obtain a new
near polygon which we denote by S × Ls+1. The set S of all lines of S × Ls+1 joining
corresponding points is a line spread S of S ×Ls+1. If Q is the set of all quads containing
a line of S, then (S × Ls+1, S,Q) is a polygonal triple whose associated near polygon is
isomorphic to S and for which all quads of Q are grids. In fact, we are able to prove the
following.

Proposition 2.1 Let (S, S,Q) be a polygonal triple for which every quad of Q is a grid.
Then S is isomorphic to S ′ × L, where S ′ is the near polygon associated with (S, S,Q)
and L is a line.

Proof. Consider a fixed line L ∈ S. For every point x ∈ L, let Ax denote the set of all
points y for which x is the unique point of L nearest to y. The point set P of S is then
the disjoint union

⋃
x∈LAx.

Suppose K is a line of S not belonging to S. There is a unique quad Q ∈ Q containing
K. This quad is classical in S and L′ := πQ(L) is a line of Q̃ belonging to S. The
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intersection L′ ∩K is a singleton {y}, and as Q is classical we know that K is contained
in Ax, where x ∈ L is the unique point of L nearest to y.

Now, each line of S intersects each Ax in a unique point and each quad of Q intersects
each Ax in a line, showing that the subgeometry induced on each Ax, x ∈ L, is isomorphic
to S ′. It is now also clear that S ∼= S ′ × L, where L is any line of the same size as L. �

A polygonal triple (S, S,Q) is called trivial if every line of S is thin or if every quad of Q
is a grid. By the above discussion, it is easy to describe all such polygonal triples.

Suppose S = (P ,L, I) is a finite near octagon of order (s, t) and S is a line spread of
S. For every point x ∈ P , let Lx denote the unique line of S containing x. We define the
following sets of points of S:

• For every point x of S, we define Γ′1(x) := Lx \ {x} and Γ′′1(x) := Γ1(x) \ Γ′1(x).

• For every point x of S and every i ∈ {2, 3}, Γ′i(x) denotes the set of points of Γi(x)
that are collinear with a point of Γ′i−1(x), and we put Γ′′i (x) := Γi(x) \ Γ′i(x).

Suppose moreover that there exists a positive divisor t2 6= t of t such that the following
hold for every point x of S:

(P1) Every point of Γ′2(x) is incident with t2 lines meeting Γ′′1(x).

(P2) Every point of Γ′′2(x) is incident with a unique line meeting Γ′′1(x).

(P3) Every point of Γ′3(x) is incident with t2 lines meeting Γ′′2(x).

(P4) Every point of Γ′′3(x) is incident with t
t2

lines meeting Γ′′2(x).

If these properties hold, then we say that (S, S) is an octagonal pair with parameters
(s, t, t2). The family F of near octagons introduced and studied in [2] are precisely the
near octagons that admit an octagonal pair. The following was proved there.

Proposition 2.2 Suppose (S, S) is an octagonal pair with parameters (s, t, t2), s ≥ 2,
and denote by Q the set of quads of S. Then (S, S,Q) is a polygonal triple for which
all quads have order (s, t2) and whose associated near polygon is a generalized hexagon of
order (st2,

t
t2
− 1).

In Section 3, we show that every polygonal triple (S, S,Q) for which the associated near
polygon is a finite generalized hexagon with an order and for which all quads of Q are
finite with the same order arises from an octagonal pair.

As the symplectic generalized quadrangle W (2) is the unique generalized quadrangle of
order (2, 2), we thus see that classifying octagonal pairs with parameters (s, t, t2) = (2, t, 2)
is equivalent with classifying all polygonal triples whose quads are isomorphic to W (2)
and whose associated near polygons are generalized hexagons of order (4, t

2
− 1). The

classification results for the family F mentioned in Section 1 are thus consequences of
Theorem 1.1.
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3 On polygonal triples for which the associated near

polygon is regular

Let (S, S,Q) be a polygonal triple for which the corresponding near polygon S ′ has
diameter d and is regular with parameters s, t, ti, i ∈ {0, 1, . . . , d}. Recall then that
t0 = −1, t1 = 0, td = t and that S has diameter d+ 1. Suppose every quad of Q has order
(s̃, t̃2). Then S has order (s̃, t̃2(t+ 1)). As a line spread of a quad of Q contains 1 + s̃ · t̃2
lines, we have s = s̃ · t̃2. For every point u of S, we denote by Lu the unique line of S
containing u. For every point x and every i ∈ {0, 1, . . . , d + 1}, we denote by Γ′′i (x) the
set of all points y ∈ Γi(x) for which y is the unique point of Ly nearest to x ∈ Lx, and we
define Γ′i(x) := Γi(x) \ Γ′′i (x). Then Γ′0(x) = Γ′′d+1(x) = ∅ and Γ′1(x) = Lx \ {x}. If L is a
line of S at distance i from Lx, then L contains a unique point of Γ′′i (x) and s̃ points of
Γ′i+1(x).

Lemma 3.1 Let x be a point of S and i ∈ {1, 2, . . . , d}. Then no point of Γ′′i (x) is
collinear with a point of Γ′i−1(x).

Proof. Suppose y ∈ Γ′′i (x) is collinear with a point z ∈ Γ′i−1(x). As y ∈ Γ′′i (x), we have
d(Lx, Ly) = i and hence d(Lx, Lz) ≥ i−1. As z ∈ Γi−1(x), the point z must be the unique
point of Lz nearest to x, i.e. z ∈ Γ′′i−1(x), in contradiction with the fact that z ∈ Γ′i−1(x).
�

Lemma 3.2 Let x be a point of S and i ∈ {1, 2, . . . , d}. Then no point of Γ′′i (x) is
collinear with a point of Γ′i(x).

Proof. Suppose y ∈ Γ′′i (x) is collinear with a point z ∈ Γ′i(x). Then yz 6∈ S and so there
exists a unique quad Q ∈ Q containing yz. The line Lz ⊆ Q contains a point u ∈ Γ′′i−1(x).
The line Ly ⊆ Q contains points of Γ′i+1(x). As x is classical with respect to Q, u is the
unique point of Q nearest to x and d(u, y) = 1, a contradiction, since z is the only point
of yz collinear with u. �

Lemma 3.3 Let Q be a quad of S. Put i := d(x,Q). Let u denote the unique point of Q
nearest to x. Then u ∈ Γ′′i (x), Lu \ {u} ⊆ Γ′i+1(x), u⊥ \ Lu ⊆ Γ′′i+1(x) and Γ2(u) ∩ Q ⊆
Γ′i+2(x).

Proof. As u is the unique point of Lu ⊆ Q nearest to x ∈ Lx, we have u ∈ Γ′′i (x),
Lu \ {u} ⊆ Γ′i+1(x) and d(Lx, Lu) = i. Every line L ∈ S \ {Lu} contained in Q lies at
distance i+ 1 from Lx and its unique point nearest to x lies at distance 1 from u as x is
classical with respect to Q. Every other point of L lies at distance i+ 2 from x and must
belong to Γ′i+2(x), proving the remaining claims of the lemma. �

We now use Lemma 3.3 to prove the following two lemmas.

Lemma 3.4 Let y ∈ Γ′′i (x) with i ∈ {0, 1, . . . , d}. Then:

7



• y is incident with ti + 1 lines containing a unique point of Γ′′i−1(x) and s̃ points of
Γ′′i (x);

• y is incident with (t− ti)t̃2 lines containing y as unique point of Γ′′i (x) and s̃ points
of Γ′′i+1(x);

• y is incident with 1 + (ti + 1)(t̃2−1) lines containing y as unique point of Γ′′i (x) and
s̃ points of Γ′i+1(x).

Proof. The line Ly contains y as unique point of Γ′′i (x) and s̃ points of Γ′i+1(x). Note
that d(Lx, Ly) = i.

Let Q be one of the ti + 1 quads through Ly containing a line L ∈ S at distance i− 1
from Lx. Let u denote the unique point of Q nearest to x. Then u ∈ L and d(u, y) = 1.
By Lemma 3.3, the line yu contains a unique point of Γ′′i−1(x) (namely u) and s̃ points of

Γ′′i (x). Also by Lemma 3.3, each of the t̃2 − 1 lines of Q through y distinct from yu and
Ly contains y as unique point of Γ′′i (x) and s̃ points of Γ′i+1(x).

Let Q be one of the t− ti quads through Ly not containing a line of S at distance i−1
from Lx. By Lemma 3.3, each of the t̃2 lines of Q through y distinct from Ly contains y
as unique point of Γ′′i (x) and s̃ points of Γ′′i+1(x). �

Lemma 3.5 Let y ∈ Γ′i(x) with i ∈ {1, 2, . . . , d+ 1}. Then:

• y is incident with ti−1 + 1 lines containing a unique point of Γ′i−1(x) and s̃ points of
Γ′i(x);

• y is incident with (ti−1 + 1)(t̃2 − 1) + 1 lines containing a unique point of Γ′′i−1(x)
and s̃ points of Γ′i(x);

• y is incident with t̃2(t−ti−1) lines containing y as unique point of Γ′i(x) and s̃ points
of Γ′i+1(x).

Proof. The line Ly contains a point of Γ′′i−1(x) and s̃ points of Γ′i(x). Note that
d(Lx, Ly) = i− 1.

Let Q be one of the ti−1 + 1 quads through Ly containing a line of S at distance i− 2
from Lx. Denote by u the unique point of Q nearest to x. Then u ∈ Γ′′i−2(x) and Lu is
the unique line of Q nearest to Lx. By Lemma 3.3, the unique line U through y meeting
Lu contains a unique point of Γ′i−1(x) and s̃ points of Γ′i(x). Also by Lemma 3.3, each of

the t̃2− 1 lines of Q through y distinct from U and Ly contains a unique point of Γ′′i−1(x)
and s̃ points of Γ′i(x).

Let Q be one of the t − ti−1 quads through Ly not containing a line of S at distance
i − 2 from Lx. By Lemma 3.3, each line of Q through y distinct from Ly contains y as
unique point of Γ′i(x) and s̃ points of Γ′i+1(x). �

Example. Consider now the special case that S ′ is a generalized hexagon of order (s, t).
Then t0 = −1, t1 = t2 = 0, t3 = t and S is a near octagon. Above we already remarked
that
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(A1) Γ′1(x) = Lx \ {x}.

By Lemmas 3.1 and 3.5, we know the following:

(A2) Γ′i(x) with i ∈ {2, 3} consists of all points of Γi(x) that are collinear with a point of
Γ′i−1(x).

By the above, we also know that

(A3) Γ′′i (x) = Γi(x) \ Γ′i(x) for every i ∈ {1, 2, 3}.

By Lemmas 3.4 and 3.5, we also know:

(P1) Every point of Γ′2(x) is incident with (t1 + 1)(t̃2 − 1) + 1 = t̃2 lines meeting Γ′′1(x).

(P2) Every point of Γ′′2(x) is incident with t2 + 1 = 1 lines meeting Γ′′1(x).

(P3) Every point of Γ′3(x) is incident with (t2 + 1)(t̃2 − 1) + 1 = t̃2 lines meeting Γ′′2(x).

(P4) Every point of Γ′′3(x) is incident with t3 + 1 = t+ 1 = t̃2(t+1)

t̃2
lines meeting Γ′′2(x).

Noting that S has order (s̃, t̃2(t+ 1)), we thus see (S, S) is an octagonal pair with param-
eters (s̃, t̃2(t+ 1), t̃2).

4 Eigenvalues and multiplicities of near polygons ad-

mitting a polygonal triple

Suppose T = (S, S,Q) is a polygonal triple for which S is a finite near octagon of order
(s, t) and such that every quad of Q has order (s, t2). Suppose also that the near hexagon
S ′ associated with T is a generalized hexagon, necessarily of order (st2,

t
t2
− 1). Since

t > t2, we can put t
t2
− 1 = α2

st2
, where α is some real positive number.

Let x be a point of S. By the example at the end of Section 3, we know that (S, S) is an
octagonal pair and so S belongs to the family F discussed in [2]. With respect to the line
spread S, the point set P of S can thus be written as a disjoint union Γ0(x)∪Γ′1(x)∪Γ′′1(x)∪
Γ′2(x) ∪ Γ′′2(x) ∪ Γ′3(x) ∪ Γ′′3(x) ∪ Γ4(x). This expression naturally gives rise to relations
R0, R

′
1, . . . , R

′′
3, R4 on P that partition P × P (e.g., (x, y) ∈ R′′3 ⇔ y ∈ Γ′′3(x)). These

relations are symmetric. Indeed, if i ∈ {1, 2, 3}, then (x, y) ∈ R′′i ⇔ d(x, y) = d(Lx, Ly) =
i, with Lu, u ∈ P , again denoting the unique line of S containing u. With each relation
R ∈ {R0, R

′
1, R

′′
1, . . . , R4}, there is associated a symmetric matrix U whose rows and

column are indexed by the points. Specifically, we put Uxy equal to 1 if (x, y) ∈ R and
equal to 0 otherwise. In this way, we obtain symmetric v× v-matrices A0, A

′
1, A

′′
1, . . . , A4,

where v is the total number of points. Here, A0 is the v × v identity matrix Iv and
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A := A′1 +A′′1 is the collinearity matrix of S. From Lemmas 3.4 and 3.5, we easily deduce

A · A0 = A′1 + A′′1,

A · A′1 = sA0 + (s− 1)A′1 + A′2,

A · A′′1 = stA0 + (s− 1)A′′1 + t2A
′
2 + A′′2,

A · A′2 = stA′1 + st2A
′′
1 + (s− 1)(t2 + 1)A′2 + A′3,

A · A′′2 = s(t− t2)A′′1 + (s− 1)A′′2 + t2A
′
3 +

t

t2
A′′3, (1)

A · A′3 = s(t− t2)A′2 + st2A
′′
2 + (s− 1)(t2 + 1)A′3 +

t

t2
A4,

A · A′′3 = s(t− t2)A′′2 +
(s− 1)t

t2
A′′3 + (t+ 1− t

t2
)A4,

A · A4 = s(t− t2)A′3 + s(t+ 1− t

t2
)A′′3 + (s− 1)(t+ 1)A4.

As all involved matrices are symmetric, these equations can be written as

[A0 A
′
1 A

′′
1 · · · A4]T · A = (B ⊗ Iv) · [A0 A

′
1 A

′′
1 · · · A4]T ,

where B ⊗ Iv denotes the Kronecker product [7, Section 4.2] of

B =



0 1 1 0 0 0 0 0
s s− 1 0 1 0 0 0 0
st 0 s− 1 t2 1 0 0 0
0 st st2 (s− 1)(t2 + 1) 0 1 0 0
0 0 s(t− t2) 0 s− 1 t2

t
t2

0

0 0 0 s(t− t2) st2 (s− 1)(t2 + 1) 0 t
t2

0 0 0 0 s(t− t2) 0
(s−1)t
t2

t+ 1− t
t2

0 0 0 0 0 s(t− t2) s(t+ 1− t
t2

) (s− 1)(t+ 1)


and Iv. Let A be the subalgebra of Rv×v generated by A, and let B be the subalgebra of
R8×8 generated by B. For every M ∈ A, there exists a unique M θ ∈ R8×8 such that

[A0 A
′
1 A

′′
1 · · · A4]T ·M = (M θ ⊗ Iv) · [A0 A

′
1 A

′′
1 · · · A4]T .

In fact, if M = p(A) for a certain polynomial p(X) ∈ R[X], then we can take M θ = p(B)
by [7, Lemma 4.2.10]. The uniqueness of M θ ∈ R8×8 follows from the fact that the
matrices A0, A

′
1, A

′′
1, . . . , A4 are linearly independent in Rv×v. We conclude that θ defines

an isomorphism between A and B. Taken into account that t = α2

s
+ t2, we can compute

that the eigenvalues of B are equal to

λ1 = α2 + st2 + s, λ2 = s+ α− t2 − 1, λ3 = s− α− t2 − 1, λ4 = st2 + s− α− 1,

λ5 = st2 + s+ α− 1, λ6 = −α
2 + st2 + s

s
, λ7 =

α2 + st2 − t2
t2

, λ8 =
s2t2 − st2 − α2

st2
.

Hence, these are also the eigenvalues of A. Let mi with i ∈ {1, 2, . . . , 8} denote the
multiplicity of the eigenvalue λi of A.
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If j ∈ N, then by (1), we can write

Aj = ajA0 + bjA
′
1 + cjA

′′
1 + djA

′
2 + ejA

′′
2 + fjA

′
3 + gjA

′′
3 + hjA4 (2)

for certain (necessarily unique) aj, bj, cj, dj, ej, fj, gj, hj ∈ N. We then have Tr(Aj) = vaj.
Suppose now that the eigenvalues λ1, λ2, . . . , λ8 are mutually distinct. Then we have∑8
i=1miλ

j
i = Tr(Aj) = vaj for every j ∈ {0, 1, . . . , 7}. These eight equations determine

a system of linear equations which can be solved for the unknowns m1,m2, . . . ,m8 as the
matrix of the system is a nonsingular Vandermonde matrix. We find (e.g. with Maple,
see [6]) that

m1 = 1,

m2 =
α2s(α2 + α + 1)(α2 − α + 1)(st2 + 1)(α2 + st2)

2(α2 + αs+ s2)(α2 − αt2 + t22)
,

m3 =
α2s(α2 + α + 1)(α2 − α + 1)(st2 + 1)(α2 + st2)

2(α2 − αs+ s2)(α2 + αt2 + t22)
,

m4 =
α2(α2 − α + 1)(st2 + 1)(α2 + st2)

2(s2t22 − αst2 + α2)
,

m5 =
α2(α2 + α + 1)(st2 + 1)(α2 + st2)

2(s2t22 + αst2 + α2)
,

m6 =
s6(α2 + α + 1)(α2 − α + 1)(st2 + 1)

(α2 + αs+ s2)(α2 − αs+ s2)(s+ t2)
,

m7 =
st52(α2 + α + 1)(α2 − α + 1)(st2 + 1)

(α2 + αt2 + t22)(α2 − αt2 + t22)(s+ t2)
,

m8 =
s5t52(α2 + α + 1)(α2 − α + 1)

(s2t22 + αst2 + α2)(s2t22 − αst2 + α2)
.

These multiplicities need to be integers. In case α ∈ N, this leads to a number of divisi-
bility conditions that need to be satisfied by the parameters s, t2 and α.

If a particular eigenvalue λ occurs more than once in the collection λ1, λ2, · · · , λ8, then
its multiplicity is equal to

∑
mi, where the summation ranges over all i ∈ {1, 2, . . . , 8}

for which λi = λ.
Recall that S ′ is a generalized hexagon of order (st2,

t
t2
− 1). By Section 2, we know

that if t2 = 1, then S ∼= S ′×Ls+1, where Ls+1 is some line of size s+ 1, and if s = 1, then
S ∼= S ′. In the sequel, we may therefore assume that s, t2 > 1.

Put q := st2 ≥ 4 and as before let α be the positive real number such that α2 =
q · ( t

t2
− 1). If t

t2
− 1 > 1, then α ∈ N, see e.g. [12, Theorem 1.7.1]. The eigenvalues and

multiplicities can thus be computed with the aid of the above formulas. Note that all the
multiplicities must be integral.

Using the information provided in [3, 8, 10, 12], we can easily find all triples (s, t2, t)
of natural numbers distinct from 0 and 1 satisfying the following, with d = 3:

(A) There exists a known generalized quadrangle Q of order (s, t2) that is moreover
known to have a line spread.
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(B) There exists a known generalized 2d-gon of order (st2,
t
t2
− 1).

We find that there exists a prime power r such that (s, t2, t) is equal to either (r, r, 2r),
(r, r2, 2r2), (r, r, r(r2 + 1)), (r, r2, r2(r3 + 1)), (r, r, r(r6 + 1)) or (r, r2, r2(r9 + 1)). The
multiplicities of the eigenvalues are only integral when (s, t2, t) ∈ {(r, r, 2r), (r, r, r(r2 +
1))}, see [6].

In case (s, t2, t) = (r, r, 2r), the associated generalized hexagon S ′ has order (r2, 1)
and all quads of S have order (r, r). One example is known, namely the polygonal triple
corresponding to the L3(4) near octagon (r = 2).

In case (s, t2, t) = (r, r, r(r2 + 1)), the associated generalized hexagon S ′ has order
(r2, r2) and all quads of S have order (r, r). One example is known, namely the polygonal
triple corresponding to the G2(4) near octagon (r = 2).

We can give a similar treatment for polygonal triples (S, S,Q), where S is a finite near
decagon of order (s, t) with quads of order (s, t2) such that the associated near polygon
S ′ is a generalized octagon of order (st2,

t
t2
− 1). Then we must find all triples (s, t2, t)

of natural numbers distinct from 0 and 1 such that properties (A) and (B) hold with
d = 4. Using the information provided in [3, 8, 10, 12], we find the following possibilities
for (s, t2, t):

(a) (q, q, 2q), where q is some prime power;
(b) (q, q, (q + 1)q), where q is a power of 2 with odd exponent;
(c) (q, q2, 2q2), where q is some prime power;
(d) (q, q2, (q6 + 1)q2), where q is a power of 2 with odd exponent;
(e) (q2, q4, (q3 + 1)q4), where q is a power of 2 with odd exponent.

With similar techniques as above, we can compute all eigenvalues and multiplicities, see
[6]. The cases (d) and (e) cannot occur since not all multiplicities are integral. In cases
(b) and (c), the multiplicities are always integral. In case (a), all multiplicities are integral
if and only if q is odd or a multiple of 8.

The above discussion implies that there are no polygonal triples whose quads are
isomorphic to W (2) and whose associated near polygons are isomorphic to either T (4, 64)
or GO(4, 1).

5 Algorithms to classify polygonal triples

5.1 Polygonal data

In this section, S denotes a near polygon, S is a line spread of S and Q is a set of quads
of S such that (S, S,Q) is a polygonal triple with associated near polygon S ′. For every
point x of S, Lx denotes the unique line of S containing x. Recall that every quad Q ∈ Q
is classical in S.

If L1, L2 ∈ S, then L1 and L2 are parallel and we denote by ΠL1,L2 the bijection
between L1 and L2 that sends each point x of L1 to the unique point of L2 nearest to x.
If L1, L2, L3 ∈ S, then we define ΦL1,L2,L3 = ΠL3,L1 ◦ ΠL2,L3 ◦ ΠL1,L2 .
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Let L∗ be some specific line of S. For every point x of S, let π(x) denote the unique
point of L∗ nearest to x. We coordinatize S as follows. With each point x of S, we
associate the pair (Lx, π(x)). If L1 and L2 are two distinct lines of S, then we denote by
ΦL1,L2 the permutation ΦL∗,L1,L2 of L∗.

Lemma 5.1 (1) ΦL∗,L is the identical permutation 1L∗ of L∗ for every line L of S.

(2) For any two distinct lines L1, L2 ∈ S, we have ΦL2,L1 = Φ−1
L1,L2

.

(3) If L1, L2 and L3 are three lines of S such that L2 is contained on a shortest path
from L1 to L3 in the near polygon S ′, then ΦL1,L3 = ΦL2,L3 ◦ ΦL1,L2.

Proof. (1) We have ΦL∗,L = ΠL,L∗ ◦ ΠL∗,L ◦ ΠL∗,L∗ = ΠL,L∗ ◦ ΠL∗,L = 1L∗ .

(2) We have Φ−1
L1,L2

=
(

ΠL2,L∗ ◦ ΠL1,L2 ◦ ΠL∗,L1

)−1

= Π−1
L∗,L1

◦ Π−1
L1,L2

◦ Π−1
L2,L∗

= ΠL1,L∗ ◦
ΠL2,L1 ◦ ΠL∗,L2 = ΦL2,L1 .

(3) If L2 is on a shortest path from L1 to L3, then ΠL1,L3 = ΠL2,L3 ◦ΠL1,L2 and this implies
that ΦL1,L3 = ΦL2,L3 ◦ ΦL1,L2 . �

Lemma 5.2 (1) If L1, L2 ∈ S such that L1 is contained on a shortest path from L∗ to
L2 in the geometry S ′, then ΦL1,L2 is the identical permutation of L∗. In particular,
ΦL,L is the identical permutation of L∗ for every line L ∈ S.

(2) Let Q and Q′ be two opposite quads of Q (i.e. two opposite lines of S ′). Let
L1 and L2 be two lines of S contained in Q, and put L′1 := πQ′(L1) ∈ S and
L′2 := πQ′(L2) ∈ S. Then ΦL1,L′2

= ΦL′1,L
′
2
◦ ΦL1,L′1

= ΦL2,L′2
◦ ΦL1,L2.

Proof. (1) From Lemma 5.1(3), we know that ΦL∗,L2 = ΦL1,L2 ◦ ΦL∗,L1 . From Lemma
5.1(1), we know that ΦL∗,L1 = ΦL∗,L2 = 1L∗ . Hence, ΦL1,L2 = 1L∗ .

(2) Since every quad of Q is classical, we observe that L′1 and L2 are on shortest path
from L1 to L′2 in the geometry S ′. The remaining part of (2) then follows from Lemma
5.1(3). �

Lemma 5.3 S can be completely described in terms of S ′ and the maps ΦL1,L2, where L1

and L2 are two lines of S at distance 1 from each other.

Proof. Consider two points with labels (K1, x) and (K2, y). If K1 = K2, then the points
(K1, x) and (K2, y) are collinear. If K1, K2 are distinct collinear points of S ′, then (K1, x)
and (K2, y) are collinear if and only if y = ΦK1,K2(x). If K1, K2 are distinct noncollinear
points in S ′, then (K1, x) and (K2, y) are not collinear. So, the collinearity graph of S
and hence also S itself can be completely described in terms of S ′ and the maps ΦL1,L2 ,
where L1 and L2 are two points of S ′ at distance 1 from each other. �

Suppose S̃ is a near polygon isomorphic to S ′, X̃ is a set of the same cardinality of L∗,
and Φ̃ is a map which associates with each pair (x1, x2) of distinct collinear points of S̃ a
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permutation Φ̃(x1, x2) of X̃. Suppose θ is an isomorphism from S̃ to S ′ and φ is a bijection

of X̃ to L∗ such that Φ̃(x1, x2) = φ−1 ◦Φxθ1,x
θ
2
◦φ for every pair (x1, x2) of distinct collinear

points of S̃. If p̃ is the unique point of S̃ for which p̃θ = L∗, then we call the quadruple
(S̃, X̃, p̃, Φ̃) polygonal data for the polygonal triple (S, S,Q). Note that (S ′, L∗, L∗,Φ′) is
polygonal data for (S, S,Q), where Φ′ is the restriction of Φ to distinct collinear points
of S ′, the former L∗ is regarded as set of points of S and the latter is regarded as point
of S ′.

Having this polygonal data (S̃, X̃, p̃, Φ̃), it is possible (by using Lemma 5.3) to recon-
struct an isomorphic copy2 (S1, S1,Q1) of (S, S,Q) in the following way.

• S1 is the near polygon with points the pairs (a, x), with a a point of S̃ and x ∈ X̃,
where two distinct points (a1, x1) and (a2, x2) are collinear whenever either a1 = a2

or (dS̃(a1, a2) = 1 and x2 = x
Φ̃(a1,a2)
1 ).

• S1 consists of all lines of the form {(a, x) |x ∈ X̃}, with a a point of S̃.

• Q1 consists of all quads of S1 containing a line of S1.

Classifying particular polygonal triples is thus equivalent with determining the corre-
sponding polygonal data. The proof of Theorem 1.1 will make use of this observation.

5.2 Properties of polygonal data

The following lemma is a consequence of Lemmas 5.1 and 5.2.

Lemma 5.4 Suppose (S, X, p,Φ) is polygonal data for a polygonal triple. Then the fol-
lowing hold:

(a) Φ(p, x) is the identical permutation 1X of X for every point x of S at distance 1
from p.

(b) If x1 and x2 are two distinct collinear points of S, then Φ(x1, x2) = Φ(x2, x1)−1.

(c) If x1 and x2 are two distinct collinear points of S such that the unique point of x1x2

nearest to p coincides with either x1 or x2, then Φ(x1, x2) = 1X .

(d) If u = x1, x2, . . . , xk = v and u = y1, y2, . . . , yk = v are two shortest paths connecting
the points u and v, then

Φ(xk−1, xk)◦Φ(xk−2, xk−1)◦· · ·◦Φ(x1, x2) = Φ(yk−1, yk)◦Φ(yk−2, yk−1)◦· · ·◦Φ(y1, y2).

Lemma 5.5 Suppose (S, X, p,Φ) is polygonal data and L1, L2 are two parallel lines of S
such that p ∈ L1. Then Φ(u, v) = Φ(πL1(u), πL1(v)) for any two distinct points u and v
of L2.

2This means that there is an isomorphism from S1 to S mapping S1 to S and Q1 to Q.
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Proof. Put πL1(u) = u′ and πL1(v) = v′. If w1 and w2 are two consecutive points on
a shortest path from u′ to u (or from v′ to v), then Φ(w1, w2) = 1X by Lemma 5.4(c).
Now, consider two shortest paths connecting u′ and v, one that passes through the point
u and another that passes through v′. If we apply Lemma 5.4(d) to these two paths,
then we find Φ(u, v) = Φ(u′, v′) if we take into account that Φ(w1, w2) = 1X for any two
consecutive points w1 and w2 on these paths for which the line w1w2 6∈ {L1, L2}. �

We now prove a number of useful lemmas. In these lemmas, the following notation is
used. If L is a line of a near polygon, then CL denotes the set of all ordered pairs of
distinct points of L.

Lemma 5.6 Suppose (S, X, p,Φ) is polygonal data, where S is a generalized hexagon with
at least three lines through each point and at least three points on each line. Let L be an
arbitrary line through p. Then Φ is uniquely determined by the values it takes on CL.

Proof. Let L denote the line set of S. We write L \ {L} as a disjoint union L0,0 ∪L1,0 ∪
L1,1 ∪ L2,1 ∪ L2,2, where Li,j denotes the set of lines of L \ {L} at distance i from p and
at distance j from L. Suppose we know all values of Φ on the set CL. We gradually show
how these values uniquely determine Φ on each CK , K ∈ L \ {L}.
Step 1. If K ∈ L2,2, then for any (x, y) ∈ CK , we have Φ(x, y) = Φ(πL(x), πL(y)) by
Lemma 5.5.

Step 2. If K ∈ L0,0, then Lemma 5.5 implies that for any (x, y) ∈ CK , we have Φ(x, y) =
Φ(πM(x), πM(y)), where M is a line of L2,2 opposite to K and L. Such a line M can be
constructed in the following way. Let M ′′ be a line through p distinct from K and L, let
M ′ be a line intersecting M ′′ in a singleton distinct from {p} and let M be a line meeting
M ′ in a singleton distinct from M ′ ∩M ′′.

Step 3. If K ∈ L2,1, then Lemma 5.5 implies that for any (x, y) ∈ CK , we have Φ(x, y) =
Φ(πM(x), πM(y)), where M is any line of L0,0 opposite to K.

Step 4. Suppose K ∈ L1,1. Let u1 denote the unique point of K collinear with p
and let u2 denote a point at distance 1 from pu1 such that the unique point of pu1

collinear u2 is distinct from p and u1. Such a point exists as there are at least three
points on the line pu1. Let M be a line through u2 opposite to K. Let (x, y) ∈ CK , put
x′′ := πM(x), y′′ := πM(y), {x′} := Γ1(x) ∩ Γ1(x′′) and {y′} := Γ1(y) ∩ Γ1(y′′). If one
of x, y coincides with u1, then Φ(x, y) = 1X by Lemma 5.4(c). Suppose therefore that
x 6= u1 6= y. Then Φ(x′, x) = Φ(y, y′) = 1X by Lemma 5.4(c). Lemma 5.4(d) then implies
that Φ(x, y) = Φ(y, y′) ◦Φ(x, y) ◦Φ(x′, x) = Φ(y′′, y′) ◦Φ(x′′, y′′) ◦Φ(x′, x′′). Note that the
lines y′′y′, M = x′′y′′ and x′x′′ belong to L2,2 ∪ L2,1 since y′, x′ ∈ Γ3(p) and d(p,M) = 2.

Step 5. Suppose K ∈ L1,0. In an ordinary 6-gon containing p and K, we can take a
line M opposite to K. Then M ∈ L1,1 and for every (x, y) ∈ CK , we have Φ(x, y) =
Φ(πM(x), πM(y)). Indeed, if Γ1(x) ∩ Γ1(πM(x)) = {x′} and Γ1(y) ∩ Γ1(πM(y)) = {y′},
then Lemma 5.4(c) implies that Φ(x′, x) = Φ(x′, πM(x)) = Φ(y′, y) = Φ(y′, πM(y)) = 1X .
Lemma 5.4(d) then implies that Φ(x, y) = Φ(y, y′) ◦ Φ(x, y) ◦ Φ(x′, x) = Φ(πM(y), y′) ◦
Φ(πM(x), πM(y)) ◦ Φ(x′, πM(x)) = Φ(πM(x), πM(y)). �
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Lemma 5.7 Suppose (S, X, p,Φ) is polygonal data, where S is a generalized octagon with
at least three lines through each point and at least three points on each line. Let L be an
arbitrary line through p. Then Φ is uniquely determined by the values it takes on CL.

Proof. We write L \ {L} as a disjoint union L0,0 ∪ L1,0 ∪ L1,1 ∪ L2,1 ∪ L2,2 ∪ L3,2 ∪ L3,3,
where Li,j denotes the set of lines of L \ {L} at distance i from p and at distance j from
L. Suppose we know all values of Φ on the set CL. We gradually show how these values
uniquely determine Φ on each CK , K ∈ L \ {L}.

Step 1. If K ∈ L3,3, then for any (x, y) ∈ CK , we have Φ(x, y) = Φ(πL(x), πL(y)) by
Lemma 5.5.

Step 2. If K ∈ L0,0, then for any (x, y) ∈ CK , we have Φ(x, y) = Φ(πM(x), πM(y)), where
M is a line of L3,3 opposite to K and L. Similarly as in Step 2 of Lemma 5.6, we can
construct such a line opposite to K and L, by starting from a line through p distinct from
K and L.

Step 3. If K ∈ L3,2, then Lemma 5.5 implies that for any (x, y) ∈ CK , we have Φ(x, y) =
Φ(πM(x), πM(y)), where M is any line of L0,0 opposite to K.

Step 4. Suppose K ∈ L1,0 ∪ L1,1. Let u1 denote the unique point of K collinear with p
and let u2 denote a point at distance 2 from pu1 such that the unique point of pu1 nearest
to u2 is distinct from p and u1. Such a point exists since the line pu1 contains at least three
points. Let M be a line through u2 opposite to K. Let (x, y) ∈ CK , put x′′′ := πM(x),
y′′′ := πM(y), {x′} := Γ1(x) ∩ Γ2(x′′′), {y′} := Γ1(y) ∩ Γ2(y′′′), {x′′} := Γ2(x) ∩ Γ1(x′′′)
and {y′′} := Γ2(y) ∩ Γ1(y′′′). If one of x, y coincides with u1, then Φ(x, y) = 1X by
Lemma 5.4(c). Suppose therefore that x 6= u1 6= y. By Lemma 5.4(c), we know that
Φ(y, y′) = Φ(y′, y′′) = Φ(x, x′) = Φ(x′, x′′) = 1X . With a similar reasoning as in Step 4
of Lemma 5.6, this allows to conclude that Φ(x, y) = Φ(y′′′, y′′) ◦ Φ(x′′′, y′′′) ◦ Φ(x′′, x′′′).
Note that the lines y′′′y′′, x′′′y′′′ = M and x′′x′′′ belong to L3,3 ∪ L3,2 since y′′, x′′ ∈ Γ4(p)
and d(p,M) = 3.

Step 5. Suppose K ∈ L2,1 ∪ L2,2. In an ordinary 8-gon containing p, K and L, we
can take a line M opposite to K. Then M ∈ L1,0 ∪ L1,1 for every (x, y) ∈ CK , we have
Φ(x, y) = Φ(πM(x), πM(y)). The proof of that claim is similar to the proof of Step 5 in
Lemma 5.6, taking into account that Lemma 5.4(c) implies that Φ(w1, w2) = 1X for any
two consecutive points w1 and w2 on a shortest path connecting x with πM(x) (or y with
πM(y)). �

Lemma 5.8 Suppose (S, X, p,Φ) is polygonal data, where S is a generalized 2d-gon, d ∈
{3, 4}, with exactly two lines through each point and at least three points on each line.
Let L1 and L2 be the two lines through p. Then Φ is uniquely determined by the values it
takes on CL1 ∪ CL2.

Proof. We follow the same notational convention as in the proofs of Lemmas 5.6 and 5.7.
In particular, we write L\{L} as the disjoint union of the mentioned sets, where L := L1.
Note that L0,0 is the singleton {L2}. We observe now that the proofs of Lemmas 5.6 and
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5.7 only break down at one point, namely in Step 2, where it is no longer possible to
choose a line M ∈ Ld−1,d−1 opposite to K and L. However, by assuming that the values
of Φ on the set CL2 are also known, the rest of the proof can remain without any changes.
�

Lemma 5.9 Suppose (S, X, p,Φ) is polygonal data, where S is a generalized dodecagon
with exactly two lines through each point and at least three points on each line. Let L1

and L2 be the two lines through p. Then Φ is uniquely determined by the values it takes
on CL1 ∪ CL2.

Proof. We write L \ {L1, L2} as a disjoint union L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5, where Li with
i ∈ {1, 2, . . . , 5} is the set of lines of L\{L1, L2} at distance i from p. Suppose we know all
values of Φ on the set CL1 ∪CL2 . We gradually show how these values uniquely determine
Φ on each CK , K ∈ L \ {L1, L2}.
Step 1. Suppose K ∈ L5. Let i ∈ {1, 2} such that K and Li are opposite lines. Then
Φ(x, y) = Φ(πLi(x), πLi(y)) by Lemma 5.5.

Step 2. Suppose K ∈ L1. Then K meets one of L1, L2, say Li, in a point u1. Let
u2 denote a point at distance 4 from pu1 such that the unique point of pu1 nearest
to u2 is distinct from p and u1. Such a point exists since the line pu1 = Li contains
at least three points. Let M be a line through u2 opposite to K. Let (x, y) ∈ CK ,
put x′′ := πM(x), y′′ := πM(y), {x′} := Γ1(x′′) ∩ Γ4(x), {y′} := Γ1(y′′) ∩ Γ4(y). If
one of x, y coincides with u1, then Φ(x, y) = 1X by Lemma 5.4(c). Suppose therefore
that x 6= u1 6= y. With a similar reasoning as in the proof of Step 4 in Lemma 5.6,
we have Φ(x, y) = Φ(y′′, y′) ◦ Φ(x′′, y′′) ◦ Φ(x′, x′′). Indeed, Lemma 5.4(c) implies that
Φ(w1, w2) = 1X for any two consecutive points on a shortest path from x to x′ (or from y
to y′). Note that the lines y′′y′, x′′y′′ = M and x′x′′ belong to L5 since y′, x′ ∈ Γ6(p) and
d(p,M) = 5.

Step 3. Suppose K ∈ L4. In an ordinary 12-gon containing p and K, we can take a
line M opposite to K. Then M ∈ L1 and for every (x, y) ∈ CK , we have Φ(x, y) =
Φ(πM(x), πM(y)). The proof of that claim is similar to the proof of Step 5 in Lemma
5.6, taking into account that Lemma 5.4(c) implies that Φ(w1, w2) = 1X for any two
consecutive points on a shortest path from x to πM(x) (or from y to πM(y)).

Step 4. Suppose K ∈ L2. Then there is a unique line meeting one of L1, L2 in a point u1

and K in a point u′1. Let u2 denote a point at distance 4 from u1u
′
1 such that the unique

point of u1u
′
1 nearest to u2 is distinct from u1 and u′1. Such a point exists since the line u1u

′
1

contains at least three points. Let M be a line through u2 opposite to K. Let (x, y) ∈ CK .
Put x′′′ := πM(x), y′′′ := πM(y), {x′′} := Γ1(x′′′) ∩ Γ4(x), {x′} := Γ2(x′′′) ∩ Γ3(x), {y′′} :=
Γ1(y′′′)∩Γ4(y), {y′} := Γ2(y′′′)∩Γ3(y). If one of x, y coincides with u′1, then Φ(x, y) = 1X .
Suppose therefore that x 6= u′1 6= y. With a similar reasoning as in the proof of Step 4
in Lemma 5.6, we have Φ(x, y) = Φ(y′′, y′) ◦Φ(y′′′, y′′) ◦Φ(x′′′, y′′′) ◦Φ(x′′, x′′′) ◦Φ(x′, x′′).
Indeed, Lemma 5.4(c) implies that Φ(w1, w2) = 1X for any two consecutive points on a
shortest path from x to x′ (or from y to y′). Note that the lines y′′y′, y′′′y′′, x′′′y′′′ = M ,
x′′x′′′, x′x′′ belong to L4 ∪ L5 since u2, x

′, y′ ∈ Γ6(p) and x′′, y′′ ∈ Γ5(p) ∪ Γ6(p).
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Step 5. Suppose K ∈ L3. In an ordinary 12-gon containing p and K, we can take a
line M opposite to K. Then M ∈ L2 and for every (x, y) ∈ CK , we have Φ(x, y) =
Φ(πM(x), πM(y)). The proof of that claim is similar to the proof of Step 5 in Lemma
5.6, taking into account that Lemma 5.4(c) implies that Φ(w1, w2) = 1X for any two
consecutive points on a shortest path from x to πM(x) (or from y to πM(y)). �

Suppose (S, X, p,Φ) is polygonal data, where S is some generalized polygon. If all points
of S are incident with at least three lines and L is a line through p, then the quadruple
(S, X, p,Φ′), where Φ′ is the restriction of Φ to the set CL, is called partial polygonal data.
If every point of S is incident with precisely two lines and L1, L2 are the two lines through
the point p, then the quadruple (S, X, p,Φ′), where Φ′ is the restriction of Φ to the set
CL1 ∪ CL2 , is called partial polygonal data.

Suppose (S, X, p,Φ′) is partial polygonal data, where S is one of the generalized poly-
gons under consideration in Lemmas 5.6, 5.7, 5.8 and 5.9. Using the algorithms exposed
in the proofs of these lemmas, it is possible to reconstruct the whole polygonal data, and
hence to construct an isomorphic copy of the polygonal triple from which (S, X, p,Φ′)
arose. This approach will be followed during the proof of Theorem 1.1.

6 Proof of Theorem 1.1

The intention of this section is to prove Theorem 1.1. During this proof, we will use the
following notation. Suppose η is a function on two arguments belonging to the same set
{x1, x2, x3, x4, x5} of size 5. Then T (η, (x1, x2, x3, x4, x5)) denotes the 5 × 5 table whose
entry in the i-th row and the j-th column is equal to η(xi, xj), where we put a “–” if
η(xi, xj) is not defined.

By Section 4, we already know that there exists no polygonal triple whose quads are
isomorphic to W (2) and whose associated near polygon is isomorphic to either T (4, 64)
and GO(4, 1).

Using the algorithms involving (partial) polygonal data discussed in Section 5, we now
classify all polygonal triples whose quads are isomorphic to W (2) and whose associated
near polygons A are isomorphic to either HD(4), GH(4, 1), H(4), GO(4, 1), RT (4, 2),
F(H(4)) or F(HD(4)). The case where A is isomorphic to T (4, 64) will not be treated
here as it seems to be out of reach of our computer computations.

For each generalized polygon S ∈ {HD(4), H(4), RT (4, 2)}, the following lemma in
combination with the fact that S is flag-transitive shows that there is essentially one
quadruple that can serve as potential3 partial polygonal data for the problem.

Lemma 6.1 Suppose (A, X, p,Φ) is polygonal data for a polygonal triple (S, S,Q), where
each quad of Q is isomorphic to W (2) and A ∈ {HD(4), H(4), RT (4, 2), GH(4, 1), GO(4, 1),
F(H(4)),F(HD(4))}. If L = {p, x1, x2, x3, x4} is a line of A through p, then the elements
of X can be labeled with a, b and c such that T (Φ, (p, x1, x2, x3, x4)) is the following table:

3We are not sure in advance whether there is a polygonal triple associated with the quadruple; if there
is one, then the quadruple should be polygonal data.
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– () () () ()
() – (a, b) (a, c) (b, c)
() (a, b) – (b, c) (a, c)
() (a, c) (b, c) – (a, b)
() (b, c) (a, c) (a, b) –

Proof. The point p corresponds to a line L∗ ∈ S and the line L with a quad Q ∈ Q
through L∗. Let L∗, L1, L2, L3 and L4 denote the five lines of S contained in Q. For two
distinct K,M ∈ {L∗, L1, L2, L3, L4}, let ΦK,M be as defined in Section 5.1. Obviously,
ΦK,M is the trivial permutation if L∗ ∈ {K,M}.

If K and M are distinct elements of {L1, L2, L3, L4}, then there is a unique line meeting
L∗, K and M , implying that ΦK,M has a unique fixpoint, i.e. ΦK,M is a transposition.
Put L∗ = {x1, x2, x3} and K ∈ {L1, L2, L3, L4}. Then there is a unique line (of size 3)
through each xi meeting K, showing that the permutation (xi+1, xi+2) (with subindices
taken modulo 3) occurs exactly once in the row and column corresponding to the line K.
The lemma now follows if we take also into account that ΦK,M = Φ−1

M,K for two distinct
lines K and M of S. �

For each generalized polygon A ∈ {GH(4, 1), GO(4, 1),F(H(4)),F(HD(4))}, the fol-
lowing lemma, which is an immediate consequence of Lemma 6.1, shows that several
quadruples might serve as potential polygonal data for the problem, namely one for each
permutation τ of the set {1, 2, 3, 4}.

Lemma 6.2 Suppose (A, X, p,Φ) is polygonal data for a polygonal triple (S, S,Q), where
each quad of Q is isomorphic to W (2) and A ∈ {GH(4, 1), GO(4, 1),F(H(4)),F(HD(4))}.
If L1 = {p, x1, x2, x3, x4} and L2 = {p, y1, y2, y3, y4} are the two lines of A through p, then
the elements of X can be labeled with a, b and c such that T (Φ, (p, x1, x2, x3, x4)) and
T (Φ, (p, yτ(1), yτ(2), yτ(3), yτ(4))) are equal to the table mentioned in Lemma 6.1 for a cer-
tain permutation τ of {1, 2, 3, 4}.

Now that we know all potential partial polygonal data, we can construct the potential
polygonal data, following the algorithms exposed in Lemmas 5.6, 5.7, 5.8 and 5.9. For
that purpose, we have implemented a computer program in GAP [11], see [6]. It should be
remarked that there is no unique way to reconstruct the potential polygonal data from the
potential partial polygonal data. During the reconstruction process, certain choices need
to be made which are not unique. E.g., if one needs to take a line opposite a given line,
there are usual several choices for that, and the “complete polygonal data” might depend
on the choices made during this reconstruction process. However, if the “partial polygonal
data” is associated with a polygonal triple, then we know that the complete polygonal
data one obtains has to be independent of the choices made during the reconstruction
process. As our purpose is to classify polygonal triples, we do not have to worry about
this complication, and we can make any choices we like during the reconstruction process.

Once we have obtained the “complete polygonal data”, we have followed the algorithm
exposed in Lemma 5.3 to build the graph which – in case of an associated polygonal triple
T – must be isomorphic to the collinearity graph of the near polygon that occurs as
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first component of T . Subsequently, we have verified whether this graph was indeed the
collinearity graph of a near polygon.

This turned out to be the case if A = HD(4) (as it should be), but not if A = H(4) or
A = RT (4, 2). In the case A = HD(4), the graph must be isomorphic to the collinearity
graph of the G2(4) near octagon. In this case, there is essentially one quadruple that
can serve as partial polygonal data and so we already knew in advance, without making
any computer computations, that the G2(4) near octagon is the unique near octagon
admitting a polygonal triple all whose quads are isomorphic to W (2) and for which the
associated near polygon is isomorphic to HD(4).

When A is equal to either GO(4, 1), F(H(4)) or F(HD(4)), the graph was not the
collinearity graph of a near polygon for any of the 24 choices of the permutation τ .

In case A is equal to the unique generalized hexagon GH(4, 1) of order (4, 1), this
graph turned out to be the collinearity graph of a near polygon for precisely 12 of the
24 possible choices of τ . These 12 permutations turn out to have the same parity. The
twelve near octagons that arise in this way are all isomorphic since the potential partial
polygonal data from which they are derived are all equivalent. The latter follows from
the symmetry of the generalized hexagon GH(4, 1) exposed in Lemma 6.3(b) below.

Lemma 6.3 (a) Let {x, L} be a flag of the projective plane PG(2, 4) and let H denote
the group of automorphisms of PG(2, 4) fixing each point of L. If L denotes the set
of four lines through x distinct from L, then each h ∈ H induces a permutation h̄
of L. The group {h̄ |h ∈ H} of permutations of L consists of all even permutations
of this set.

(b) Let p be a point of GH(4, 1), and L1, L2 be the two lines of GH(4, 1) through p. Let
H denote the group of automorphisms of GH(4, 1) fixing each point of the line L1.
Then each h ∈ H induces a permutation h̄ of L2 \ {p}. Then the group {h̄ |h ∈ H}
of permutations of L2 \ {p} consists of all even permutations of this set.

Proof. (a) This is easily verified. Each h ∈ H is either an elation or a homology. If h is
an elation, then h̄ is the product of two disjoint transpositions. If h is a homology, then
h̄ is a cycle of length 3.

(b) Since the automorphism group of GH(4, 1) acts transitively on the set of lines of the
generalized hexagon, we may without loss of generality suppose that L1 is a line of L of
PG(2, 4). Then p is a certain flag {x, L} of PG(2, 4). The automorphisms of GH(4, 1)
that fix each point of L1 bijectively correspond with the automorphisms of PG(2, 4) that
fix each point of L. The points of L2 \ {p} are the four flags {x,K} where K is one of
the four lines through x distinct from L. The lemma then follows from Claim (a). �

In the case that A = GH(4, 1), these twelve near octagons thus have to be isomorphic to
the L3(4) near octagon.

20



Acknowledgment

The author wishes to thank Anurag Bishnoi for verifying certain of his computations.

References

[1] A. Bishnoi and B. De Bruyn. A new near octagon and the Suzuki tower. Electron.
J. Combin. 23 (2016), Paper 2.35, 24 pp.

[2] A. Bishnoi and B. De Bruyn. The L3(4) near octagon. J. Algebraic Combin. 48 (2018),
157–178.

[3] B. De Bruyn. An introduction to incidence geometry. Frontiers in Mathematics.
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