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Abstract

In [5, 6, 7, 8, 9], weighted {δvµ+1, δvµ; N, q}-minihypers were classi-
fied. This class of minihypers is, next to being interesting for classifying
linear codes meeting the Griesmer bound, a very important geometrical
structure for solving problems in finite projective spaces. In [5, 6, 7, 8],
there were restrictions on the weights of the points of the minihypers; in
[9], there were no restrictions on the weights of the points, but the results
were only valid for δ ≤ ε, with q +1+ ε the size of the smallest non-trivial
blocking sets in PG(2, q). In this article, we improve this latter result for
weighted {δ(q+1), δ; N, q}-minihypers, without restrictions on the weights
of the points. The largest improvements are obtained for q = p2, p prime,
where we increase the upper bound to δ ≤ (q − 1)/4.

1 Introduction

Let PG(N, q) be the N -dimensional projective space over the finite field of order
q.

Definition 1.1 (Hamada and Tamari [15]) An {f,m;N, q}-minihyper is a pair
(F,w), where F is a subset of the point set of PG(N, q) and where w is a weight
function w : PG(N, q) → N : x 7→ w(x), satisfying:
(1) w(x) > 0 ⇔ x ∈ F ,
(2)

∑

x∈F w(x) = f , and
(3) min(|F ∩ H| =

∑

x∈H w(x)||H ∈ H) = m; where H denotes the set of hy-
perplanes of PG(N, q).

In the case that w is a mapping onto {0, 1}, the minihyper (F,w) can be
identified with the set F and is simply denoted by F .

The excess e of a minihyper (F,w) is the number
∑

x∈F (w(x) − 1).

Let vs = (qs − 1)/(q − 1).
Minihypers in finite projective spaces were first introduced to study linear

codes meeting the Griesmer bound. The Griesmer bound states that if there
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exists an [n, k, d; q] code for given values of k, d and q, then

n ≥
k−1
∑

i=0

⌈

d

qi

⌉

= gq(k, d),

where dxe denotes the smallest integer greater than or equal to x [10, 22].
Suppose that there exists a linear [n, k, d; q] code meeting the Griesmer

bound (d ≥ 1, k ≥ 3), then we can write d in an unique way as d = θqk−1 −
∑k−2

i=0
εiq

i such that θ ≥ 1 and 0 ≤ εi < q.
Using this expression for d, the Griesmer bound for an [n, k, d; q] code can

be expressed as: n ≥ θvk −
∑k−2

i=0
εivi+1.

Let E(t, q) denote the set of all ordered tuples (ζ0, . . . , ζt−1) of integers ζi

such that (ζ0, . . . , ζt−1) 6= (0, . . . , 0) and 0 ≤ ζ0, . . . , ζt−1 ≤ q − 1.
From now on, we suppose that (ε0, . . . , εk−2) belongs to E(k − 1, q).
Hamada and Helleseth [14] showed that there is a one-to-one correspondence

between the set of all non-equivalent [n, k, d; q] codes meeting the Griesmer

bound and the set of all projectively distinct {
∑k−2

i=0
εivi+1,

∑k−2

i=0
εivi; k− 1, q}-

minihypers (F,w), such that 1 ≤ w(p) ≤ θ for every point p ∈ F .
More precisely, the link is described in the following way. Let G = (g1 · · · gn)

be a generator matrix for a linear [n, k, d; q] code, meeting the Griesmer bound.
We look at a column of G as being the coordinates of a point in PG(k − 1, q).
Let the point set of PG(k−1, q) be {s1, . . . , svk

}. Let mi(G) denote the number
of columns in G defining si. Let m(G) = max{mi(G)||i = 1, 2, . . . , vk}. Then
θ = m(G) is uniquely determined by the code C and we call it the maximum
multiplicity of the code. Define the weight function w : PG(k − 1, q) → N as
w(si) = θ − mi(G), i = 1, 2, . . . , vk. Let F = {si ∈ PG(k − 1, q)||w(si) > 0},
then (F,w) is a {∑k−2

i=0
εivi+1,

∑k−2

i=0
εivi; k − 1, q}-minihyper with weight func-

tion w.

The easiest way to construct weighted minihypers is to construct a sum of
certain geometrical objects.

Consider a number of geometrical objects, such as subspaces PG(d, q = ph)
of PG(N, q = ph), subgeometries PG(d, pt) of PG(N, q = ph), where t|h, and
projected subgeometries PG(d, pt) in PG(N, q = ph), where t|h. In the first
two cases, a point of PG(d, q) or PG(d, pt) has weight one, while all the other
points not belonging to respectively PG(d, q) or PG(d, pt) have weight zero. In
the latter case, let Π be a projected PG(d, pt). The weight of a point s ∈ Π is
the number of points s′ of PG(d, pt) that are projected onto s; all points not
belonging to Π have weight zero.

Then the sum of these subspaces and (projected) subgeometries is the weighted
set (F,w), where the weight w(s) of a point s of (F,w) is the sum of all the
weights of s in the subspaces and (projected) subgeometries of (F,w).

Minihypers also have many applications in finite geometries [2, 4, 7, 8, 9].
A class of minihypers which is crucial in the study of maximal partial t-spreads
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and minimal t-covers in finite projective spaces PG(N, q), where (t+1)|(N +1),
is the class of {δvt+1, δvt;N, q}-minihypers. These have been used by Govaerts
and Storme [7, 9] to study the extendability of maximal partial t-spreads in
PG(N, q), (t + 1)|(N + 1), of small deficiency δ; by Ferret and Storme [4] to
study the extendability of maximal partial 1-spreads in PG(3, q) of small de-
ficiency δ; by Eisfeld, Storme and Sziklai to study the smallest (n − 1)-covers
of the hyperbolic quadric Q+(2n + 1, q) [2]; and by Govaerts, Storme and Van
Maldeghem [8] to obtain results on other types of substructures in finite inci-
dence structures.

This article improves the results of [5, 6, 7, 8] for weighted {δ(q+1), δ;N, q}-
minihypers.

Presently, the following results on weighted {δ(q+1), δ;N, q}-minihypers are
known:

Theorem 1.2 (Govaerts and Storme [9]) Let (F,w) be a weighted {δ(q+1), δ;N, q}-
minihyper, where δ ≤ ε with q+1+ε the size of the smallest non-trivial blocking
sets in PG(2, q), then (F,w) is a sum of lines.

Theorem 1.3 (Govaerts and Storme [7]) If F is a {δ(q+1), δ;N, q}-minihyper,
q > 16 a square, δ < q5/8/

√
2 + 1, N ≥ 3, then F is a unique union of pairwise

disjoint lines and Baer subgeometries PG(3,
√

q).

Theorem 1.4 (Ferret and Storme [5, 6]) A {δ(p3+1), δ;N, p3}-minihyper (F,w),
p = ph

0 , p0 prime, p ≥ 9, p0 ≥ 7, δ ≤ 2p2 − 4p, with excess e ≤ p3 if N = 3 and
with excess e ≤ p3 − 4p if N > 3, is either:
(1) a sum of lines, (projected) PG(3, p3/2) if p is a square, and of at most one

projected PG(5, p) projected from a line L for which dim〈L,Lp, Lp2〉 ≥ 3,
(2) a sum of lines, (projected) PG(3, p3/2) if p is a square, and of a {(p2 +
p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω, w) \ R, where Ω is a PG(5, p) projected

from a line L for which dim〈L,Lp, Lp2〉 = 3, and where R is the line contained
in Ω.

We will improve these results for arbitrary weighted {δ(q + 1), δ;N, q}-
minihypers (F,w), with no restrictions on the weight function w. The upper
bounds on δ are improved for q square, but not a cube. The largest improve-
ments are obtained for q = p2, p prime, p ≥ 11, where we improve the upper
bound to δ ≤ (q − 1)/4.

Remark 1.5 Sometimes, we will intersect the minihyper (F,w) with a set of
points (for example, the point set of a plane) α, and briefly write (F,w) ∩ α.
With this, we mean the point set F ∩ α with as weight function the restriction
of w to the points of α. If we take an element or a point of the minihyper (F,w),
then we mean a point of F .

Crucial in our classification results are the recent classification results on
non-trivial minimal blocking sets in PG(2, q).
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Definition 1.6 A blocking set of PG(2, q) is a set of points intersecting every
line of PG(2, q) in at least one point.

A blocking set is called minimal when no proper subset of it is still a blocking
set; and we call a blocking set non-trivial when it does not contain a line.

A blocking set of PG(2, q) is called small when it has less than 3(q + 1)/2
points.

If q = ph, p prime, we call the exponent E of the minimal blocking set B
the maximal integer E such that every line intersects B in 1 (mod pE) points.

From results of Szőnyi [26] and Sziklai [25], it follows that E ≥ 1 for every
small non-trivial minimal blocking set in PG(2, q), q = ph, p prime, h ≥ 1, and
that E divides h.

In [26], it is also proven that if E is the exponent of a small non-trivial
minimal blocking set in PG(2, q), q = ph, p prime, then the size of the blocking
set must lie in certain intervals depending on pE . We note that the bounds
given in [26] are improved in [18] and in [20].

The results of [26] have been used to classify all non-trivial small minimal
blocking sets of PG(2, q), q = ph, of exponent E ≥ h/3.

Theorem 1.7 (Polverino, Polverino and Storme [19, 20, 21]) The smallest min-
imal blocking sets in PG(2, p3), p = ph

0 , p0 prime, p0 ≥ 7, with exponent E ≥ h,
are:
(1) a line,
(2) a Baer subplane of cardinality p3 + p3/2 + 1, when p is a square,
(3) a set of cardinality p3 + p2 + 1, equivalent to

{(x, T (x), 1)||x ∈ GF (p3)} ∪ {(x, T (x), 0)||x ∈ GF (p3) \ {0}},

with T the trace function from GF (p3) to GF (p),
(4) a set of cardinality p3 + p2 + p + 1, equivalent to

{(x, xp, 1)||x ∈ GF (p3)} ∪ {(x, xp, 0)||x ∈ GF (p3) \ {0}}.

Theorem 1.8 (Szőnyi [26]) A small minimal non-trivial blocking set in PG(2, q),
q = ph, p prime, h even, of exponent E = h/2, is a Baer subplane of PG(2, q).

These results are also the complete classifications of all small minimal non-
trivial blocking sets in PG(2, p3), p prime, p ≥ 7, and in PG(2, q), q = p2, p
prime.

Corollary 1.9 Every small minimal blocking set in PG(2, p2), p prime, is equal
to a line or to a Baer subplane.

Every small minimal blocking set in PG(2, p3), p prime, p ≥ 7, is projectively
equivalent to one of the blocking sets described in Theorem 1.7.

From the intervals for the sizes of minimal non-trivial blocking sets in PG(2, p3)
[19], the following result follows.
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Theorem 1.10 In PG(2, p3), p = ph
0 , p0 prime, p0 ≥ 7, h ≥ 1, every non-

trivial blocking set B of size at most p3 + 2p2 contains a minimal blocking set
of one of the types described in Theorem 1.7.

Remark 1.11 (1) The minimal blocking set of size p3 + p2 + 1 (Theorem 1.7
(3)) has a unique point, called the vertex, lying on exactly p+1 lines containing
p2 +1 points of the blocking set. We will call such an intersection a (p2 +1)-set.
These p + 1 lines form a dual PG(1, p). All other lines intersect the blocking
set in 1 or in p + 1 points.

Furthermore, these (p2 + 1)-sets are equivalent to the set {∞} ∪ {x ∈
GF (p3)||x + xp + xp2

= 0}, with ∞ corresponding to the vertex of the blocking
set.

Later on, we will refer to the point corresponding to ∞ as being the special
point of this (p2 + 1)-set.

The lines sharing p + 1 points with this blocking set intersect the blocking
set in a subline PG(1, p).

(2) The minimal blocking set of size p3 + p2 + p + 1 (Theorem 1.7 (4)) has
p2 + p + 1 points in common with exactly one line; all other lines intersect the
blocking set in 1 or in p + 1 points.
The intersection of the blocking set with the (p2 + p + 1)-secant will be called a

(p2+p+1)-set. This (p2+p+1)-set is equivalent to {x ∈ GF (p3)||xp2
+p+1 = 1}.

The (p + 1)-secants intersect the blocking set in a subline PG(1, p).
(3) These two latter blocking sets are also characterized [16] as being a

projected subgeometry PG(3, p) in the plane PG(2, p3). Namely, embed the
plane PG(2, p3) in a 3-dimensional space PG(3, p3). Consider a subgeometry
PG(3, p) of PG(3, p3), and a point r not belonging to this subgeometry PG(3, p)
and not belonging to the plane PG(2, p3).

Project PG(3, p) from r onto PG(2, p3).
If the point r belongs to a line of the subgeometry PG(3, p), then this

PG(3, p) is projected onto the blocking set of size p3 + p2 + 1; else we obtain
the blocking set of size p3 + p2 + p + 1.

(4) In this article, every set of p2 + 1 collinear points projectively equivalent

to the set {∞}∪{x||xp2

+xp +x = 0} will be called a (p2 +1)-set, and every set

of p2 + p+1 collinear points projectively equivalent to the set {x||xp2
+p+1 = 1}

will be called a (p2 + p + 1)-set.

We will use the following result of Hamada and Helleseth.

Theorem 1.12 ([3, 13]) Let (F,w) be a {∑t−1

i=0
εivi+1,

∑t−1

i=1
εivi; t, q}-minihyper

where t ≥ 2, h ≥ 2, q − 1 ≥ h, 0 ≤ εi ≤ q − 1,
∑t−1

i=0
εi = h.

(1) If there exists a hyperplane H of PG(t, q) such that |(F,w)∩H| =
∑t

i=1
mivi

for some (m1, . . . ,mt) ∈ E(t, q), then ((F,w) ∩ H,w) is a {
∑t

i=1
mivi,

∑t
i=1

mivi−1; t − 1, q}-minihyper in H.
(2) There does not exist a hyperplane H in PG(t, q) such that |(F,w) ∩ H| =
∑t

i=1
mivi for any (m1, . . . ,mt) ∈ E(t, q) such that

∑t
i=1

mi > h.
(3) In the case ε0 = 0 and q ≥ 2h − 1, there is no hyperplane H in PG(t, q)
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such that |(F,w) ∩ H| =
∑t

i=1
mivi for any (m1, . . . ,mt) ∈ E(t, q) such that

∑t
i=1

mi < h.

Corollary 1.13 Let (F,w) be a {∑t−1

i=0
εivi+1,

∑t−1

i=1
εivi; t, q}-minihyper where

t ≥ 2, h ≥ 2, q − 1 ≥ h, 0 ≤ εi ≤ q − 1,
∑t−1

i=0
εi = h.

Then every plane, not contained in F , intersects (F,w) in an {m1(q + 1) +
m0,m1; 2, q}-minihyper, with m0 + m1 ≤ h.

The following theorem is a special case of these general results of Hamada
and Helleseth.

Theorem 1.14 (Hamada and Helleseth [13]) Let (F,w) be a {δ(q + 1), δ; 3, q}-
minihyper, with δ ≤ (q + 1)/2.

Then a plane intersects (F,w) in an {m0 + m1(q + 1),m1; 2, q}-minihyper,
with m0 + m1 = δ.

For a plane intersecting a {δ(q + 1), δ; 3, q}-minihyper (F,w) in an {m0 +
m1(q+1),m1; 2, q}-minihyper, we will call m1 the multiplicity of that plane with
respect to (F,w). If m1 ≥ 1, then we call the plane a blocking plane or rich
plane of (F,w).

Theorem 1.15 (Govaerts and Storme [7]) Let (F,w) be a {δ(q + 1), δ; 3, q}-
minihyper.

A point of (F,w) having weight α is contained in exactly αq + δ planes π,
where the planes π are counted with multiplicity m1(π).

A point having weight zero is contained in exactly δ planes π, counted with
multiplicities m1(π).

Lemma 1.16 (Govaerts and Storme [7]) Let (F,w) be a {δ(q + 1), δ; 3, q}-
minihyper, with δ ≤ (q + 1)/2.

A line L contains α points of (F,w) if and only if there are exactly α planes
of (F,w), counted with multiplicities m1(π), through L.

Corollary 1.17 A line L containing a point r not in (F,w), contains at most
δ points of (F,w).

Lemma 1.18 (Govaerts and Storme [9]) Let (F,w) be a {δvµ+1, δvµ;N, q}-
minihyper satisfying 0 ≤ δ ≤ (q + 1)/2, 0 ≤ µ ≤ N − 1, and containing a
µ-dimensional space πµ. Then the minihyper (F ′, w′) defined by the weight
function w′, where

• w′(p) = w(p) − 1, for p ∈ πµ, and

• w′(p) = w(p), for p ∈ PG(N, q) \ πµ,

is a {(δ − 1)vµ+1, (δ − 1)vµ;N, q}-minihyper.
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A 1-fold blocking set in PG(N, q) is a set of points intersecting every hyper-
plane in at least one point. A 1-fold blocking set of PG(N, q) is called minimal
when no proper subset of it still is a 1-fold blocking set.

The following result characterizes the smallest 1-fold blocking sets in PG(N, q),
N ≥ 3. It is based on results of Storme and Weiner [23].

Theorem 1.19 (1) Let q + 1 + ε be the size of the smallest blocking set in
PG(2, q), q square, q = ph, p > 3 prime, h ≥ 2 even, not containing a line or
Baer subplane.

Then every minimal 1-fold blocking set of size at most q +1+ ε in PG(n, q),
n ≥ 3, is a planar minimal blocking set.

(2) Let B be a minimal 1-fold blocking set in PG(n, p3), n ≥ 3, p = ph
0 ,

h ≥ 1, p0 prime, p0 ≥ 7, of size at most p3 + 2p2.
Then B is either a line, a Baer subplane PG(3, p3/2) if p is a square, a

minimal planar blocking set of size p3 + p2(+p) + 1, or a subgeometry PG(3, p).

Proof Part (1) follows from [23].
For Part (2), we proceed as follows. It is known that every minimal 1-fold

blocking set B in PG(2, p3), of size at most p3 + 2p2, intersects every plane in
1 (mod p) points [27]. It is possible to find a point r not in B only lying on
tangent lines to B. If we project B from this point r onto a plane, a minimal
planar blocking set in PG(2, p3) is obtained [27, Corollary 3.2]. Such a minimal
blocking set in PG(2, p3) of size at most p3 +2p2 is either a line, Baer subplane,
or minimal blocking set of size p3 + p2(+p) + 1 (Theorem 1.10). Then also
|B| ≤ p3 + p2 + p + 1.

We are now reduced to the setting of [23], leading to the proof of Part (2).

2 Projected PG(5, p) in PG(3, p3)

In the classification results on {δ(p3+1), δ;N, p3}-minihypers (F,w) that will be
obtained, it is possible that such minihypers contain a projected subgeometry
PG(5, p) ≡ Ω. The techniques for proving that such a projected subgeometry
PG(5, p) is contained in (F,w) were developed in [5, 6]. We will be able to
use the ideas of [5, 6], so we will refer a lot to these two articles. To make
the notations and descriptions in this article clear to the readers, we repeat the
descriptions of the projected subgeometries PG(5, p) in PG(3, p3).

Consider a subgeometry Λ = PG(5, p) naturally embedded in PG(5, p3).
Let L be a line of PG(5, p3) skew to Λ. Then the line L has two conjugate lines

with respect to Λ. We will always denote these conjugate lines by Lp and Lp2

.
We project Λ from L onto a solid not passing through L.

Case 1. Suppose that Ω is the projection of PG(5, p) ≡ Λ from a line L

with dim〈L,Lp, Lp2〉 = 5.
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Then every projected point s in Ω has weight one. Every point s ∈ Ω lies
on exactly one (p2 + p + 1)-set of Ω, on p4 + p3 + p2 (p + 1)-secants to Ω, and
lies in p3 + p2 + p + 1 planes of PG(3, p3) sharing a minimal 1-fold blocking set
of size p3 + p2 + p + 1 with Ω.

In general, a plane of PG(3, p3) intersects Ω in either a subplane PG(2, p),
a (p2 + p + 1)-set, or in a minimal blocking set of size p3 + p2 + p + 1.

Case 2. Suppose that Ω is the projection of PG(5, p) ≡ Λ from a line L

with dim〈L,Lp, Lp2〉 = 4.

Then the 4-dimensional space 〈L,Lp, Lp2〉 ∩ Λ is called the special 4-space
of Λ, and similarly, its projection is called the special projected 4-space of Ω.
We will denote this special 4-space 〈L,Lp, Lp2〉 ∩ Λ by P.

Then for exactly one point r of L, dim〈r, rp, rp2〉 = 1. This line M =

〈L,Lp〉∩ 〈Lp, Lp2〉∩ 〈L,Lp2〉 = 〈r, rp, rp2〉 is projected from L onto a point m of

Ω of weight p + 1. The other p3 points r of L satisfy dim〈r, rp, rp2〉 = 2. These
latter planes are projected onto (p2 + p + 1)-sets of Ω.

Every plane π of Λ passing through M and not lying in P is projected from L
onto a (p2+1)-set with special point m. Each such plane π lies in p2+p+1 solids
of Λ which are projected onto planar minimal blocking sets of size p3 + p2 + 1;
thus implying that m lies in p4 + p3 + p2 planes of PG(3, p3) sharing a 1-fold
blocking set of size p3 + p2 + 1 with Ω.

Let s be a point of Ω different from m and not lying in the special 4-space of
Ω. Assume that s is the projection of s′ ∈ Λ. Then each solid 〈r, rp, rp2

, s′〉 ∩Λ,
with r ∈ L \ M , is projected onto a planar minimal blocking set of size p3 +
p2 + p + 1; hence, s lies in p3 such planes. Every solid of Λ passing through
M and s′ is projected onto a planar minimal blocking set of size p3 + p2 + 1
passing through s; thus giving p2 + p + 1 extra planes through s intersecting Ω
in a projected PG(3, p).

Let s be a point of weight one of Ω which is the projection of a point s′ of
P. Then the plane 〈M, s′〉 lies in p2 distinct 3-spaces of Λ not contained in P
which are projected onto planar blocking sets of size p3 + p2 + 1 through s.

Case 3. Suppose that Ω is the projection of PG(5, p) ≡ Λ from a line L

with dim〈L,Lp, Lp2〉 = 3.

Let P = 〈L,Lp, Lp2〉 ∩ Λ.

Every plane α through L in 〈L,Lp, Lp2〉 has two conjugate planes αp, αp2

with respect to Λ, and these three planes intersect in at least one point of P.
Hence, every plane through L in 〈L,Lp, Lp2〉 contains at least one point of P
and the projection of P is a line N of PG(3, p3). There are p + 1 skew lines
L1, . . . , Lp+1 in P which are projected onto points of weight p + 1, and the
remaining p3 − p points of P are projected onto points of weight one of the line
N .
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We call the 3-dimensional space P the special 3-space of Λ, and its projection
will always be denoted by the line N .

A point s′ of Λ \P is projected onto a point s lying on p+1 (p2 +1)-secants
to Ω, which are the projections of 〈s′, Li〉 ∩ Λ, i = 1, . . . , p + 1. Each such
(p2 + 1)-secant through s lies in p2 planes of PG(3, p3) containing a projected
PG(3, p) of Λ, which is a minimal blocking set of size p3 + p2 + 1; hence, s′ lies
in p3 +p2 such planes. Considering these subspaces PG(3, p) in Λ; these are the
subspaces PG(3, p) through a plane 〈s′, Li〉 only intersecting P in Li.

Furthermore, P is projected on the line N through which there are p + 1
planes of PG(3, p3) containing p4 + p3 + p2 + p + 1 projected points of Λ. The
other planes through N contain p3 + p2 + p + 1 projected weighted points; the
points with weights larger than one all lie on N .

Hence, this projection forms a {(p2+p+1)(p3+1), p2+p+1; 3, p3}-minihyper
(Ω, w) containing the line N . Reducing the weight of every point on N by one
yields a {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω, w) \ N .

Case 4. Suppose that Ω is the projection of PG(5, p) ≡ Λ from a line L

with dim〈L,Lp, Lp2〉 = 2.

Then this projection is a cone of p2 + p + 1 lines; the vertex of the cone is a
point having weight p2 + p + 1 arising from the projection of the points of the
plane 〈L,Lp, Lp2〉 ∩ Λ, and the base of the cone is a subplane PG(2, p).

Remark 2.1 (1) In the remaining part of this article, the symbols Ω,Λ and N
will always have the following meaning. The symbol Ω will always denote the
projection of a PG(5, p) ≡ Λ from a line L, and if dim〈L,Lp, Lp2〉 = 3, then N
will always denote the line contained in Ω.

(2) In the latter case, when Ω contains a line N , then (Ω, w) \ N denotes
the {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihyper obtained by reducing the weight
of every point of N by one.

3 Weighted {δ(q+1), δ; 3, q}-minihypers, q square

In this section, we classify weighted {δ(q + 1), δ; 3, q}-minihypers, q square, but
not a cube. We assume that δ ≤ (q − 1)/4 when q = p2, p prime, and, when
q = p2h, p prime, h > 1, that δ ≤ ε, with q + 1 + ε the size of the smallest
minimal blocking set in PG(2, q) different from a line and Baer subplane.

We present the proofs for q = p2, p prime. By Lemma 1.18, we can assume
that (F,w) does not contain any lines.

If r is a point of PG(3, q), then a Baer cone with vertex r is a set of points
that is the union of q +

√
q + 1 lines on r that form a Baer subplane in the

quotient space on r. The planes of this cone are the q +
√

q +1 planes on r that
contain

√
q + 1 of these lines.

Lemma 3.1 (Govaerts and Storme [7]) Suppose that (F,w) is a {δ(q+1), δ; 3, q}-
minihyper with δ satisfying
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(i) δ ≤ q+1

2
and,

(ii) every blocking set with size at most q+δ contains a line or a Baer subplane.

Suppose furthermore that (F,w) does not contain a line. If r is a point of
(F,w) with minimal weight, then the rich planes through r contain a Baer cone
B with vertex r.

Lemma 3.2 Suppose that r ∈ F has minimal weight α, that δ ≤ (q + 1)/2,
q = p2, p > 2 prime, and let B be such a Baer cone with vertex r, as described
in Lemma 3.1. Then any plane Ei of B with m1(Ei) = α contains a unique
Baer subplane B(Ei) consisting of points of (F,w), and this Baer subplane is
contained in B.

Proof The plane Ei intersects F in a set Ei ∩ F which is at least a 1-fold
blocking set in Ei.

Now |Ei ∩F | ≤ (αq + δ)/α ≤ q + δ, so Ei ∩F contains a Baer subplane since
δ ≤ (q + 1)/2.

The point r has weight α. The lines of the cone B through r lie in
√

q + 1
planes π of the cone B, all satisfying m1(π) ≥ α, so these lines contain at least
α(

√
q + 1) points of Ei ∩ (F,w) (Lemma 1.16). This implies that in total, these√

q + 1 lines of B through r contain at least α(
√

q + 1)
√

q + α = α(q +
√

q + 1)
points of (F,w).

There remain at most δ−α
√

q−α < q−√
q points of (F,w) on the remaining

q −√
q lines of Ei through r. So r belongs to this Baer subplane in Ei ∩ F .

Since δ−α
√

q−α < q−√
q, more than 2

√
q +1 points of the Baer subplane

in Ei ∩ (F,w) lie in B, so this Baer subplane lies completely in B.

Lemma 3.3 Suppose that (F,w) is a {δ(q + 1), δ; 3, q}-minihyper, q = p2, p
prime, with δ ≤ (q − 1)/4.

Through every point r of minimal weight α of (F,w), there exists a Baer
subgeometry D := PG(3,

√
q) consisting entirely of points of (F,w).

Proof The point r lies in αq + δ rich planes of (F,w) (Theorem 1.15). All
q +

√
q + 1 planes π of B satisfy m1(π) ≥ α. So r lies in at most δ − α

√
q − α

planes π for which m1(π) > α.
Let E0, E1, . . . , Es−1 be the planes of B satisfying m1(Ei) = α. Note that

s ≥ q +
√

q + 1 − (δ − α
√

q − α) ≥ q − δ + (α + 1)(
√

q + 1) ≥ q − δ + 2
√

q + 2.
Let π ∈ {E0, E1, . . . , Es−1} and let π ∩ B = {L0, L1, . . . , L√

q}. Suppose
that β of these lines contain more than one Baer subline consisting of points of
(F,w). Then |π ∩ (F,w)| = αq + δ ≥ α(q +

√
q + 1) + β(

√
q − 1)α, such that

δ ≥ α
√

q +α+β(
√

q−1)α. Here, we used the fact that α is the minimal weight
of the points of (F,w) and that two distinct Baer sublines share at most two
points.

Call the lines containing exactly one Baer subline consisting of points of
(F,w) good lines.
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Let π and π′ be two distinct elements of {E0, E1, . . . , Es−1} intersecting in
a good line. Denote by B (B′) the Baer subplane of π (π′) consisting of points
of (F,w). Define D as the PG(3,

√
q) spanned by B and B′.

Since δ ≤ (q − 1)/4, β ≤ η = (
√

q + 1)/4. So at least
√

q + 1 − η lines Li

contain exactly one Baer subline of B.
The good lines of π and π′ define at least (

√
q − η)2 planes of B intersecting

π as well as π′ in a good line. Thus, using δ ≤ (q − 1)/4 = η(
√

q − 1), there
are at least q − 2η

√
q + η2 − δ + α

√
q + α ≥ q − 3η

√
q + η2 + η +

√
q + 1 planes

Ei of B, with m1(Ei) = α, that intersect π as well as π′ in a good line. Since
the Baer subplanes of (F,w) in these planes have two Baer sublines in common
with D, they are contained in D.

So there exists a line of π on r that is contained in at least (q− 3η
√

q + η2 +
η +

√
q + 1)/

√
q ≥ √

q − 3η + (η2 + η + 1)/
√

q + 1 of those planes.
Therefore, including the plane π, at least (

√
q−3η+(η2+η+1)/

√
q+2)

√
q+

1 = q − 3η
√

q + 2
√

q + η2 + η + 2 lines of B have a Baer subline, consisting of
points of F , that is contained in D. Denote these lines by M0,M1, . . ..

Suppose that there exists a point r′ of D that does not belong to (F,w).
Then r′ lies in δ rich planes (Theorem 1.15). The q planes of D through r′

but not through r, intersect each of the lines M0,M1, . . . , in a point of (F,w).
Therefore they contain at least q − 3η

√
q + 2

√
q + η2 + η + 2 points of (F,w).

Since this number is larger than δ, these planes are rich. So, there are more
than δ rich planes through r′, implying that r′ ∈ (F,w), such that all points of
D belong to (F,w).

Theorem 3.4 Let (F,w) be a weighted {δ(q + 1), δ; 3, q}-minihyper, with δ ≤
(q − 1)/4 if q = p2, p prime, and with δ ≤ ε, where q + 1 + ε is the size of the
smallest blocking set in PG(2, q), q = p2h, h > 1, p prime, not containing a line
or a Baer subplane.

Then F is a sum of lines and of Baer subgeometries PG(3,
√

q).

Proof If F contains a line L, reducing the weights of the points of L by
one, a new {(δ − 1)(q + 1), δ − 1; 3, q}-minihyper (F ′, w′) is obtained (Lemma
1.18).

So assume that (F,w) does not contain any lines.
Let r be a point of minimal weight of (F,w). The preceding lemma shows

that F contains a Baer subgeometry PG(3,
√

q). The arguments of [7, Theorem
2.1] show that if we reduce the weights of the points of this latter subgeometry
PG(3,

√
q) by one, a new {(δ−√

q−1)(q+1), δ−√
q−1; 3, q}-minihyper (F ′, w′)

is obtained.
Repeating the arguments for (F ′, w′), this shows that (F,w) is a sum of lines

and of Baer subgeometries PG(3,
√

q).

4 Weighted {δ(q+1), δ; k−1, q}-minihypers, q square

In this section, we classify weighted {δ(q + 1), δ; k − 1, q}-minihypers, k > 4, q
square, but not a cube. We assume that δ ≤ (q − 1)/4 when q = p2, p prime,
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p ≥ 11, and, when q = p2h, p prime, h > 1, that δ ≤ (q − 1)/4 and that

δ +
δ2

q
+

2δ2 − δ

q2
+

δ2 − δ

q3
< 1 + ε,

with q +1+ ε the size of the smallest minimal blocking set in PG(2, q) different
from a line and Baer subplane.

We present the proofs for q = p2, p prime. Again by Lemma 1.18, we can
assume that (F,w) does not contain any lines.

Lemma 4.1 Let (F,w) be a weighted {δ(q + 1), δ; 4, q}-minihyper, q = p2, p
prime, with δ ≤ (q − 1)/4.

Then F can be projected from a point r not in F onto a solid resulting in a
new {δ(q + 1), δ; 3, q}-minihyper (F ′, w′). It is possible to select the point r in
such a way that r lies on at most q/32 secants to F , containing at most q/16
distinct points of (F,w).

For such a point r, there is a bijective relation between the lines contained
in F and the lines contained in F ′.

Proof The number of secants to F is at most ((q2 − 1)/4) · ((q2 − 5)/4)/2,
containing at most (q5 + q4 − 6q3 − 6q2 + 5q + 5)/32 points of PG(4, q). So
there is a point r not in F lying on at most q/32 distinct secants to F . These
latter secants contain at most q/16 distinct points of F [7, Lemma 2.2]. In
this counting argument, secants through r containing m distinct points of F are
counted m(m−1)/2 times in the upper bound on the number of secants through
r and they are counted m(m − 1) times in the upper bound on the number of
points of F on these secants through r.

Suppose that F ′ contains a line L. Then the plane 〈L, r〉 contains at most
q+1+q/16 distinct points of F . So this plane intersects F in a 1-fold blocking set
(Corollary 1.13) containing a line or a Baer subplane, contained in F (Corollary
1.9).

If 〈L, r〉 contains a Baer subplane π0 contained in F , then r lies on a Baer
subline to π0. This latter Baer subline is a (

√
q+1)-secant to F , so it contributes

(
√

q+1)
√

q to the upper bound q/16 on the number of points of F on the secants
through r. This is false.

So a line L contained in F ′ is the projection, from r, of a line contained in
F .

Theorem 4.2 Let (F,w) be a weighted {δ(q+1), δ; 4, q}-minihyper, with q = p2,
p prime, p ≥ 11, and with δ ≤ (q − 1)/4.

Then F is a sum of lines and of Baer subgeometries PG(3,
√

q).

Proof Consider again the point r of the preceding lemma. This point r
projects (F,w) onto a weighted {δ(q + 1), δ; 3, q}-minihyper (F ′, w′), which is a
sum of lines and of Baer subgeometries PG(3,

√
q).

There is a bijective relation between the set of lines contained in (F,w)
and the set of lines contained in (F ′, w′). By Lemma 1.18, these lines can be
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removed from (F,w) to obtain a new {δ′(q +1), δ′; 4, q}-minihyper (F ′′, w′′) not
containing any lines.

So we can assume that (F ′, w′) is a sum of Baer subgeometries PG(3,
√

q).
We show that these Baer subgeometries PG(3,

√
q) contained in (F ′, w′) arise

from Baer subgeometries PG(3,
√

q) contained in (F,w). Since δ ≤ (q − 1)/4,
(F ′, w′) is a sum of at most δ/(

√
q + 1) ≤ (

√
q − 1)/4 Baer subgeometries

PG(3,
√

q).
Part 1. Consider a point s′ of (F ′, w′) of minimal weight, lying in the Baer

subgeometry π3 = PG(3,
√

q) of (F ′, w′). Then at least q
√

q + q +
√

q + 1 −√
q(q +

√
q + 2)/4 = 3q

√
q/4 + 3q/4 +

√
q/2 + 1 points of π3 have the same

minimal weight since (F ′, w′) is a sum of at most
√

q/4 Baer subgeometries
PG(3,

√
q) and since two distinct Baer subgeometries share at most q +

√
q + 2

distinct points [24].
Since 3q

√
q/4 + 3q/4 +

√
q/2 + 1 > q/32, it is possible to select the point s′

of minimal weight of F ′ ∩ π3 in such a way that it lies on a tangent line to F
through r. Let s be the point of F projected from r onto the point s′ of (F ′, w′).

Part 2. This point s′ lies on q +
√

q + 1 secant lines to π3. So it is possible
to select a secant L′ through s′ to π3 containing

√
q + 1 points of F ′ ∩ π3 which

lie on tangent lines to F through r.
Since (F ′, w′) contains less than

√
q/4 distinct Baer subgeometries PG(3,

√
q),

it is even possible to select L′ in such a way that it contains no Baer sublines
of the Baer subgeometries PG(3,

√
q), different from π3, contained in (F ′, w′).

Then L′ contains at most
√

q + 1 +
√

q/4 distinct points of F ′.
Part 3. We consider the

√
q + 1 planes of π3 through L′. Since L′ is

not a secant line to the Baer subgeometries π = PG(3,
√

q), different from π3,
contained in F ′, at most

√
q/4 of those planes intersect such a Baer subgeometry

π 6= π3, contained in (F ′, w′), in a Baer subplane.
So at least 3

√
q/4 planes Π through L′ only intersect the Baer subgeometry

π3 of (F ′, w′) in a Baer subplane. They then intersect F ′ in a 1-fold blocking
set, if we do not consider the weights of the points of F ′.

If there would be a plane ∆ in 〈Π, r〉 skew to F , then all solids through
∆ would contain δ points of (F,w), but 〈Π, r〉 contains more than δ points of
(F,w).

So the corresponding solids 〈Π, r〉 intersect F in a 1-fold blocking set since
they contain at least q +

√
q +1 and at most q + δ + q/16 < 3q/2 distinct points

of F .
It then follows from Theorem 1.19 that 〈Π, r〉 ∩ F contains a line or a Baer

subplane. So all these solids 〈Π, r〉 intersect F in a set containing a Baer sub-
plane since the projection of the minimal blocking set in 〈Π, r〉 ∩ F from r is a
Baer subplane.

These latter Baer subplanes, denoted by π′
0, . . ., all pass through the Baer

subline L of F which is projected from r onto the Baer subline of L′ contained
in F ′.

So, we find at least 3
√

q/4 distinct Baer subplanes PG(2,
√

q) of F through a
common Baer subline L; these latter Baer subplanes contain at least 3

√
qq/4 +√

q + 1 points of F projected from r onto π3.
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Part 4. From the preceding part, we know that there are at least 3
√

q
√

q/4
Baer sublines through s in these 3

√
q/4 Baer subplanes π′

0, . . ., of F through L.
Consider the projections from r of these latter Baer subplanes π′

0, . . ., of F
through L.

We can select a second line M ′ through s′ in one of those 3
√

q/4 distinct Baer
subplanes of F ′ through L′ (Part 3), where the points of F ′ on M ′ lie on tangent
lines to r, and where M ′ does not intersect any of the other Baer subgeometries
PG(3,

√
q) 6= π3 contained in F ′ in a Baer subline, since 3q/4 > q/32 +

√
q/4.

Here, q/32 is the upper bound on the number of secants to F through r and
√

q/4
is the upper bound on the number of distinct Baer subgeometries PG(3,

√
q)

contained in F ′.
Repeating the arguments as for L, this then leads to a second Baer subline

M through s lying in at least 3
√

q/4 Baer subplanes π′′
0 , . . ., contained in F ,

and which are projected from r onto Baer subplanes of π3. Again, these latter
3
√

q/4 Baer subplanes all contain at least 3q
√

q/4 +
√

q + 1 points of F .
Part 5. Consider the Baer subplanes π′

0, . . ., through L, and the Baer sub-
planes π′′

0 , . . ., through M , which are contained in (F,w). These Baer subplanes
are projected from r onto Baer subplanes of the same Baer subgeometry π3

contained in F ′. If we include the, at most, q/16 points of F on secants through
r, we are considering in π′

0, . . ., and π′′
0 , . . ., at most q

√
q + q +

√
q + 1 + q/16

distinct points of F .
So the two sets of 3

√
q/4 planes π′

0, . . ., and π′′
0 , . . ., through L or M intersect

in at least x = 2 · 3q
√

q/4 + 2
√

q + 2 − q
√

q − q − √
q − 1 − q/16 = q

√
q/2 −

17q/16 +
√

q + 1 points of F , which are projected from r onto points of π3.
Part 6. We do not consider the q +

√
q + 1 points of the Baer subplane in

〈L,M〉 which are projected from r onto π3, and we also do not consider the, at
most q/16, points of F on secants through r.

Then at least x − q − √
q − 1 − q/16 = q

√
q/2 − 17q/8 distinct points of

F , lying on tangent lines to F through r, lie in Baer subplanes of F in planes
through L and in planes through M .

We considered at most
√

q+1 planes through L or M , one of which is 〈L,M〉,
but this plane was already excluded. So at least one of those planes Π′ through
L contains at least (q

√
q/2− 17q/8)/

√
q > q/2− 17

√
q/8 points of F , projected

from r onto points of π3. Let π0 be the Baer subplane of Π′, contained in F ,
and projected from r onto a Baer subplane of π3.

Part 7. This Baer subplane π0 and the Baer subline of F on M define a
unique Baer subgeometry D ≡ PG(3,

√
q). We show that D is contained in F .

We use the planes π′′
0 , . . ., through M . There are at most

√
q of them, if we

do not consider the plane 〈L,M〉. They intersect π0 either in s, in two points
including s, or in a Baer subline through s.

We want to find a lower bound on the number of planes π′′
0 , . . ., intersecting

π0 in a Baer subline. They all contain s. We first subtract
√

q from q/2−17
√

q/8
to express that they might contain a second point of π0. If they contain at least
one extra point of π0, then they contain

√
q − 1 other points of π0. So, at least

(q/2−25
√

q/8)/(
√

q−1) >
√

q/2−29/8 planes π′′
0 , . . . , through M share a Baer

subline with π0.
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The Baer subplanes of these latter planes π′′
0 , . . . , sharing a Baer subline

with M and a Baer subline with π0, are completely contained in D. Also the
Baer subplane of F in 〈L,M〉 is contained in D. So D contains already at least√

qq/2− 21q/8+
√

q +1 points of F . Moreover, at least 1+
√

q(
√

q/2− 21/8) =
q/2 − 21

√
q/8 + 1 Baer sublines of D through s lie in F .

Part 8. The preceding result implies that every plane Π′ of D, not passing
through s, contains at least q/2 − 21

√
q/8 + 1 points of F . This implies that

they intersect F in at least a 1-fold blocking set since this number is larger than
δ (Corollary 1.13). If the Baer subplane Π′ ∩ D is not contained in F , let t be
a point of Π′ ∩ D not belonging to F .

We consider the q planes of D through t, but not through s. They each
contain q − √

q lines through t, which are not lines of D. None of these latter
lines is doubly counted, and contains at least one point of F .

So |F | ≥ (q −√
q)q, which is false.

So D is contained in (F,w).
Part 9. The arguments of the proof of [7, Theorem 2.1] imply that, by

reducing the weight of the points of D by one, a new {(δ −√
q − 1)(q + 1), δ −√

q − 1; 4, q}-minihyper is obtained.
Proceeding as in the preceding parts, it follows that (F,w) is a sum of lines

and of Baer subgeometries PG(3,
√

q).

Theorem 4.3 Let (F,w) be a weighted {δ(q + 1), δ; k − 1, q = p2}-minihyper,
with p prime, p ≥ 11, k ≥ 4, and δ ≤ (q − 1)/4.

Then (F,w) is a sum of lines and of Baer subgeometries PG(3,
√

q).

Proof This is proven by induction on k, using the cases k = 4 and k = 5
as induction hypothesis.

The arguments for k > 5 are easier than for k = 5 since for k > 5, it is
possible to find a point r only lying on tangent lines to F .

Remark 4.4 As indicated in the beginning of Section 4, the proofs were given
for the case q = p2, p prime, since in such planes PG(2, q), the smallest minimal
blocking sets different from a line and different from a Baer subplane have size
3(q + 1)/2 (Corollary 1.9).

In planes PG(2, q = ph), p prime, h even, h > 2, they have size at most
q + q/p + 1.

All the arguments in the preceding lemmas are still valid if we impose the
condition

δ +
δ2

q
+

2δ2 − δ

q2
+

δ2 − δ

q3
< 1 + ε,

with q +1+ ε the size of the smallest minimal blocking set in PG(2, q) different
from a line and Baer subplane.

Namely, a crucial calculation is done in Part 3 of the proof of Theorem 4.2.
We consider a point r of PG(4, q) lying on the smallest possible number of

secants to F . The secants to a set of δ(q + 1) points contain at most

δ2q3 + (3δ2 − δ)q2 + (3δ2 − 2δ)q + δ2 − δ

2
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points.
Since |PG(4, q)\F | > q4 + q3, there is a point r in PG(4, q)\F lying on less

than (δ2/q + (2δ2 − δ)/q2 + (δ2 − δ)/q3)/2 secants to F . These secants contain
less than δ2/q + (2δ2 − δ)/q2 + (δ2 − δ)/q3 points of F .

We needed this number in Part 3 where we consider a solid through r con-
taining at most q + δ + δ2/q + (2δ2 − δ)/q2 + (δ2 − δ)/q3 distinct points of F .
We must be sure that this solid, which intersects F in a 1-fold blocking set,
contains a Baer subplane contained in F . We are sure of this if the size of this
intersection is smaller than the size q + 1 + ε of the smallest blocking set in
PG(2, q) not containing a line or a Baer subplane (Theorem 1.19).

A second crucial calculation is done in Part 8 of the proof of Theorem 4.2.
We wish to be sure that this plane Π shares more than δ points with F . To be
sure of this, we also impose that δ ≤ (q − 1)/4 and that q ≥ 112.

This leads to the following theorem.

Theorem 4.5 Let (F,w) be a weighted {δ(q + 1), δ; k − 1, q}-minihyper, with
q = p2h, p prime, h > 1, k ≥ 4, δ ≤ (q − 1)/4, q ≥ 112, and

δ +
δ2

q
+

2δ2 − δ

q2
+

δ2 − δ

q3
< 1 + ε,

with q + 1 + ε the size of the smallest minimal blocking set in PG(2, q) different
from a line and Baer subplane.

Then (F,w) is a sum of lines and of Baer subgeometries PG(3,
√

q).

Remark 4.6 It is known that every plane PG(2, q), q = p2h, h > 1, p prime,
contains a minimal blocking set of size q + q/p+1, not containing a line or Baer
subplane.

Moreover, from the results of Sziklai and Szőnyi [25, 26], the smallest minimal
blocking set B in PG(2, q), q = p2h, h > 1, p prime, not containing a line or a
Baer subplane, has exponent E where E|(2h), E < h, and it then follows from
Blokhuis [1] that its size satisfies

|B| ≥ q + 1 + pE

⌈

q/pE + 1

pE + 1

⌉

,

where dxe denotes the smallest integer greater than or equal to x.

5 Weighted {δ(p3 + 1), δ; 3, p3}-minihypers

We now improve Theorem 1.4 by deleting the upper bound on the excess e.
We immediately present the results for p square since a lot of the techniques

of [5] can be repeated.
Let (F,w) be a {δ(p3 + 1), δ; 3, p3}-minihyper, p square, p = ph

0 , p0 prime,
p0 ≥ 7, h ≥ 2 even, δ ≤ 2p2 − 4p.
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Consider a point r of (F,w) of minimal weight α. If we consider the αq+δ rich
planes through r, then they form a dual blocking set in the quotient geometry
of r (Lemma 1.16). As m1(π) ≥ α for every rich plane since the minimal weight
of the points of (F,w) is equal to α, there are at most (αq + δ)/α ≤ q + δ
distinct rich planes through r, forming this 1-fold dual blocking set, which we
will denote by BD

r . This dual minimal blocking set BD
r contains a dual minimal

blocking set E.
Suppose that there is a point r of (F,w) of minimal weight α for which the

dual blocking set BD
r contains a Baer subplane E. Construct the cone B with

vertex r and with base E. A plane through r containing a line of E is called a
plane of B.

Through r, there are αp3 + δ rich planes. Since every rich plane π satisfies
m1(π) ≥ α, there are at most αp3 + δ −α(p3 + p3/2 + 1) = δ −αp3/2 −α planes
through r for which m1(π) > α. The planes of B for which m1(π) = α intersect
F in a 1-fold blocking set, where we do not consider the weights of the points
of (F,w) in this plane (Theorem 1.14).

Lemma 5.1 A plane π of B intersecting F in a 1-fold blocking set contains a
Baer subplane B0 completely contained in B.

Proof The arguments of [4, Lemma 2.9] show that π ∩ F must contain a
Baer subplane B0. The arguments of the proof of Lemma 3.2 again show that
B0 lies in B.

Lemma 5.2 A point r of minimal weight of (F,w) for which the dual blocking
set BD

r contains a Baer subplane is contained in a unique Baer subgeometry
PG(3, p3/2) completely contained in (F,w).

Proof The arguments of the proof of Lemma 3.3 can be repeated.

Lemma 5.3 Let r be a point of minimal weight α of (F,w) for which the dual
blocking set of rich planes through r contains a dual minimal blocking set of size
p3 + p2(+p) + 1, then r has weight one.

Proof The sum of the weights m1(π) of the rich planes π through r is equal
to αp3 + δ (Theorem 1.15).

Since every rich plane π satisfies m1(π) ≥ α, the number of distinct rich
planes through r is at most p3 + (2p2 − 4p)/α.

If α ≥ 2, then this upper bound is at most p3 + p2 − 2p, but this is false
since it should be at least p3 + p2 + 1.

Theorem 5.4 A {δ(p3+1), δ; 3, p3}-minihyper (F,w), p = ph
0 , p0 prime, h ≥ 1,

p0 ≥ 7, δ ≤ 2p2 − 4p, is either:
(1) a sum of lines, (projected) PG(3, p3/2) if p is a square, and of at most one

projected PG(5, p) projected from a line L for which dim〈L,Lp, Lp2〉 ≥ 3,
(2) a sum of lines, (projected) PG(3, p3/2) if p is a square, and of a {(p2 +
p)(p3 + 1), p2 + p; 3, p3}-minihyper (Ω, w) \ N , where Ω is a projected PG(5, p)

projected from a line L for which dim〈L,Lp, Lp2〉 = 3, and where N is the line
contained in Ω.
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Proof Let r be a point of minimal weight α of (F,w). Let BD
r be the dual

blocking set of rich planes through r. If BD
r contains a dual minimal blocking

set equal to a point s, then rs lies in p3 + 1 rich planes. Hence, rs is contained
in F (Corollary 1.17).

Then Lemma 1.18 implies that (F,w) \ rs is a {(δ − 1)(p3 + 1), δ − 1; 3, p3}-
minihyper.

If BD
r contains a Baer subplane, then r lies in a Baer subgeometry PG(3, p3/2)

completely contained in F . The proof of [7, Theorem 2.1] implies that, by re-
ducing the weights of the points of this subgeometry PG(3, p3/2) by one, a new
{(δ − p3/2 − 1)(p3 + 1), δ − p3/2 − 1; 3, p3}-minihyper is obtained.

If BD
r contains a dual minimal blocking set of size p3 + p2(+p) + 1, then

r has weight one. Then r lies in p3 + 2p2 − 4p rich planes, of which at most
p2 − 4p − 1 intersect (F,w) in a multiple blocking set.

The arguments of [5] can now be used to prove that (F,w) contains a
weighted minihyper equal to a projected subgeometry (Ω, w′) ≡ PG(5, p) or to
a {(p2 + p)(p3 +1), p2 + p; 3, p3}-minihyper (Ω, w′) \N , with (Ω, w′) a projected

subgeometry PG(5, p), projected from a line L for which dim〈L,Lp, Lp2〉 = 3,
and with N the line contained in Ω. These weighted minihypers (Ω, w′) are
equal to the weighted {(p2 + p + 1)(p3 + 1), p2 + p + 1; 3, p3}-minihypers and
weighted {(p2 + p)(p3 + 1), p2 + p; 3, p3}-minihypers described in Section 2.

Reducing the weight of every point s of Ω by w′(s), or by its weight in
(Ω, w′) \N in the latter case, a new weighted {(δ− p2 − p(−1))(p3 +1), δ− p2 −
p(−1); 3, p3}-minihyper is obtained.

This shows that (F,w) is a sum of the objects described in the statement of
the theorem.

6 Weighted {δ(p3 + 1), δ; k − 1, p3}-minihypers

We now present the proof for the following theorem.

Theorem 6.1 A {δ(p3 + 1), δ; k − 1, p3}-minihyper (F,w), k ≥ 4, p = ph
0 , p0

prime, h ≥ 1, p0 ≥ 7, p ≥ 9, δ ≤ 2p2 − 4p, is either:
(1) a sum of lines, (projected) subgeometries PG(3, p3/2) if p is a square, and
of at most one (projected) subgeometry PG(5, p),
(2) a sum of lines, (projected) subgeometries PG(3, p3/2) if p is a square, and
of a {(p2 + p)(p3 +1), p2 + p; 3, p3}-minihyper (Ω, w) \N , where Ω is a PG(5, p)

projected from a line L for which dim〈L,Lp, Lp2〉 = 3, and where N is the line
contained in Ω.

We first prove the theorem for k = 5. Let (F,w) be a minihyper in PG(4, p3)
satisfying the conditions of the preceding theorem.

It is possible to find a point r 6∈ F lying on less than 2p secants to F [6].
These latter secants to F through r contain less than 4p distinct points of F .

We project F from r onto a solid not passing through r. Then this projection
is a weighted {δ(p3 + 1), δ; 3, p3}-minihyper (F ′, w′).
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Lemma 6.2 There is a bijective relation between the lines contained in (F,w)
and the lines contained in (F ′, w′).

Proof The arguments of the proof of [6, Lemma 3.1] can be repeated.

Since, by Lemma 1.18, it is possible to reduce the weights of the points of a
line contained in (F,w) by one, to obtain a weighted {(δ−1)(p3+1), δ−1; 4, p3}-
minihyper, we now assume that there are no lines contained in (F,w).

This implies that it is possible to assume that (F ′, w′) is a sum of Baer
subgeometries PG(3, p3/2), and of at most one projected subgeometry PG(5, p)
or projected PG(5, p) from which one line N was omitted.

We first prove the following lemma.

Lemma 6.3 A Baer subgeometry PG(3, p3/2) and a projected subgeometry PG(5, p)
≡ (Ω, w) in PG(3, p3) share at most p1/2p3 + 2p3 + 2p2 + 2p3/2 + p + p1/2 + 2
distinct points.

Proof In [17], it is shown that a subline PG(1, p3/2) and a subline PG(1, p)
share at most p1/2 + 1 points, and it is also shown that a subline PG(1, p3/2)
and a (p2(+p) + 1)-set share at most p + p1/2 + 1 points.

Consider a projected subgeometry PG(5, p) ≡ (Ω, w) in PG(3, p3), and let
r be a point not belonging to (Ω, w). We use the descriptions of the projected
subgeometries PG(5, p) of Section 2.

If dim〈L,Lp, Lp2〉 = 5, then r can belong to at most one (p2 + p + 1)-secant

since no two (p2+p+1)-secants to Ω are coplanar. If dim〈L,Lp, Lp2〉 = 4, and r
does not belong to the plane of PG(3, p3) containing the projected PG(4, p) ≡
P, then r lies on at most one (p2 + 1)-secant since all (p2 + 1)-secants pass
through m. This latter point r does not lie on a (p2 + p + 1)-secant to (Ω, w)
since they all lie in the plane containing P.

If dim〈L,Lp, Lp2〉 = 3, then r lies on at most p + 1 different (p2 + 1)-secants
through r0, . . . , rp.

Let r be a point of a Baer subgeometry PG(3, p3/2) \ (Ω, w). Consider all
p3 + p3/2 + 1 Baer sublines of PG(3, p3/2) through r. They all contain at most
p1/2 + 1 points of (Ω, w), except for maybe p + 1 lines containing p + p1/2 + 1
points of (Ω, w). So we find an upper bound of (p3+p3/2+1)(p1/2+1)+(p+1)p.

We also add p3 + p3/2 + 1 to exclude the plane containing the projection of
the special PG(4, p) ≡ P when dim〈L,Lp, Lp2〉 = 4.

This gives the upper bound p1/2p3 + 2p3 + 2p2 + 2p3/2 + p + p1/2 + 2 on the
size for PG(3, p3/2) ∩ (Ω, w).

Lemma 6.4 Let (F ′, w′) be the weighted minihyper in PG(3, p3) which is the
projection of (F,w) from r. Assume that (F ′, w′) contains a Baer subgeometry
π3 = PG(3, p3/2), and a projected subgeometry (Ω, w′′) ≡ PG(5, p) or a {(p2 +
p)(p3+1), p2+p; 3, p3}-minihyper (Ω, w′′)\N , with (Ω, w′′) a projected PG(5, p)
in PG(3, p3) containing the line N .
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Then it is possible to find a point s′ ∈ π3 \(Ω, w′′) lying on a line L′ contain-
ing a Baer subline of π3 through s′, not containing a Baer subline from an other
PG(3, p3/2) in (F ′, w′), and sharing at most a subline PG(1, p) with (Ω, w′′).

Proof Consider a point s′ of π3 not lying in (Ω, w′′) and not lying in an
other Baer subgeometry PG(3, p3/2) of (F ′, w′).

Since s′ does not lie in any other PG(3, p3/2) in (F ′, w′), every other Baer
subgeometry PG(3, p3/2) in (F ′, w′) is intersected by at most one line through
s′ in a Baer subline. There are at most 2p Baer subgeometries PG(3, p3/2)
contained in (F ′, w′) since δ ≤ 2p2 − 4p. So we need to exclude at most 2p such
lines through s′.

Similarly, s′ lies on at most p + 1 distinct (p2(+p) + 1)-sets to (Ω, w′′) in
(F ′, w′) if we do not select s′ in the plane containing the projected PG(4, p) ≡ P
of Case 2.

So, we need to exclude at most 3p + 1 Baer sublines of PG(3, p3/2) through
s′. The desired line through s′ exists.

We now will show that there is a bijective relation between the Baer subge-
ometries PG(3, p3/2) contained in (F ′, w′) and the Baer subgeometries contained
in (F,w).

Let α′ be the minimal weight of the points of (F ′, w′) lying in a Baer subge-
ometry PG(3, p3/2) contained in (F ′, w′), and also lying on a tangent line to F
passing through r. This latter point exists, as the following arguments prove.

We start by considering a point s′ of (F ′, w′) of minimal weight α′ lying in
a Baer subgeometry π3 ≡ PG(3, p3/2) contained in (F ′, w′). Such a point does
not lie in a second Baer subgeometry PG(3, p3/2) contained in (F ′, w′).

In π3, there are at least p3/2p3 +p3 +p3/2 +1− (p1/2p3 +2p3 +2p2 +2p3/2 +
p + p1/2 + 2) − 2p(p3 + p3/2 + 2) points of weight α′ since two distinct Baer
subgeometries PG(3, p3/2) share at most p3 + p3/2 + 2 distinct points [24], and
since a Baer subgeometry PG(3, p3/2) and a projected PG(5, p) share at most
p1/2p3 + 2p3 + 2p2 + 2p3/2 + p + p1/2 + 2 distinct points (Lemma 6.3).

Since r lies on at most 2p secants to F , the desired point s′ of minimal weight
α′ and lying on a tangent to F through r exists.

Consider such a line L′ through s′ satisfying the conditions of the preceding
lemma. This line L′ contains at most p3/2 + 1 + 2p + p + 1 = p3/2 + 3p + 2
distinct points of (F ′, w′).

Consider the p3/2 + 1 planes through L′ intersecting π3 in a Baer subplane.
At most 2p of them intersect an other PG(3, p3/2) of (F ′, w′) in a Baer subplane.

Since |L′ ∩ (Ω, w)| ≤ p + 1, at most p + 1 planes through L′ intersect (Ω, w)
in at least a 1-fold blocking set.

So at least p3/2 + 1 − 2p − p − 1 = p3/2 − 3p planes through L′ intersect
π3 in a Baer subplane, but do not intersect any other PG(3, p3/2) of (F ′, w′)
in a Baer subplane, and intersect the projected PG(5, p) in (F ′, w′) in at most
p2 + p + 1 points.
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So such a plane through L′ shares at most p3+δ distinct points with (F ′, w′).
So the solid generated by this plane and r contains at most p3 + δ + 4p distinct
points of F . Hence, this solid intersects F in a 1-fold blocking set (Corollary
1.13). This latter blocking set must contain a Baer subplane B0 since its pro-
jection from r contains a Baer subplane (Theorem 1.19).

We denote by L the line of B0 which is projected from r onto the Baer
subline of L′ contained in (F ′, w′).

Repeat this argument for the p3/2 − 3p planes through L′, described above.
These arguments show that there are at least p3/2 − 3p planes of PG(4, p3)
through a line L all containing a Baer subplane of (F,w). These latter Baer
subplanes all share the same Baer subline on L and contain at least (p3/2 −
3p)p3 + p3/2 + 1 points of F .

Select a second line M ′ through s′ playing the role of L′. This gives a second
line M playing the role of L. It is possible to select M in such a way that it lies
in one of those p3/2 − 3p planes through L sharing a Baer subplane with F .

We are now reduced to the situation of the proof of Theorem 4.2. We find a
Baer subgeometry PG(3, p3/2) completely contained in (F,w). It is possible to
reduce the weights of the points of this latter PG(3, p3/2) contained in (F,w)
by one to obtain a weighted {(δ−p3/2−1)(p3 +1), δ−p3/2−1; 4, p3}-minihyper
[7, Theorem 2.1].

It is now possible to assume that there are no lines and no Baer subgeometries
PG(3, p3/2) contained in (F,w). This implies that (F ′, w′) is equal to a projected
subgeometry PG(5, p) or equal to (Ω′, w′)\N ′, with (Ω′, w′) a projected PG(5, p)
in PG(3, p3), and with N ′ the line contained in (Ω′, w′).

We are now reduced to the situation of [6]. The arguments of [6] show that
(F,w) equals a projected subgeometry PG(5, p) in PG(4, p3), or a projected
subgeometry (Ω, w) \ N , with (Ω, w) a projected PG(5, p) in PG(3, p3), and
with N the line contained in (Ω, w).

This proves Theorem 6.1 for k = 5.

By induction on k, the theorem is proven for arbitrary dimension k > 5.
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[26] T. Szőnyi, Blocking sets in desarguesian affine and projective planes, Finite
Fields Appl. 3 (1997), 187-202.
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