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Abstract

This paper arose from the observation that several (families of) near polygons
S, including the recently discovered G2(4) and L3(4) near octagons, share similar
properties. They all have a line spread S and a set Q of quads that behave very
nicely. In particular, S and Q define a near polygon S ′ whose diameter is one less
than the one of S. In this paper, we derive several properties of such “polygonal
triples” (S, S,Q) and obtain some classification results.
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1 Introduction

A point-line geometry S = (P ,L, I) with nonempty point set P , line set L and incidence
relation I ⊆ P × L is called a near polygon if every two distinct points are incident with
at most one line, if the collinearity graph Γ of S has finite diameter and if for every
point-line pair (x, L), there exists a unique point on L that is nearest to x with respect to
the distance in Γ. If d is the diameter of Γ, then S is called a near 2d-gon. A near 0-gon
is a point (no lines) and a near 2-gon is a line. A near quadrangle with a pair of disjoint
lines is also called a generalized quadrangle [12].

A set X of points of a near polygon S is called a subspace if every line that has two
points in X has all its points in X. If X is a nonempty subspace, then the subgeometry of
S defined by the points contained in X and the lines that have all their points in X will
be denoted by X̃. A subspace X will be called convex if every point on a shortest path
between two points of X is also contained in X. If X is a nonempty convex subspace of
a near polygon, then X̃ itself is also a near polygon. Such a nonempty convex subspace
X is called a quad if X̃ is a generalized quadrangle.

Suppose now that S = (P ,L, I) is a near (2d + 2)-gon with d ≥ 1 having some line
spread S, i.e. a set of lines partitioning the point set, and suppose Q is a family of quads
of S. Then we call (S, S,Q) a polygonal triple if the following two properties are satisfied:

(P1) For every point x of S, the quads of Q through x all contain the unique line Lx of
S through x, and partition the set of lines through x distinct from Lx.
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(P2) The point-line geometry S ′ with point set S, line set Q and natural incidence (i.e.
containment) is a near 2d-gon.

We will also say that S ′ is the near polygon associated with the polygonal triple (S, S,Q).
If (S, S,Q) is a polygonal triple, then Q is uniquely determined by S and S as it consists
of all quads of S containing a line of S. (If two distinct intersecting lines of a near polygon
are contained in a quad, then this quad must be unique.) If d = 1, then S is a generalized
quadrangle, S is a line spread of S and Q = {S}.

The present paper arose from the observation that several (families of) near polygons
S, including the recently discovered G2(4) and L3(4) near octagons [1, 2], have line spreads
S and families Q of quads for which (P1) and (P2) are satisfied. This led us to the idea
to develop a theory for polygonal triples.

Several known examples of polygonal triples will be listed in Section 3. In Section 4,
we derive several properties of near polygons S that admit a polygonal triple (S, S,Q),
and use these in Section 5 to obtain classification results for polygonal triples. Among
other results, we will classify there all polygonal triples (S, S,Q) for which S is a finite
near hexagon with only thick lines (i.e. lines with at least three points) and for which
the associated near polygon is a (nondegenerate) generalized quadrangle. The results
obtained in Sections 3, 4 and 5 rely on several technical definitions and facts from the
theory of near polygons, in particular on results of product and glued near polygons.
These will be surveyed in Section 2.

Consider now the following problem.

Given a near 2d-gon S ′. Determine all polygonal triples (S, S,Q) for which S ′
is the associated near polygon.

The present paper contains some results in this direction. In Theorem 5.4 for instance, we
solve this problem in case S ′ is a grid. In [3], we will develop an algorithm for settling this
problem for certain near polygons S ′ and apply it to some particular cases. Our hope is
that this algorithm can be used to construct new interesting examples of near polygons by
means of computer. We were not (yet) successful in doing that, but instead we have used
it to obtain characterization results for the G2(4) and L3(4) near octagons, and to prove
the nonexistence of certain polygonal triples. While computer results and algorithms play
an important role in [3], the current paper is merely devoted to a theoretical treatment
of near polygons admitting a polygonal triple.

2 Preliminaries

2.1 Quads in near polygons

If x and y are two points of a near polygon S, then d(x, y) denotes the distance between
x and y in the collinearity graph Γ of S and Γi(x) with i ∈ N denotes the set of points at
distance i from x. Recall that a quad of a near polygon is a nonempty convex subspace
Q for which Q̃ is a generalized quadrangle. Any two points at distance 2, or equivalently
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any two distinct intersecting lines, are contained in at most one quad. The following two
propositions are taken from Shult and Yanushka [13].

Proposition 2.1 ([13, Proposition 2.5]) Suppose a and b are two points of a near
polygon at distance 2 from each other, and suppose a and b have two common neighbours
c and d such that at least one of the lines ac, cb, bd, da contains at least three points.
Then a and b are contained in a unique quad.

Proposition 2.2 ([13, Proposition 2.6]) Suppose S is a near polygon having the prop-
erty that every line is incident with at least three points. Then one of the following cases
occurs for a point-quad pair (x,Q) of S:

(1) There exists a unique point x′ ∈ Q nearest to x. In this case, d(x, y) = d(x, x′) +
d(x′, y) for every point y ∈ Q.

(2) The points in Q nearest to x form an ovoid of Q̃, i.e. a set of points of Q̃ having a

unique point in common with every line of Q̃.

If case (1) occurs in Proposition 2.2, then the point x is called classical with respect to
Q. If case (2) occurs, then the point x is called ovoidal with respect to Q. The following
property was proved in Brouwer and Wilbrink [4, Lemma 8], see also [9, Theorem 1.23].

Proposition 2.3 ([4]) Suppose S is a near polygon having at least three points on each
line. Let Q be a quad of S and L a line containing points at distance i and i+ 1 from Q.
Then L has a unique point at distance i from Q.

A near polygon is called dense if every line is incident with at least three points and if
every two points at distance 2 have at least two neighbors. Proposition 2.1 tells us that
every two points of a dense near polygon at distance 2 from each other are contained in
a unique quad. The existence of quads can be used to prove the following, see Brouwer
and Wilbrink [4, Lemma 19] and [9, Theorem 2.2].

Proposition 2.4 ([4]) In a dense near polygon S, there exists a constant t such that
every point of S is incident with precisely t+ 1 lines.

A near polygon is said to have order (s, t) if every line is incident with precisely s + 1
points and every point is incident with exactly t + 1 lines. If Q is a finite generalized
quadrangle of order (s, t), then Q contains (s + 1)(st + 1) points, and every ovoid of Q
contains precisely st+ 1 points. If s, t ≥ 2, then an inequality of Higman [11, (6.4)] states
that t ≤ s2 and s ≤ t2.

If all points of a near polygon S = (P ,L, I) are classical with respect to some quad Q,
then Q is called classical. More generally, a convex subspace F of S is called classical if for
every point x of S there exists a unique point x′ ∈ F such that d(x, y) = d(x, x′)+d(x′, y)
for every point y ∈ F . The point x′ is called the projection of x on F and will often be
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denoted by πF (x). Every line of a near polygon is a classical convex subspace. A convex
subspace F 6= P is called big if every point outside F is collinear with a (necessarily
unique) point of F . Every big convex subspace is also classical. In a near hexagon, a
quad is classical if and only if it is big. The following is a special case of Theorem 1.7 of
[9].

Proposition 2.5 ([9]) If Q1 and Q2 are two quads of a near hexagon S intersecting in
a singleton, then none of Q1, Q2 can be big in S.

2.2 Dual polar spaces

Suppose Π is a polar space of rank n ≥ 1 in the sense1 of Tits [14, Chapter 7]. Then
with Π, there is associated a near 2n-gon ∆, called a dual polar space of rank n ([5, 13]).
The points of ∆ are the maximal singular subspaces of Π (those of projective dimension
n−1), the lines of ∆ are the next-to-maximal singular subspaces of Π (those of projective
dimension n − 2), and incidence is reverse containment. A dual polar space of rank 1 is
a line and a dual polar space of rank 2 is a generalized quadrangle. By definition, a dual
polar space of rank 0 is a point.

There exists a bijective correspondence between the possibly empty singular subspaces
α of Π and the nonempty convex subspaces Fα of ∆: if α is a singular subspace of
dimension n− 1− k of Π with k ∈ {0, 1, . . . , n}, then the set Fα of all maximal singular
subspaces of Π containing α is a convex subspace of diameter k of ∆. Obviously, if α1 and
α2 are singular subspaces of Π, then α1 ⊆ α2 if and only if Fα2 ⊆ Fα1 . As the subspaces
of a projective space Σ, ordered by reverse containment, also determine a projective space
(the dual of Σ), we thus see that the following should hold.

Proposition 2.6 The system of convex subspaces through a given point of ∆ is isomor-
phic to the system of subspaces of a certain (n− 1)-dimensional projective space.

Every two points of ∆ at distance k from each other are contained in a unique convex
subspace of diameter k. If F is a nonempty convex subspace of ∆, then F̃ itself is also
a dual polar space. The convex subspaces of diameter 2 are precisely the quads. The
convex subspaces of ∆ (of diameter n− 1) corresponding to the points of Π are called the
maxes of ∆. Every convex subspace of ∆ is classical, in particular every max is big. The
following can be proved, see Cameron [5].

Proposition 2.7 ([5]) The dual polar spaces of rank n are precisely the near 2n-gons
having the property that every two points at distance 2 are contained in a unique classical
quad.

We shall also need the following property.

1The singular subspaces are allowed to be reducible projective spaces (having lines of size 2).
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Proposition 2.8 Let F be a max of ∆, x a point not contained in F and L the unique
line through x meeting F . Then every convex subspace through x not containing L is
disjoint from F .

Proof. Let x′ denote the unique point of F on the line L. Suppose F ′ is a convex
subspace through x containing a point y of F . Then every shortest path between x and
y is contained in F ′. Now, since F is classical, there exists a shortest path between x and
y containing the point x′. So, x′ ∈ F ′ and L is contained in F ′. We conclude that every
convex subspace through x not containing L is disjoint from F . �

A survey of the basic properties of dual polar spaces can be found in Chapter 8 of [10]. This
book also contains proofs of all properties of dual polar spaces that we have mentioned
above.

2.3 Admissible line spreads

Two nonempty classical convex subspaces (in particular, two lines) F1 and F2 of a near
polygon S are called parallel if for every point x1 ∈ F1, there exists a unique point
ΠF1,F2(x1) ∈ F2 at distance d(F1, F2) from x1, and for every point x2 ∈ F2, there exists a
unique point πF2,F1(x2) ∈ F1 at distance d(F1, F2) from x2. If F1 and F2 are such convex
subspaces, then by [9, Theorem 1.10], ΠF1,F2 : F1 → F2 and ΠF2,F1 : F2 → F1 define

isomorphisms between F̃1 and F̃2 (and moreover they are each other’s inverses).

A line spread of a near polygon is called admissible if every two of its lines are parallel.

Proposition 2.9 Suppose S is a near polygon having at least three points on each line,
and S is an admissible line spread of S. Then any two lines L1 and L2 of S at distance
1 from each other are contained in a (necessarily unique) quad.

Proof. Let x1 and x′1 be two distinct points of L1, and let x2 and x′2 be the unique points
of L2 collinear with respectively x1 and x′1. The points x1 and x′2 then lie at distance 2
from each other and x2, x′1 are two common neighbours of these points. By Proposition
2.1, we know that x1 and x′2 are contained in a unique quad. This quad necessarily
contains the lines L1 and L2. �

Proposition 2.10 Let S be an admissible line spread of a near (2d + 2)-gon S, and let
Γ denote the graph whose vertices are the element of S, where two elements are adjacent
whenever they lie at distance 1 from each other regarded as lines of S. Then dS(L1, L2) =
dΓ(L1, L2) for all lines L1, L2 ∈ S. Moreover, the diameter of the graph Γ is equal to d.

Proof. Put δ := dΓ(L1, L2) and let L1 = K0, K1, . . . , Kδ = L2 be a (shortest) path of
length δ in Γ connecting L1 and L2. Let x0 ∈ K0 and for every i ∈ {1, 2, . . . , δ}, let
xi denote the unique point of Ki collinear with xi−1. Such a point exists since the lines
Ki−1 and Ki are parallel and at distance 1 from each other. Since x0 ∈ L1, xδ ∈ L2 and
d(x0, xδ) ≤ δ, we have dS(L1, L2) ≤ δ = dΓ(L1, L2).
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Put δ′ = dS(L1, L2). Let x1 ∈ L1 and x2 ∈ L2 such that dS(x1, x2) = δ′. Let
x1 = y0, y1, . . . , yδ′ = x2 be a (shortest) path of length δ′ in S connecting x1 and x2.
For every i ∈ {0, 1, . . . , δ′}, let Ki denote the unique line of S containing yi. Then
for every i ∈ {1, 2, . . . , δ′}, either Ki−1 = Ki or dΓ(Ki−1, Ki) = 1. We conclude that
dΓ(L1, L2) ≤ δ′ = dS(L1, L2).

Hence, dS(L1, L2) = dΓ(L1, L2).

Since S is a near (2d+2)-gon, we have d(x, L) ≤ d for any point-line pair (x, L), implying
that d(K1, K2) ≤ d for every two lines K1 and K2 of S. Suppose x1 and x2 are two points
of S at maximal distance d + 1 from each other, and denote by Ki with i ∈ {1, 2} the
unique line of S containing xi. Since d(x1, x2) = d + 1 and K1, K2 are parallel lines, we
necessarily have that d(K1, K2) = d. This shows that the diameter of Γ is indeed d. �

2.4 Product near polygons

From any two near polygons S1 and S2, a new near polygon S1×S2 can be derived which
is called the cartesian or direct product of S1 and S2. The collinearity graph Γ of S1 ×S2

is the cartesian product of the collinearity graphs Γ1 and Γ2 of respectively S1 and S2. So,
the vertices of Γ are the pairs (x1, x2) where xi with i ∈ {1, 2} is a point of Si. If (x1, x2)
and (y1, y2) are two distinct vertices of Γ, then (x1, x2) ∼Γ (y1, y2) if and only if xi ∼Γi

yi
and x3−i = y3−i for an i ∈ {1, 2}. A near polygon (like for instance a grid) isomorphic to
the cartesian product of two near polygons of diameters at least 1 is called a product near
polygon.

The product near polygon S = S1×S2 has two partitions T1 and T2 of its point set in
mutually parallel classical convex subspaces such that the following hold:

(1) if F ∈ Ti with i ∈ {1, 2}, then F̃ ∼= Si;

(2) every element of T1 intersects every element of T2 in a point;

(3) every line of S is contained in a unique element of T1 ∪ T2.

A proof of the following proposition can be found in [10, Theorem 8.18].

Proposition 2.11 ([10]) The cartesian product of two dual polar spaces is again a dual
polar space.

The following was shown by Brouwer and Wilbrink [4, Theorem 1], see also [9, Theorem
1.12].

Proposition 2.12 ([4]) Every near polygon with at least two line sizes having the prop-
erty that every two points at distance 2 have at least two common neighbours is a product
near polygon.

The following property of generalized quadrangles is well known, but could also be re-
garded as a consequence of Proposition 2.12.
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Corollary 2.13 Suppose Q is a generalized quadrangle that is not a grid. Then every
line of Q is incident with a constant number of points.

Suppose S is the product near polygon S1×S2, where S1 = (P1,L1, I1) is a near polygon
and S2 = (P2,L2, I2) is a line. For every point x of S1, let Lx denote the line of S consisting
of all points (x, y) where y ∈ P2. The set S = {Lx |x ∈ P1} is then an (admissible) line
spread of S. Any line spread of a near polygon which can be obtained in this way is
called trivial. In fact, with S1 and S2 as above, we will say that S is a trivial line spread
of S = S1 × S2 with associated near polygon S1. The isomorphism class of S1 is indeed
uniquely determined by the line spread S: if we fix a line L ∈ S and a point x ∈ L, then
the set X of points of S for which x is the nearest point on L is a convex subspace for
which X̃ ∼= S1. Alternatively, the collinearity graph of S1 (which uniquely determines S1)
is isomorphic to the graph with the elements of S as vertices, where two lines of S are
adjacent whenever they lie at distance 1 from each other.

2.5 Glued near polygons

The cartesian product construction allows to create new near polygons from other near
polygons. It is also possible to create new near polygons from other near polygons by a
construction known as glueing. The theory of glueing was developed in a series of papers
by the author. A survey of the main results can be found in Chapter 4 of [9]. We only
mention here the notions and properties that we will need later.

Let S1 and S2 be two near polygons and suppose Si with i ∈ {1, 2} is an admissible line
spread of Si. If certain nice properties are satisfied, then according to [8], it is possible to
construct new near polygons of diameter d1+d2−1, where di with i ∈ {1, 2} is the diameter
of Si. Any such near polygon is called a glued near polygon of type S1 ⊗ S2. In case S2 is
a trivial line spread of S2 with associated near polygon S ′2, then the corresponding glued
near polygons are all isomorphic to the product near polygon S1×S ′2. We will not discuss
the precise way how glued near polygons of type S1 ⊗ S2 are constructed from the near
polygons S1, S2 and their respective admissible line spreads S1 and S2. We only mention
here that if S is a glued near polygon of type S1 ⊗ S2, then there exist two partitions T1

and T2 of the point set P of S in mutually parallel classical convex subspaces such that
the following hold:

(I) For every i ∈ {1, 2} and every Fi ∈ Ti, we have F̃i ∼= Si.

(II) Every element of T1 intersects every element of T2 in a line.

(III) Every line of S is contained in an element of T1 ∪ T2.

In case S is a glued near hexagon of type S1 ⊗ S2, where S1 and S2 are two generalized
quadrangles, then every two points of S at distance 2 are contained in a unique quad,
which either belongs to T1 ∪ T2 or is a grid. Glued near hexagons can be characterized as
follows, see [7, Section 7].
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Proposition 2.14 ([7]) Suppose S = (P ,L, I) is a near hexagon and T1, T2 are two
partitions of P in big quads such that every element of T1 intersects every element of T2

in a line and every line is contained in an element of T1 ∪ T2. Then the quads in a given
Ti are all isomorphic, and S is a glued near hexagon of type Q̃1 ⊗ Q̃2, where Qi with
i ∈ {1, 2} is an arbitrary element of Ti.

In the following proposition, we prove some facts about glued near polygons.

Proposition 2.15 Suppose S is a glued near polygon of type S1⊗S2 and suppose T1 and
T2 are two partitions of the point set P of S in mutually parallel classical convex subspaces
satisfying the properties (I), (II) and (III) above. Then the following hold:

(1) The lines of the form F1 ∩ F2 where F1 ∈ T1 and F2 ∈ T2 form a line spread S∗ of
S.

(2) For every F ∈ T1 ∪ T2, the set of lines of S∗ contained in F is a line spread SF of

F̃ .

(3) If F1 and F2 are two elements belonging to the same Ti with i ∈ {1, 2}, then
ΠF1,F2(SF1) = SF2. Specifically, if L ∈ SF1 and G is the unique element of T3−i
containing L, then ΠF1,F2(L) = F2 ∩G.

(4) For each i ∈ {1, 2}, let Fi be an arbitrary element of Ti, and put Si := SFi
. Let Γi

be the graph whose vertices are the elements of Si, with two elements of Si being
adjacent whenever they lie at distance 1 from each other regarded as lines of F̃i.
Let Γ be the graph whose vertices are the elements of S∗, with two elements of S∗

being adjacent whenever they lie at distance 1 from each other regarded as lines of
S. Then Γ is isomorphic to the cartesian product of the graphs Γ1 and Γ2.

Proof. (1) This follows from the fact that every point of S is contained in a unique
element of T1 and a unique element of T2, and hence also in a unique element of the form
F1 ∩ F2, where F1 ∈ T1 and F2 ∈ T2.

(2) Suppose F ∈ Ti for some i ∈ {1, 2}. Then the lines of S∗ contained in F are the lines
F ∩ F ′ where F ′ ∈ T3−i. Each point x of F is contained in one such line, obtained by
putting F ′ equal to the unique element of T3−i containing x.

(3) Suppose F ∈ Ti where i ∈ {1, 2}. For every point x of S, let π(x) denote the unique
point of F nearest to x. We prove by induction on d(x, F ) that π(x) ∈ F ∩ F ′ where F ′

is the unique element of T3−i containing x. Claim (3) of the proposition is an immediate
consequence of this fact.

The mentioned property clearly holds if d(x, F ) = 0, i.e. if x ∈ F . So, suppose
d(x, F ) > 0 and let y be a point collinear with x for which d(y, F ) = d(x, F ) − 1. Then
π(y) = π(x). The unique element of Ti through x is parallel and at distance d(x, F ) from
F , implying that y should be contained in the unique element F ′ of T3−i containing x.
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By the induction hypothesis, we know that π(y) is contained in F ′ ∩ F . Hence, also π(x)
is contained in F ′ ∩ F .

(4) Let (L1, L2) be an arbitrary vertex of Γ1 × Γ2. The unique element of T2 containing
L1 intersects the unique element of T1 containing L2 in a line which we will denote by
(L1, L2)θ. This map θ defines a bijection between the vertex sets of Γ1 × Γ2 and Γ.

Let (L1, L2) and (L′1, L2) be two adjacent vertices of Γ1 × Γ2. Let G (respectively G′)
denote the unique element of T2 containing L1 (respectively L′1). Let H denote the unique
element of T1 containing L2. Then (L1, L2)θ = G ∩ H and (L′1, L2)θ = G′ ∩ H. By (3),
(L1, L2)θ and (L′1, L2)θ are the projections of L1 ⊆ F1 and L′1 ⊆ F1 on H. Since L1 and
L′1 lie at distance 1 from each other, the same should be true for their projections. So,
(L1, L2)θ and (L′1, L2)θ are adjacent vertices of Γ.

Similarly, as above we can show that if (L1, L2) and (L1, L
′
2) are two adjacent vertices

of Γ1 × Γ2, then also (L1, L2)θ and (L1, L
′
2)θ are adjacent vertices of Γ.

We conclude that θ maps adjacent vertices to adjacent vertices. We now show that if
L1 and L2 are adjacent vertices of Γ, then Lθ

−1

1 and Lθ
−1

2 are adjacent vertices of Γ1×Γ2.
We show that the lines L1 and L2 of S∗ are contained in precisely one element of

T1 ∪ T2. Choose x1 ∈ L1 and x2 ∈ L2 such that d(x1, x2) = 1. Every element of T1 ∪ T2

containing L1 and L2 also contains the line x1x2. As x1x2 6∈ S∗, there exists a unique
element of T1 ∪ T2 containing x1x2, and this element of T1 ∪ T2 also contains the lines L1

and L2.
Suppose L1 and L2 are contained in an element F ′i of Ti, where i ∈ {1, 2}. Let G1 be

the unique element of T3−i containing L1 and G2 be the unique element of T3−i containing
L2. Then Lθ

−1

1 and Lθ
−1

2 have a coordinate in common, namely F ′i ∩ F3−i. The other
coordinates are the lines G1 ∩ Fi and G2 ∩ Fi and by (3) these are the projections of
L1 ⊆ F ′i and L2 ⊆ F ′i on Fi. Since d(L1, L2) = 1, also their projections lie at distance 1
from each other, implying that Lθ

−1

1 and Lθ
−1

2 are adjacent in the graph Γ1 × Γ2.
We conclude that θ defines an isomorphism between Γ1 × Γ2 and Γ. �

3 Examples of polygonal triples

Suppose S = (P ,L, I) is a near (2d + 2)-gon with d ≥ 1 having a line spread S and a
family Q of quads. Recall that (S, S,Q) is a polygonal triple if the conditions (P1) and
(P2) of Section 1 are satisfied.

Lemma 3.1 Suppose the triple (S, S,Q) satisfies condition (P1) and let S ′ be the point-
line geometry as defined in (P2). Then the following are equivalent for two distinct lines
L1 and L2 of S:

(1) L1 and L2 are collinear in S ′;

(2) L1 and L2 are parallel lines of S at distance 1 from each other in S.

(3) L1 and L2 lie at distance 1 from each other in S.
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Proof. We show that (1)⇒ (2)⇒ (3)⇒ (1).
If L1 and L2 are collinear in S ′, then there is a quad of Q containing L1 and L2,

implying that L1 and L2 are parallel lines at distance 1 from each other in the near
polygon S. Hence, (1)⇒ (2).

Obviously, (2) ⇒ (3). It remains to show that (3) ⇒ (1). Suppose therefore that
L1 and L2 lie at distance 1 from each other, and let x1 ∈ L1 and x2 ∈ L2 such that
d(x1, x2) = 1. By (P1), there exists a unique quad of Q containing L1 and x1x2. Since
this quad also contains x2, it should by (P1) also contain the unique line L2 of S through
x2. So, L1 and L2 are contained in a quad of Q, implying that L1 and L2 are collinear
regarded as points of S ′. �

Lemma 3.2 Suppose the triple (S, S,Q) satisfies condition (P1) and let S ′ be the point-
line geometry as defined in (P2). Suppose L1, L2 and L3 are three mutually collinear
points of S ′. Then there is a line of S ′ containing them.

Proof. We may suppose that L1, L2 and L3 are mutually distinct. Then there exists a
unique quad Q1 ∈ Q containing L2 and L3, a unique quad Q2 ∈ Q containing L1 and
L3, and a unique quad Q3 ∈ Q containing L1 and L2. Suppose L3 is not contained in
Q3. Then by Lemma 3.1 any point of L3 \Q3 is collinear with two distinct points of Q3,
namely one of L1 and one on L2. This is clearly not possible as Q3 is a convex subspace.
�

The following is an immediate consequence of Lemma 3.2.

Corollary 3.3 Suppose the triple (S, S,Q) satisfies condition (P1) and let S ′ be the point-
line geometry as defined in (P2). Then the lines of S ′ bijectively correspond to the maximal
cliques of its collinearity graph.

We now list several examples of polygonal triples.

Example 1. Suppose S is a generalized quadrangle having a line spread S and put
Q = {S}. Then (S, S,Q) is a polygonal triple whose associated near polygon is a line.

Example 2. Suppose S is a glued near hexagon. Then there exist two partitions Q1 and
Q2 of its point set into big quads such that:

• every quad of Q1 intersects every quad of Q2 in a line;

• every line is contained in an element of Q1 ∪Q2.

If we put Q := Q1 ∪ Q2 and S := {Q1 ∩ Q2 |Q1 ∈ Q1 and Q2 ∈ Q2}, then (S, S,Q) is a
polygonal triple for which the associated near polygon is a grid.

Example 3. Suppose S is a trivial line spread of a near polygon S with associated near
polygon S ′. If Q denotes the set of quads of S containing a line of S, then (S, S,Q) is a
polygonal triple whose associated near polygon is isomorphic to S ′.
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Example 4. Suppose Π is a polar space of rank d+1 ≥ 3 and X is a hyperplane of Π, i.e.
a proper set2 of points of Π such that every line of Π has either 1 or all its points in X.
Suppose also that the singular subspaces of Π contained in X define a (nondegenerate)
polar space Π′ of rank d. Let ∆ and ∆′ denote the dual polar spaces associated with
respectively Π and Π′. Let S denote the set of lines of ∆ that correspond to the maximal
singular subspaces of Π′ and denote by Q the set of quads of ∆ that correspond to the
next-to-maximal singular subspaces of Π′.

Theorem 3.4 (∆, S,Q) is a polygonal triple whose associated near polygon is isomorphic
to ∆′.

Proof. Let α be a point of ∆, i.e. a singular subspace of dimension d of Π. Since the
rank of Π′ is equal to d, α cannot be contained in X and so α ∩X is a hyperplane of α,
i.e. α ∩X is a maximal singular subspace of Π′. The line of ∆ corresponding to α ∩X is
then the unique element of S containing α. This shows that S is a line spread of ∆.

Let α be a point of ∆, let Lα denote the unique element of S containing α and
let M denote another line of ∆ through α. Denote by β ⊆ α the (d − 1)-dimensional
subspace of Π corresponding to M . Recall that α∩X is the (d−1)-dimensional subspace
corresponding to Lα. As α ∩ X and β are two distinct hyperplanes of α, they intersect
in a next-to-maximal singular subspace of Π′, showing that Lα and M are contained in a
unique quad of Q. So, we see that Property (P1) is satisfied.

By the definition of the dual polar space ∆′, it must be isomorphic to the point-line
geometry with point set S and line set Q, where incidence is containment. So, we see
that also Property (P2) is satisfied with associated near polygon isomorphic to ∆′. �

In the case Π is fully embeddable in a finite Desarguesian projective space, the following
examples arise (with n = d+ 1 ≥ 3 and q a prime power).

Π Q(2n, q) Q+(2n− 1, q) H(2n− 1, q2)
Π′ Q−(2n− 1, q) Q(2n− 2, q) H(2n− 2, q2)

Example 5. Suppose S is the G2(4) near octagon as described in [1]. Let Q denote the
set of all quads of S and S the set of lines that are contained in at least two elements of
Q. The results in [1] then show that (S, S,Q) is a polygonal triple whose associated near
polygon is isomorphic to the dual split Cayley hexagon H(4)D.

Example 6. Suppose S is the L3(4) near octagon described in [1, 2], which occurs as a
full subgeometry of the G2(4) near octagon. Again, let Q denote the set of all quads of
S and denote by S the set of all lines that are contained in at least two elements of Q.
Again from results of [1, 2], it follows that (S, S,Q) is a polygonal triple whose associated
near polygon is the unique generalized hexagon of order (4, 1).

2In case Π is fully embeddable in a Desarguesian projective space Σ, then we know from Cohen and
Shult [6, Theorem 5.2] that X arises by intersecting Π with a hyperplane of Σ.
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Example 7. Here we show how polygonal triples can be constructed from other polygonal
triples. Suppose (S1, S1,Q1) and (S2, S2,Q2) are two polygonal triples with associated
near polygons A1 and A2. We denote the diameter of Si, i ∈ {1, 2}, by di + 1. Suppose
S is a glued near polygon of type S1 ⊗S2, necessarily having diameter d1 + d2 + 1. Then
there exist two partitions T1 and T2 of the point set of S into mutually parallel classical
convex subspaces such that:

• For every i ∈ {1, 2} and every F ∈ Ti, we have F̃ ∼= Si.

• Every element of T1 intersects every element of T2 in a line. Moreover, the set S of
all lines that are obtained in this way is a line spread of S.

• Every line of S is contained in an element of T1 ∪ T2.

Let Fi, i ∈ {1, 2}, be a specific element of Ti and let S ′i be the line spread of S ′i := F̃i
consisting of all lines of S that have all their points in Fi. Suppose moreover that the
following holds:

(∗) For every i ∈ {1, 2}, there exists an isomorphism from S ′i to Si mapping S ′i to Si.

By Proposition 2.15(3), we know that if the latter property holds for F1 and F2, then it
holds for any convex subspace in T1∪T2. Now, denote by Q the set of all quads of S that
contain a line of S.

Theorem 3.5 (S, S,Q) is a polygonal triple for which the associated near polygon is
isomorphic to the cartesian product of A1 and A2.

Proof. Let x be an arbitrary point of S. Let Gi with i ∈ {1, 2} denote the unique
element of Ti containing x. Then the unique line Lx ∈ S through x is contained in G1 and
G2. Let S ′′i with i ∈ {1, 2} denote the line spread of G̃i formed by those lines of S that
have all their points in Gi. The elements of Q contained in Gi are precisely the quads
of G̃i containing some line of S ′′i , and the elements of Qi are precisely the quads of Si
containing some line of Si. By (∗) and Proposition 2.15(3), there exists an isomorphism

θi from G̃i to Si mapping S ′′i to Si. As every line through x distinct from Lx is contained
in either G1 or G2, we can now easily see that Property (P1) is satisfied. Let A be the
point-line geometry associated with (S, S,Q) as defined in (P2).

Let Γ′i with i ∈ {1, 2} be the graph whose vertices are the elements of S ′i with two
lines of S ′i being adjacent whenever they lie at distance 1 from each other. Let Γ be the
graph whose vertices are the elements of S, with two lines being adjacent whenever they
lie at distance 1 from each other. By Lemma 3.1, we then know that Γ is the collinearity
graph of the point-line geometry A. By Proposition 2.15(4), we moreover know that Γ is
isomorphic to the cartesian product of the graphs Γ′1 and Γ′2.

Now, let Γi with i ∈ {1, 2} be the graph whose vertices are the elements of Si with two
vertices being adjacent whenever the lines lie at distance 1 from each other in the near
polygon Si. Then Γi is the collinearity graph of the near polygon Ai by Lemma 3.1. By
(∗), the graphs Γi and Γ′i are isomorphic. So, the collinearity graph of A is isomorphic to
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the cartesian product of the collinearity graphs of the near polygons A1 and A2, i.e. to
the collinearity graph of the product near polygon A1 × A2. By Corollary 3.3, we then
know that A is isomorphic to the cartesian product A1 ×A2. �

4 Properties of polygonal triples

Throughout this section (with exception of Proposition 4.8), we suppose that S is a line
spread of a near (2d + 2)-gon S and Q is a set of quads of S such that (S, S,Q) is a
polygonal triple with associated near 2d-gon S ′. For every point x of S, let Lx denote the
unique line of S containing x.

Proposition 4.1 Every line L of S not belonging to S is contained in a unique quad of
Q.

Proof. Let x be an arbitrary point of L. Then Lx 6= L. Every quad containing L also
contains the point x. Since the quads of Q through x all contain the line Lx and partition
the set of lines through x distinct from Lx, we see that there exists a unique member of
Q containing L. �

Proposition 4.2 For every quad Q ∈ Q, the lines of S contained in Q form a line spread
of Q̃.

Proof. This follows from the fact that for every point x and every quad Q ∈ Q through
x, the quad Q contains the line Lx. �

Proposition 4.3 Every two lines L1 and L2 of S are parallel, i.e. S is an admissible
line spread. The distance between L1 and L2 in S ′ is equal to the distance between L1 and
L2 in S.

Proof. Put δ := dS(L1, L2). If δ = 0, then L1 = L2 and so the proposition obviously
holds then. Suppose therefore that δ ≥ 1. In order to show that L1 and L2 are parallel,
it suffices to show that d(x, L2) ≤ δ for every point x of L1. Choose x1 ∈ L1 and x2 ∈ L2

such that d(x1, x2) = δ, and let y0, y1, . . . , yδ be a path of length δ in S with y0 = x1 and
yδ = x2. If yi−1 and yi are two consecutive points of this path such that yi−1yi 6∈ S, then
Lyi−1

and Lyi are two disjoint lines of the unique quad of Q containing yi−1yi, showing
that every point of Lyi−1

is collinear with a unique point of Lyi . If yi−1 and yi are two
consecutive points of this path such that yi−1yi ∈ S, then Lyi−1

= Lyi . We thus see that
every point x ∈ L1 is connected to some point of L2 by means of a path of length at most
δ. As said before, this shows that the lines L1 and L2 are parallel. The second claim
follows from Proposition 2.10 and Lemma 3.1. �

Proposition 4.4 Every quad of Q is classical in S.

Proof. Let x be a point of S and Q a quad of Q. Let LQ denote the set of lines

of S contained in Q. By Proposition 4.2, LQ is a line spread of Q̃. If L ∈ LQ, then
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d(x, L) = d(Lx, L) as Lx and L are parallel. By Property (P2), there must exist a unique
line L∗ ∈ LQ nearest to Lx in S ′ and hence also in S (by Proposition 4.3). If y is the
unique point of L∗ nearest to x, then y must be the unique point of Q nearest to x.
Moreover, πL(x) = πL(y) for every L ∈ LQ. In fact, if z ∈ Q, then d(x, z) = d(Lx, Lz) +
d(πLz(x), z) = d(Lx, Ly)+d(Ly, Lz)+d(πLz(y), z) = d(x, y)+d(y, πLz(y))+d(πLz(y), z) =
d(x, y) + d(y, z), showing that x is classical with respect to Q. �

Proposition 4.5 One of the following cases occurs for a convex subspace F of S:

(1) No line of S is contained in F .

(2) The lines of S contained in F form a line spread of F̃ .

Proof. Suppose L is a line of S contained in F . Let x be an arbitrary point of F . We
show by induction on d(x, L) that the line Lx is contained in F . Obviously this is the case
when d(x, L) = 0 since Lx = L in that case. Suppose therefore that d(x, L) > 0. Let y
be a point collinear with x at distance d(x, L)− 1 from L. Then y ∈ F since F is convex.
By Proposition 4.3, every point of Ly has distance d(x, L) − 1 from L. So, x 6∈ Ly. By
the induction hypothesis, the line Ly is contained in F . So, the smallest convex subspace
containing xy and Ly is also contained in F . By Property (P1), this smallest convex
subspace is a quad of Q that contains the lines Lx and Ly. Hence, Lx ⊆ F . �

Proposition 4.6 Suppose S is a near hexagon every line of which is incident with at
least three points and that S ′ is a (nondegenerate) generalized quadrangle. Then every
two points at distance 2 from each other are contained in a unique quad, i.e. S is a dense
near hexagon.

Proof. Let x and y be two points of S at distance 2 not contained in a quad of Q. In
order to show that x and y are contained in a unique quad, it suffices by Proposition
2.1 to show that x and y have at least two common neighbours. Let Q1 and Q2 be two
distinct quads of Q through Lx. Since Q1 and Q2 are classical, they are also big and so
y is collinear with a unique point y1 ∈ Q1 and a unique point y2 ∈ Q2. Then y1 and
y2 are distinct common neighbours of x and y. Indeed, if y1 and y2 were equal, then
y1 = y2 ∈ Q1 ∩Q2 = Lx, but then y is collinear with a point of Lx and thus contained in
a quad of Q together with Lx, a contradiction. �

Proposition 4.7 Let S ′1 be a full isometrically embedded subgeometry of S ′ that is a near
2δ-gon with δ ≥ 1. Then the point set S1 of S ′1 is a subset of S and the line set Q1 of S ′1
is a subset of Q. Consider the following sets:

• P1 is the set of points of S that are contained in some line of S1;

• L1 is the set of lines of S that are contained in some quad of Q1.

Then:

(1) P1 is a subspace of S;
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(2) The point-line geometry S1 := P̃1 has L1 as line set and is isometrically embedded
into S.

(3) S1 is a near (2δ + 2)-gon.

(4) (S1, S1,Q1) is a polygonal triple with associated near polygon S ′1.

Proof. We show that P1 is a subspace of S. To that end consider two distinct collinear
points x and y of S that are contained in P1. We distinguish two cases.

If Lx = Ly ∈ S1, then obviously every point of the line xy = Lx = Ly belongs to P1.
Suppose next that Lx 6= Ly. As d(x, y) = 1, the unique element Q of Q containing

the line xy also contains Lx and Ly. The lines Lx and Ly are two collinear points of S ′
belonging to S1, and since S ′1 is a full isometrically embedded subgeometry of S ′, we know
that Lx and Ly should be two collinear points in S ′1, implying that Q ∈ Q1. So, all lines
of S contained in Q belong to S1. As these lines cover all points of xy, we see that the
line xy is completely contained in P1.

So, we see that P1 is a subspace of S. We denote the line set of S1 = P̃1 by L′1. We
show that L1 = L′1.

We first prove that L1 ⊆ L′1. Let L be an arbitrary line of L1. Then there exists a

quad Q ∈ Q1 containing L. The lines of S contained in Q define a line spread of Q̃ and
all these lines belong to S1 as S ′1 is a full subgeometry of S ′. These lines cover all points
of L, implying that all points of L belong to P1 and that L itself belongs to L′1.

Next, we prove that L′1 ⊆ L1. Suppose that L ∈ L′1, or equivalently, that all points of
L belong to P1. If L ∈ S, then L ∈ S1 and the fact that a near δ-gon is connected then
implies that L is contained in some element of Q1, i.e. L ∈ L1. If L 6∈ S, then take two
distinct points x and y on L. The lines Lx and Ly belong to S1 and are collinear in S ′,
implying that they are also collinear in S ′1. The unique quad Q containing xy then also
contains Lx, Ly and must belong to Q1, implying that L = xy ∈ L1.

We show that S1 is isometrically embedded into S. Suppose x and y are two points of
S1 at distance δ from each other in the near polygon S. There are then two possibilities.

Suppose the lines Lx and Ly lie at distance δ− 1 from each other in S and hence also
in S ′ by Proposition 4.3. Then the unique point on Ly nearest to x is distinct from y.
In S ′ there exists a path of length δ − 1 connecting Lx and Ly, implying that there also
exists such a path in S ′1 (as S ′1 is isometrically embedded in S ′). This implies that there
exists a path in S1 of length δ that connects x with y.

Suppose the lines Lx and Ly lie at distance δ from each other. Then the unique point
of Ly nearest to x coincides with y. In S ′ there exists a path of length δ connecting
Lx and Ly, implying (again) that there also exists such a path in S ′1. This implies that
there exists a path in S1 of length δ connecting x with a point of Ly. The latter point
necessarily coincides with y.

Since S1 is isometrically embedded into S, it must be a near polygon. Since δ is the
maximal distance between two lines of S1, S1 must be a near (2δ + 2)-gon.

We prove that (S1, S1,Q1) is a polygonal triple. The points of S1 are precisely the
points that are contained in some line of S1, showing that S1 is indeed a line spread of S1.
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Let x be an arbitrary point of S1. Then Lx ∈ S1 has all its points in P1. If M is a line
of S1 through x distinct from Lx, then there exists a (necessarily unique) quad Q ∈ Q1

containing Lx and M , showing that Property (P1) of Section 1 is satisfied. The point-
line geometry with point set S1, line set Q1 and natural incidence is precisely the near
polygon S ′1, completing the proof that (S1, S1,Q1) is a polygonal triple with associated
near polygon S ′1. �

Remark. If (S, S,Q) is the polygonal triple associated with the G2(4) near octagon as
described in Example 5 of Section 3, and S ′1 is a sub-generalized-hexagon of order (4, 1)
of S ′ ∼= H(4)D, then from [1, 2] we know that S1 is the L3(4) near octagon.

The following proposition provides an alternative definition of the notion “polygonal
triple”.

Proposition 4.8 Suppose S is a line spread of a near (2d+ 2)-gon S with d ≥ 1 and let
Q denote the set of all quads of S containing a line of S. Then (S, S,Q) is a polygonal
triple if and only if the following conditions3 are satisfied:

(1) S is an admissible line spread.

(2) Every two lines of S at distance 1 from each other are contained in a (necessarily
unique) quad.

(3) Every quad containing two lines of S is classical.

Proof. For every point x of S, we denote by Lx the unique line of S containing x.
Suppose (S, S,Q) is a polygonal triple. Then S is an admissible line spread by Propo-

sition 4.3. Assume L1 and L2 are two lines of S at distance 1 from each other. Let
x1 ∈ L1 and x2 ∈ L2 such that d(x1, x2) = 1. By Property (P1), there exists a quad of
Q containing x1x2 and L1 = Lx1 . By Proposition 4.2, this quad also contains L2 = Lx2
and hence is the unique quad of S containing L1 and L2. By Proposition 4.2, the quads
containing two lines of S are precisely the quads of Q and by Proposition 4.4 we know
that each of these quads is classical.

Conversely, suppose that properties (1), (2) and (3) of the proposition are satisfied.

We show that for every Q ∈ Q, the lines of S contained in Q define a line spread of Q̃.
As Q ∈ Q, there is a line L of S that is contained in Q. Let x denote an arbitrary point
of Q not contained in L. Then Q is the unique quad containing x and L. So, the unique
quad containing Lx and L must coincide with Q, implying that Lx ⊆ Q. As this holds for
every point x ∈ Q not contained in L, we thus indeed see that the lines of S contained
in Q define a line spread of Q̃. This implies that the quads containing two lines of S are
precisely the quads of Q. It follows that every quad of Q is classical.

We show that (S, S,Q) satisfies Property (P1). Let x be a point and K a line through
x distinct from Lx. The lines K and Lx are then contained in a (necessarily unique) quad,

3If every line of S is incident with at least three points, then condition (2) is superfluous as it is implied
by (1), see Proposition 2.1.
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namely the unique quad through the lines Lx and Ly, where y is an arbitrary point of K
distinct from x.

Let S ′ be the point-line geometry with point set S, line set Q and natural incidence
relation (i.e. containment). Consider a line L ∈ S and a quad Q ∈ Q. Let x be any point
of L. As Q is classical in S, there exists a unique point x′ in Q nearest to x. As S is
admissible, we know from Proposition 2.10 that the distance between the lines Lx and Lx′
in the geometry S ′ is equal to d(x, x′). If K is a line of S contained in Q but distinct from
Lx′ , then the unique point of K nearest to x has distance d(x, x′) + 1 from x, implying
that Lx and K have distance d(x, x′) + 1 from each other in S ′. This implies that the
point-line geometry S ′ is a near polygon. By Proposition 2.10, S ′ is a near 2d-gon. �

5 Classification results

Theorem 5.1 Suppose Π is a polar space of rank d+1 ≥ 3. Suppose S is a line spread of
the dual polar space ∆ associated with Π and Q is a set of quads of ∆ such that (∆, S,Q)
is a polygonal triple. Then S and Q are obtained as in Example 4 of Section 3.

Proof. Let M denote the set of maxes of ∆ that contain a line of S. If M ∈ M, then
we know by Proposition 4.5 that the lines of S contained in M form a line spread of M̃ .
Let X denote the set of points of Π corresponding to the elements of M.

We show that X does not coincide with the whole point set of Π. Let x denote a point
of ∆ and let M denote a max through x not containing the line Lx (by Proposition 2.6
we know that such an M exists). Then M does not belong to M and so the point of Π
corresponding to M does not belong to X.

We show that X is a hyperplane of Π. In view of the previous paragraph, it suffices
to show that a line L of Π has either one or all its points in X. Let F denote the convex
subspace of diameter d− 1 corresponding to L. We distinguish two cases:

(a) Suppose F contains a line of S. Then every max through F belongs toM, showing
that all points of L belong to X.

(b) Suppose no line of S is contained in F . Let x be an arbitrary point of F . By
Proposition 2.6, there exists a unique max M through F and Lx. This M is the
unique max of M containing F . The point of Π corresponding to M is then the
unique point of X on L.

We show that no point x of X is collinear on Π with all remaining points of X. Let
M denote the max of M corresponding to x. Let L denote a line of S not contained in
M . By Propositions 2.6 and 2.8, there exists a max M ′ through L disjoint from M . Let
x′ ∈ X be the point of Π corresponding to M ′ ∈ M. Then x and x′ are not collinear
on Π (otherwise the convex subspace corresponding to the line xx′ would be contained in
M ∩M ′ = ∅).
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We show that the nondegenerate polar space Π′ defined by the set X has rank d.
Let L be a line of S and A the singular subspace (of projective dimension d − 1) of Π
corresponding to L. As any max through L belongs to M, any point of A should belong
to X. This shows that the rank of Π′ is at least d. Suppose the rank is d + 1. Then
there exists a singular subspace of projective dimension d contained in X. This implies
that there exists a point x in ∆ having the property that every max through it belongs
to M. However, that is not possible. By Proposition 2.6, there exists a max through x
not containing the line Lx, and any such max does not belong to M.

By definition, every max containing a line of S belongs to M. If L is a line not
belonging to S and x ∈ L, then Proposition 2.6 implies that there exists a max through L
not containing Lx, and such a max cannot belong toM. So, the lines of S with only maxes
of M through them are precisely the lines of S. This implies that the maximal singular
subspaces of Π′ are precisely the (d− 1)-dimensional subspaces of Π corresponding to the
lines of S. So, S is obtained as described in Example 4 of Section 3. As Q is uniquely
determined by S and S, the set Q is also obtained as described in Example 4 of Section
3. �

Theorem 5.2 Suppose S = (P ,L, I) is a glued near hexagon that is not a product near
hexagon. Let S be a line spread of S and Q a set of quads of S such that (S, S,Q) is a
polygonal triple. Then S and Q are obtained as in Example 2 of Section 3.

Proof. Let Q1 and Q2 be two partitions of P into big quads such that the following hold:

• Every element ofQ1 intersects every element ofQ2 in a line. Moreover, the collection
S∗ of all these lines is a line spread of S.

• Every line is contained in a quad of Q1 ∪Q2

Recall from Section 2.5 that every two points of S at distance 2 from each other are
contained in a unique quad, and that each such quad either belongs to Q1 ∪ Q2 or is a
grid. As S is not a product near hexagon, the quads of Q1∪Q2 should have nontrivial line
spreads, implying that none of them is a grid. By Corollary 2.13 applied to all members
of Q1 ∪Q2, we then see that all lines of S are incidence with the same number of points,
say s+ 1. If s+ 1 ≥ 3, then every quad Q ∈ Q1∪Q2 should have an order (s, tQ) (see e.g.
Proposition 2.4) and the fact that Q is not a grid-quad implies that tQ ≥ 2. If s+ 1 = 2,
then the fact that Q ∈ Q1 ∪ Q2 has a line spread implies that the dual grid Q has some
order (1, tQ) and again we have that tQ ≥ 2 since Q is not a grid-quad.

We now show that no grid-quad G is classical (or equivalently, big). Let x ∈ G and
let Qi with i ∈ {1, 2} be the unique quad of Qi containing x. Then Lx := Q1 ∩ Q2 ∈ S∗
is not contained in G. For every i ∈ {1, 2}, put Li := G ∩ Qi and let L′i be a line of
Qi through x distinct from Lx and Li. Such a line exists as tQi

≥ 2. Let G′ denote the
unique grid-quad containing L′1 and L′2. As G ∩G′ is convex and Γ1(x) ∩G ∩G′ = {x},
we have G ∩ G′ = {x}. Let y ∈ G′ ∩ Γ2(x). If G were big, then the unique point z ∈ G
collinear with y would lie on a shortest path from y ∈ G′ to x ∈ G ∩ G′, implying that
z ∈ G ∩G′ \ {x}, a contradiction. So, G cannot be big.
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So, the only big quads are those of Q1 ∪ Q2. By Proposition 4.4 and Property (P1),
every quad through a line of S is big. Hence, S = {Q1∩Q2 |Q1 ∈ Q1 and Q2 ∈ Q2} = S∗,
i.e. S and Q are obtained as in Example 2 of Section 3. �

Theorem 5.3 Suppose S is a product near hexagon, S is a line spread of S and Q is a
set of quads such that (S, S,Q) is a polygonal triple. Then at least one of the following
cases occurs:

(1) S and Q arise in the way as described in Example 3 of Section 3.

(2) S is a glued near hexagon and S and Q arise as described in Example 2 of Section
3.

Proof. If S is a trivial line spread, then Q is obtained as described in Example 3 of
Section 3. Suppose therefore that S is nontrivial. Suppose S is the product near hexagon
G × L, where G is some generalized quadrangle and L is some line. Then there exists a
partition T1 of the point set P of S in big quads isomorphic to G. Since S is not a trivial
line spread, one of the elements of T1, say Q1, contains a line of S. By Proposition 4.2,
the lines of S contained in Q1 form a line spread S1 of Q̃1. Every line of S1 is contained
in a unique quad distinct from Q1. We denote by T2 the set of all quads that arise in this
way. The following then holds:

(1) T1 is a partition of P in big quads isomorphic to G.

(2) T2 is a partition of P in isomorphic big grids.

(3) Every quad of T1 intersects every quad of T2 in a line. The collection S ′ of all lines
obtained in this way is a line spread of S.

(4) Every line is contained in an element of T1 ∪ T2.

By Proposition 2.14, we know that S is a glued near hexagon.
We show that S ′ = S, which allows us then to conclude that S and Q are obtained as

in Example 2 of Section 3. In order to show that S ′ = S, it suffices to prove that S ′ ⊆ S.
To that end, consider an arbitrary line L of S ′, and let G ∈ T2 and Q ∈ T1 such that
L = G∩Q. The quad G intersects Q1 in a line L′ belonging to S, implying that the lines
of S contained in G form a line spread of G̃. Since either L = L′ or L∩L′ = ∅, we should
also have L ∈ S. So, S ′ ⊆ S and hence S ′ = S as we needed to prove. �

Theorem 5.4 Suppose S is a near hexagon, S is a line spread of S and Q is a set of
quads of S. If (S, S,Q) is a polygonal triple whose associated near polygon S ′ is a grid,
then S is a glued near hexagon.

Proof. The grid S ′ has two partitions in lines. Let Q1 ⊆ Q and Q2 ⊆ Q denote the set
of classical (i.e. big) quads corresponding to these partitions. Then:
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(1) Q1 and Q2 are two partitions of the point set P of S into quads. (As each point of
S is contained in a unique line of S which itself is contained in a unique quad of Q1

and a unique quad of Q2).

(2) Every quad of Q1 intersects every quad of Q2 in a line.

(3) Every line of S is contained in an element of Q = Q1 ∪Q2 (see Proposition 4.1).

By Proposition 2.14, this is sufficient to conclude that S is a glued near hexagon of type
Q̃1 ⊗ Q̃2, where Q1 is an arbitrary element of Q1 and Q2 is an arbitrary element of Q2.
The sets of lines that arise by intersecting the elements of Q1 with those of Q2 is a line
spread that coincides with S. So, S and Q are obtained as described in Example 2 of
Section 3. �

Theorem 5.5 Suppose S is a finite near hexagon with only lines of size at least 3. Sup-
pose S is a line spread of S and Q is a set of quads of S such that (S, S,Q) is a polygonal
triple whose associated near polygon is a (nondegenerate) generalized quadrangle. Then S
is either a glued near hexagon or a dual polar space of rank 3.

Proof. By Proposition 4.6, we know that S is a dense near hexagon. If not all lines
of S are incident with the same number of points, then by Proposition 2.12, S is the
cartesian product of a generalized quadrangle and a line and thus a dual polar space of
rank 3 by Proposition 2.11. We may thus suppose that all lines of S are incident with
precisely s + 1 points where s ∈ N \ {0, 1}. By Proposition 2.4, we know that there
exists a constant t such that every point of S is contained in precisely t + 1 lines. If the
generalized quadrangle S ′ associated with the polygonal triple (S, S,Q) is a grid, then S
is a glued near hexagon by Theorem 5.4. So, we may assume that S ′ is not a grid. Then
by Corollary 2.13, every line of S ′ is incident with the same number of points, say st2 + 1.
By Proposition 4.2, all quads of Q then have order (s, t2), and so by Property (P1) every
point of S is incident with precisely t

t2
quads of Q. We put t′2 := t

t2
− 1. Then S ′ is a

generalized quadrangle of order (st2, t
′
2). Since S ′ is not a grid, we have t′2 ≥ 2.

Suppose x and y are two points at distance 2 from each other that are not contained
in a quad of Q. If z ∈ Γ1(x)∩Γ1(y), then xz 6∈ S and the line xz is contained in a unique
quad of Q. Conversely, every quad of Q through x contains a unique point collinear
with y since each such quad is big by Proposition 4.4. So, x and y then have precisely
t′2 +1 common neighbours and hence are contained in a (necessarily unique) quad of order
(s, t′2).

By elementary counting, we see that a quad of order (s, t′2) is big if and only if the
total number v of points is equal to (s+ 1)(st′2 + 1)s(t− t′2). So, if there exists a big quad
of order (s, t′2), then all quads are big and by Proposition 2.7, we then know that S is a
dual polar space of rank 3. So, we may assume that there exists a quad Q of order (s, t′2)
that is not big. Let x be a given point at distance 2 from Q. Then x is ovoidal with
respect to Q, implying that Γ2(x) ∩Q is an ovoid of Q̃ containing st′2 + 1 points.

We count the number of lines through x containing a point of Γ1(Q), i.e. a point
at distance 1 from Q. (Such a point is unique by Proposition 2.3.) Suppose L is a line
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through x containing a point y ∈ Γ1(Q) and that z is the unique point of Q collinear with

y. Then z is one of the st′2 + 1 points of the ovoid Γ2(x) ∩ Q of Q̃. As d(x,Q) = 2, the
unique quad Q(x, z) through x and z cannot intersect Q in more than a line and hence
Q(x, z) ∩Q = {z}. The latter implies by Proposition 2.5 that Q(x, z) itself can also not
be big, i.e. Q(x, z) must also have order (s, t′2). Since every quad through a line of S is
big (Proposition 4.4), we see that L must be distinct from the unique line Lx of S through
x.

Now, the st′2 + 1 quads of the form Q(x, z) with z ∈ Γ2(x) ∩Q determine a collection
of (st′2 +1)(t′2 +1) lines through x which are contained in one of these quads. All the lines
in this collection meet Γ1(Q) in a (necessarily unique) point and are mutually distinct.
Indeed, if L would be contained in the quads Q(x, z1) and Q(x, z2), where z1 6= z2, then
the unique point y of Γ1(Q) on the line L would be collinear with two distinct points of
Q (namely z1 and z2) and this is impossible. As there are t lines through x distinct from
Lx, we should thus have

(1 + st′2)(1 + t′2) ≤ t = (t′2 + 1)t2,

i.e. t2 ≥ 1+st′2. Hence, st2 > s2t′2. From Higman’s equality, we know that s2 ≥ t′2. Hence
st2 > (t′2)2. However, since the generalized quadrangle S ′ has order (st2, t

′
2) with t′2 ≥ 2,

Higman’s inequality also implies that st2 ≤ (t′2)2. So, we have found a contradiction.
We conclude that S is either a glued near hexagon or a dual polar space of rank 3. �
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Birkhäuser Verlag, 2016.

[11] D. G. Higman. Partial geometries, generalized quadrangles and strongly regular
graphs. pp. 263–293 in Atti del Convegno di Geometria Combinatoria e sue Ap-
plicazioni (Univ. Perugia, Perugia, 1970). Ist. Mat., Univ. Perugia, Perugia, 1971.

[12] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Second edition. EMS
Series of Lectures in Mathematics. European Mathematical Society, 2009.

[13] E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980),
1–72.

[14] J. Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics
386. Springer-Verlag, 1974.

22


