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Abstract

We introduce and study a family of thin near polygons, each member of which
has a line spread S and a set Q of quads such that the point-line geometry formed
by the lines of S and the quads of Q is itself also a near polygon. We study the
automorphism groups of these thin near polygons and classify all convex subspaces.
Special attention will be given to a class of thin near polygons related to quadrics
of projective spaces, of which we show that all its members have a regular set of
convex subspaces.
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1 Introduction

The paper [6] arose from the observation that many near polygons A (including some
recently discovered ones) have a common feature, namely they posses a line spread S and
a set Q of quads such that the point-line geometry S defined by the lines of S and the
quads of Q is itself also a near polygon. In [6], such triples (A, S,Q) were called polygonal
triples and the corresponding near polygons S their associated near polygons. In [6], many
constructions, properties and characterization results for polygonal triples were obtained.

The research of the present paper arose from the study of polygonal triples (A, S,Q)
for which the near polygon A is thin, meaning that all lines of A are incident with precisely
two points. For every near polygon S, we construct a thin near polygon S, a line spread S
in S and a set Q of quads of S such that (S, S,Q) is a polygonal triple whose associated
near polygon is isomorphic to S. We moreover show that if (A, S ′,Q′) is a polygonal
triple with A thin whose associated near polygon is isomorphic to S, then there is an
isomorphism from A to S mapping S ′ to S and Q′ to Q.

We perform a study of the family of thin near polygons S that arise from near polygons
S. In particular, we determine all convex subspaces of these thin near polygons and
study their automorphism groups. If S is isomorphic to the parabolic dual polar space
DQ(2n,F), then S is isomorphic to the hyperbolic dual polar space DQ+(2n+ 1,F). The
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hyperbolic dual polar spaces seem to be the standard examples of the family, but we will
construct many other examples, several of which satisfy the following two properties:

(i) every two points are contained in a unique convex subspace whose diameter is equal
to the distance between these points;

(ii) for every convex subspace F and every x ∈ F , there exists a point y ∈ F whose
distance to x is equal to the diameter of F .

Near polygons satisfying the properties (i) and (ii) are said to have a regular set of convex
subspaces. Besides dual polar spaces and dense near polygons, not so many near polygons
were known to have such a regular set of convex subspaces (one had the folded n-cubes
with n even, incidence graphs of biplanes, the coset graph of the extended binary Golay
code, and some near polygons that arise from these via direct products and glueing). The
properties (i) and (ii) are of interest as they imply that the convex subspaces define a
diagram geometry [2, 7] of type

• • • • •. . .L Lpoints lines quads

which is a very useful fact for their study. The convex subspace of diameter 2 are called
the quads and the points and lines contained in it define a generalized quadrangle [8]. In
the diagram, L stands for the class of linear spaces. In the case of dual polar spaces, these
linear spaces are even projective planes.

There are no known existence results for convex subspaces in general thin near poly-
gons. Even under the assumption that every two points at distance 2 have at least two
common neighbours, it is in general false that two points at distance 2 are contained in
a quad. A quite different situation occurs for dense near polygons. A near polygon is
called dense if every line is incident with at least three points and if every two points at
distance 2 have at least two common neighbours. In a dense near polygon, Yanushka’s
lemma [9, Proposition 2.5] implies that every two points at distance 2 are contained in
a unique quad. Sometimes the mere fact that quads exist through any two points at
distance 2 is sufficient to show that any two points at distance δ ≥ 3 are also contained
in a unique convex subspace of diameter δ. This is the case if lines have at least three
points (Brouwer and Wilbrink [1, Theorem 4]) or when quads are assumed to be classical
(Cameron [3]). A similar situation does no longer hold for general (thin) near polygons,
but only a few counter examples are known to exist. The present paper shows that also
the near octagons E1 and E2 have the property that every two points at distance 2 are
contained in a unique quad, but that not every two points at distance 3 are contained in
a convex subspace of diameter 3. These near octagons arise from the near hexagons E1

and E2 that are respectively associated with the extended ternary Golay code and the
Witt design S(5, 8, 24).
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2 Preliminaries

A point-line geometry S = (P ,L, I) with nonempty point set P , line set L and incidence
relation I ⊆ P × L is called a near 2d-gon if the following properties hold:

(1) For every point x and every line L, there exists a unique point πL(x) on L nearest
to x with respect to the distance in the collinearity graph Γ of S.

(2) The diameter of Γ is equal to d.

A near 0-gon is a point and a near 2-gon is a line. A near quadrangle with at least two
lines through each point is called a generalized quadrangle.

The distance between two points x and y of a near polygon S will be denoted by
dS(x, y) or shortly by d(x, y) if no confusion can arise. By [1, Lemma 1], precisely one of
the following two cases occurs for two lines K and L of a near polygon S:

(1) There exist unique points k∗ ∈ K and l∗ ∈ L such that d(k, l) = d(k, k∗)+d(k∗, l∗)+
d(l∗, l) for all k ∈ K and all l ∈ L.

(2) If m = d(K,L) := min{d(k, l) | k ∈ K and l ∈ L}, then every point of K has
distance m to precisely one point of L and every point of L has distance m to
precisely one point of K.

If case (2) occurs then the lines K and L are called parallel.
A set S of lines of a near polygon S is called a line spread if every point of S is

incident with a unique line of S. If the line spread consists of mutually parallel lines, then
it is called admissible.

A set X of points of a near polygon S is called a subspace if every line that has two
points in X has all its points in X. For every nonempty subspace X, we denote by X̃ the
point-line geometry whose points are the elements of X and whose lines are the lines of S
that have all their points in X (natural incidence). A set X of points of S is called convex
if every point on a shortest path between two points of X is also contained in X. If X is
a nonempty convex subspace of a near polygon S, then X̃ itself is also a near polygon. If
X̃ is a generalized quadrangle then the convex subspace X will be called a quad.

If x and y are two points of S at distance 2 from each other having two neighbours
z1 and z2 such that at least one of the lines xz1, xz2, z1y, z2y has at least three points,
then Yanushka’s lemma [9, Proposition 2.5] implies that x and y are contained in a unique
quad. We note that if there is a quad through two points at distance 2, then this quad
has to be unique.

A convex subspace F of a near polygon S is called classical (in S) if for every point x
of S, there exists a unique point πF (x) ∈ F such that d(x, y) = d(x, πF (x)) + d(πF (x), y)
for every point y ∈ F . Every line of near polygon is classical.

Suppose S = (P ,L, I) is a near (2d + 2)-gon, d ≥ 1, having a line spread S and a
family Q of quads for which the following hold:

(PT1) For every point x of S, the quads of Q through x all contain the unique line Lx of
S through x and partition the set of lines through x distinct from Lx.
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(PT2) The point-line geometry S ′ with point set S, line set Q and natural incidence (i.e.
containment) if a near 2d-gon.

We also say that S ′ is the near polygon associated with the polygonal triple (S, S,Q). If
(S, S,Q) is a polygonal triple, then Q is uniquely determined by S and S as its consists
of all quads of S containing a line of S. Polygonal triples were introduced and studied in
[6]. We mention here three properties of polygonal triples (S, S,Q) that we need later:

(i) every line of S not belonging to S is contained in a unique element of Q;

(ii) every quad of Q is classical in S.

(iii) If L1, L2 ∈ S, then the distance between L1 and L2 in the associated near polygon
is equal to dS(L1, L2).

If S1 = (P1,L1, I1) and S2 = (P2,L2, I2) are two near polygons, then another near polygon
S1 × S2 with point set P1 × P2 can be constructed, see e.g. Section 6.6 of [5]. Here, two
distinct points (x1, x2) and (y1, y2) are adjacent whenever there exists an i ∈ {1, 2} such
that xi = yi and x3−i ∼ y3−i in the near polygon S3−i. The near polygon S1×S2 is called
the direct product of S1 and S2. If the near polygons S1 and S2 have admissible spreads
S1 and S2 that are compatible (in some sense), then by [4, Theorem 1] it is possible to
construct other near polygons from it by considering multiple copies of S1 and S2, and
“glueing” along the lines of S1 and S2 (see [4] for more details). Such a glued near polygon
will be denoted by S1⊗S2. In the case that S1 and S2 are thin, then any pair of admissible
spreads is always compatible.

Suppose Π is a polar space of rank r ≥ 1 in the sense of Tits [11, Chapter 7]. Then
with Π, there is associated a dual polar space ∆. This is the point-line geometry whose
points and lines are the maximal and next-to-maximal singular subspaces, with incidence
being reverse containment. There exists a bijective correspondence between the possibly
empty singular subspaces of Π and the nonempty convex subspaces of ∆: if α s a singular
subspace of Π, then the set Fα of all maximal singular subspaces containing α is a convex
subspace of diameter r − 1− dim(α). Every two points of ∆ at distance δ are contained
in a unique convex subspace of diameter δ. If F is a convex subspace of diameter δ ≥ 1
of ∆, then by Theorem 8.6 of [5], F̃ is a dual polar space of rank δ. We collect a number
of known properties of (dual) polar spaces. For proofs and more background information,
we refer to Chapter 8 of [5]. The following lemma is precisely Theorem 8.2 of [5].

Lemma 2.1 Let Π be a polar space of rank r ≥ 1, and let α, β be two maximal singular
subspaces of Π. Then the distance between α and β in the dual polar space ∆ associated
with Π is equal to r − 1− dim(α ∩ β).

Lemma 2.2 Let Π be a polar space of rank r ≥ 1, and let α, β, γ be maximal singular
subspaces such that γ is on a shortest path from α to β in the dual polar space ∆ associated
with Π. If γ1 = γ ∩ α and γ2 = γ ∩ β, then γ = 〈γ1, γ2〉.
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Proof. The set of all maximal singular subspaces containing α ∩ β is a convex subspace
containing α and β, and so we have α ∩ β ⊆ γ. Put dim(γ1) = dim(α ∩ β) + s1 and
dim(γ2) = dim(α ∩ β) + s2. Then dim(〈γ1, γ2〉) = dim(α ∩ β) + s1 + s2. We have
r−1−dim(α∩β) = d∆(α, β) = d∆(α, γ)+d∆(γ, β) = r−1−dim(γ1)+r−1−dim(γ2) =
2(r−1)−2 dim(α∩β)−s1−s2, i.e. dim(〈γ1, γ2〉) = dim(α∩β)+s1 +s2 = r−1 = dim(γ).
This implies that γ = 〈γ1, γ2〉. �

For a proof of the following lemma, see Theorems 8.4, 8.6 and 8.7 of [5].

Lemma 2.3 Let F be a convex subspace of diameter δ in a dual polar space ∆. Then

(1) F is classical in ∆;

(2) If u and v are two points of F at distance at most δ− 1 from each other, then there
is a line of F through v containing a point at distance d(u, v) + 1 from u.

A (dual) polar space is said to be of quadratic type if it arises from a nonsingular quadric in
the following sense. Suppose Q is a nonsingular quadric of Witt index r ≥ 1 in a projective
space Σ over a field F. The maximal (projective) dimension of a subspace of Σ contained in
Q is then equal to r−1. Subspaces of maximal dimension r−1 are also called generators.
The set of points ofQ together with the subspaces contained inQ define a polar space. The
dimension dim(Σ) of the projective space Σ is at least equal to 2r−1. If dim(Σ) = 2r−1,
then Q has equation X1X2+X3X4+· · ·+X2r−1X2r = 0 with respect to a suitable reference
system. Such a quadric is called a hyperbolic quadric and often denoted by Q+(2r− 1,F).
If dim(Σ) = 2r, then Q has equation X2

0 + X1X2 + X3X4 + · · · + X2r−1X2r = 0 with
respect to a suitable reference system. Such a quadric is called a parabolic quadric and
often denoted by Q(2r,F).

The dual polar spaces associated with Q+(2r − 1,F) and Q(2r,F) will respectively
be denoted by DQ+(2r − 1,F) and DQ(2r,F). The dual polar space DQ+(2r − 1,F) is
an example of a thin near polygon.

Suppose ∆ is a dual polar space of quadratic type and F is a convex subspace of
diameter at least 1 of ∆. Then the corresponding polar space Π arises from some quadric
Q in a projective space Σ, and there exists some subspace α in Q such that F consists
of all maximal subspaces of Q through α. Let Σ′ be a subspace of Σ complementary to
α and let Q′ be the nonsingular quadric Σ′ ∩ Q of Σ′. By [5, Theorem 8.6], the dual

polar space F̃ is associated with the quotient polar space Πα. This quotient polar space
is obviously isomorphic to the polar space associated with the quadric Q′ of Σ′. So, we
have:

Lemma 2.4 Suppose ∆ is a dual polar space of quadratic type and F is a convex subspace
of diameter at least 1 of ∆. Then F̃ is also a dual polar space of quadratic type.
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3 Definition and basic properties of the near polygon

S
Let S = (P ,L, I) be a near 2d-gon. For every two points x and y of S, we define εxy = +
if dS(x, y) is even and εxy = − if dS(x, y) is odd.

Let Γ be the graph whose vertices are the elements of the set P := P ×{+,−}, with
two vertices (x, εx) and (y, εy) being adjacent if dS(x, y) ≤ 1 and εy = −εx. The following
is then obvious.

Lemma 3.1 Γ is a bipartite graph with bipartite parts {(x, εx) ∈ P | εx = +} and {(y, εy) ∈
P | εy = −}.

For every point x of S, we denote by Lx the edge {(x,+), (x,−)} of Γ. The following is
obvious.

Lemma 3.2 (a) Let x, y be two points of S and ε ∈ {+,−}. Then the distance in Γ
between (x, ε) and Ly is equal to dS(x, y). The vertex (y, ε · εxy) is the unique vertex
of Ly nearest to (x, ε).

(b) Let x and y be two distinct points of S, and let εx, εy ∈ {+,−}. Then the distance
in Γ between the vertices (x, εx) and (y, εy) is equal to dS(x, y) if εy = εx · εxy and
equal to dS(x, y) + 1 otherwise.

(c) The maximal distance between two vertices of Γ is equal to d+ 1.

Let S be the point-line geometry whose points are the vertices of Γ and whose lines are the
edges of Γ, with incidence being containment. The following is an immediate consequence
of Lemma 3.2(a)+(c).

Corollary 3.3 S is a near 2(d+ 1)-gon.

If we define S := {Lx |x ∈ P}, then we see that S is a line spread of S. By Lemma 3.2(b),
we see that the following holds.

Corollary 3.4 If x and y are two points of S, then the lines Lx and Ly are parallel and
lie at distance dS(x, y) from each other in S. As a consequence, S is an admissible spread
of S.

Proposition 3.5 If S is a point, then S is a (thin) line. If S is a line of size s+ 1, then
S is the dual of an (s+ 1)× (s+ 1)-grid.

Proof. The first claim is trivial. The second claim follows from the fact that the graph
Γ is a complete bipartite graph with bipartite parts of size s+ 1, see Lemma 3.1. �

The following proposition, whose proof is straightforward, implies that S has an auto-
morphism group isomorphic to Aut(S)× C2.
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Proposition 3.6 (1) The map σ : P → P ; (x, ε) 7→ (x,−ε) is an automorphism of S.

(2) For every automorphism θ of S, the map θ : P → P : (x, ε) 7→ (xθ, ε) is an
automorphism of S.

(3) The map θ 7→ θ defines an isomorphism between Aut(S) and a certain group of
automorphisms of S.

(4) The groups 〈σ〉 ∼= C2 and Aut(S) := {θ̄ | θ ∈ Aut(S)} ∼= Aut(S) trivially intersect
and commute.

This automorphism group can be characterized as follows.

Proposition 3.7 The automorphisms of S stabilizing the spread S are precisely the au-
tomorphisms of 〈σ,Aut(S)〉 ∼= Aut(S)× C2.

Proof. (a) Every automorphism of 〈σ,Aut(S)〉 stabilizes the spread S. Indeed, σ fixes
each line of S, and if φ is an automorphism of S, then the automorphism φ of S maps
each line Lx, x ∈ P , to the line Lxφ .

(b) Conversely, suppose that θ is an automorphism of S stabilizing the spread S.
Then there exists a permutation φ of P such that (Lx)

θ = Lxφ for every point x of S.
Corollary 3.4 implies that two points x1 and x2 of S lie at distance 1 if and only if the
lines Lx1 and Lx2 of S lie at distance 1. Now, the lines Lx1 and Lx2 lie at distance 1 from
each other if and only if the lines Lθx1 = Lxφ1

and Lθx2 = Lxφ2
are at distance 1. So, the

points x1 and x2 are collinear if and only if xφ1 and xφ2 are collinear, showing that φ is an
automorphism of S.

In order to prove the proposition, it thus suffices to show that for every automorphism
φ of S there are at most two automorphisms θ of S such that (Lx)

θ = Lxφ , ∀x ∈ P . By
part (a) of the proof we know that there are at least two such automorphisms. In fact,
by part (a) it suffices to prove the claim in the case that φ is the trivial automorphism
of S. This is equivalent with showing that there are at most two automorphisms θ of S
fixing each line of S.

Let L∗ be a fixed line of S. If L is a line of S, then L and L∗ are parallel by Corollary
3.4. So, for every point x of L, the image of x under θ is equal to πL(y), where y is the
image of the point πL∗(x) under θ. As there are at most two possibilities for the restriction
θ|L∗ of θ to L∗, there are at most two possibilities for θ itself. �

Proposition 3.8 Let S be a thin near polygon. Then S is the direct product of S with a
line of size 2.

Proof. The collinearity graph of any thin near polygon is a bipartite graph. So, we
can write P = P+ ∪ P− such that there no adjacencies between points belonging to the
same Pε, ε ∈ {+,−}. For every point (x, ε) of S, we define (x, ε)θ = (x, ε) if x ∈ P+ and
(x, ε)θ = (x,−ε) if x ∈ P−.
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Suppose (x1, ε1) and (x2, ε2) are two distinct collinear points of S. Then ε2 =
−ε1. If x1 and x2 are equal, say to x, then θ maps the line {(x, ε1), (x, ε2)} to the
set {(x, ε1), (x, ε2)}. If dS(x1, x2) = 1, then θ maps the line {(x1, ε1), (x2, ε2)} to the set
{(x1, ε), (x2, ε)}, where ε = ε1 if x1 ∈ P+ and ε = −ε1 if x1 ∈ P−. Indeed, (x1, ε1)θ =
(x1, ε). Moreover, if x1 ∈ P+, then x2 ∈ P− and (x2, ε2)θ = (x2,−ε1)θ = (x2, ε1) = (x2, ε).
Also, if x1 ∈ P−, then x2 ∈ P+ and (x2, ε2)θ = (x2,−ε1)θ = (x2,−ε1) = (x2, ε).

So, the map θ defines an isomorphism between S and the product near polygon S×L2

defined on the point set P × {+,−}. �

4 Convex subspaces of Type I of S
We now initiate the study of the convex subspaces of S. We shall need to rely on the
following lemma.

Lemma 4.1 Suppose X is a convex subspace of S, and x and y are two points of X at
distance k from each other. Then every path of length at most k + 1 connecting x and y
is contained in X.

Proof. Since X is convex, it suffices to prove that every path of length k + 1 connecting
x and y is contained in X. We prove this by induction on k. The case k = 0 is void.
Suppose k = 1, and x, z, y is a path of length 2 connecting x and y. As x ∼ z ∼ y ∼ x,
the points x, y and z are contained in a line, and we conclude that z ∈ xy ⊆ X.

Suppose therefore that k ≥ 2 and that x = z0, z1, . . . , zk+1 = y is a path of length
k+ 1 connecting x and y. We have d(x, zk) ∈ {k− 1, k}. If d(x, zk) = k− 1, then zk ∈ X
since X is convex and the induction hypothesis then implies that every point of the path
x = z0, z1, . . . , zk is contained in X. Suppose therefore that d(x, zk) = d(x, zk+1) = k.
Then the line zkzk+1 contains a point u at distance k − 1 from x. Since X is convex, we
know that u ∈ X and hence uzk+1 ⊆ X, in particular zk ∈ X. Since X is convex, we then
know that every point of the path x = z0, z1, . . . , zk is contained in X. �

Let X be a nonempty subspace of S such that X̃ is an isometrically embedded full
subgeometry of S. Then SX := X̃ is a near polygon and so there is a thin near polygon
SX associated with SX with collinearity graph ΓX . The verification of the following lemma
is straightforward.

Lemma 4.2 The subgraph of Γ induced on the set X := X × {+,−} is precisely ΓX .

We shall use Lemma 4.2 to prove the following.

Lemma 4.3 Two vertices of X have the same distance in Γ as in ΓX . As a consequence,
SX is an isometrically embedded subgeometry of S.

Proof. Suppose (x1, ε1) and (x2, ε2) are two distinct points of X and denote by (x2, ε
′
2) the

point (x2, ε1 ·εx1x2) of S. The points (x1, ε1) and (x2, ε
′
2) have distance dS(x1, x2) in Γ, and
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so their distance δ′ in ΓX is at least dS(x1, x2). Now, any path x1 = y0, y1, . . . , yk = x2

of length k = dS(x1, x2) in Γ with all yi’s belonging to X induces a path (x1, ε1) =
(y0, ε̃0), (y1, ε̃1), . . . , (yk, ε̃k) = (x2, ε

′
2) in Γ all whose vertices belong to X showing that

δ′ = dS(x1, x2).
Suppose now that ε′2 6= ε2. Then the points (x1, ε1) and (x2, ε2) have distance

dS(x1, x2) + 1 in Γ and so their distance δ in ΓX is at least dS(x1, x2) + 1. Since
(x1, ε1), (x2, ε

′
2) have distance dS(x1, x2) in ΓX and (x2, ε

′
2), (x2, ε2) have distance 1 in

ΓX , we see that δ = dS(x1, x2) + 1. �

Proposition 4.4 If X is a convex subspace of S, then the set X is a convex set of vertices
of Γ, i.e. X is a convex subspace of S.

Proof. Let (x, ε) and (y, ε′) be two arbitrary vertices of X. Suppose they lie at dis-
tance k from each other in S. Then dS(x, y) ∈ {k, k − 1} by Lemma 3.2(b). Let
(z0, ε0), (z1, ε1), . . . , (zk, εk) be a path of length k in Γ connecting (z0, ε0) = (x, ε) with
(zk, εk) = (y, ε′). Then d(zi−1, zi) ∈ {0, 1} for every i ∈ {1, 2, . . . , k}, and so x =
z0, z1, . . . , zk = y defines a path of length at most k connecting x and y. By Lemma
4.1, we know that all points of z0, z1, . . . , zk are contained in X. Hence, all (zi, εi) are
contained in X = X × {+,−}. �

Every convex subspace of S of the form X × {+,−} with X a convex subspace of S is
called a convex subspace of Type I of S. By Propositions 3.5, 4.4 and Lemma 4.2, we
know that the following holds.

Proposition 4.5 If L is a line of S, then the set L× {+,−} is a quad of S, which is a
dual (s+ 1)× (s+ 1)-grid if the line L contains s+ 1 points.

Proposition 4.6 If A is a convex subspace of S containing a line M of S, then A is a
convex subspace of Type I.

Proof. We show that if A contains a point x, then the unique line Ux of S through x also
is contained in A. Let y denote the unique point of M nearest to x. Put M \ {y} = {y′}
and Ux \ {x} = {x′}. As the lines Ux and M are parallel, we see that x′ is on a shortest
path between y′ ∈ A and x ∈ A, implying that x′ ∈ A and Ux ⊆ A.

Let X denote the set of all points x ∈ P for which Lx is contained in A. Then
A = X × {+,−}.

We show that X is a subspace. Suppose x1 and x2 are two distinct collinear points
of X for which Lx1 ∪Lx2 ⊆ A. Then Lx1 and Lx2 are two parallel lines at distance 1 from
each other. Let x3 be a third point on x1x2. Every point of Lx3 lies at distance 1 from a
point of Lx1 and at distance 1 from a point of Lx2 , implying that Lx3 is contained in A
(see Lemma 4.1 with S replaced by S and X replaced by A). This implies that x3 ∈ X.

We show that X is convex. Let x and y be two points of X, and let x = z0, z1, . . . , zk =
y be any shortest path between x and y. Let (z0, ε0) be an arbitrary point of Lx and let
(zi, εi) with i ∈ {1, 2, . . . , k} be the unique point of Lzi collinear with (zi−1, εi−1) in S. Then
(z0, ε0), (z1, ε1), . . . , (zk, εk) is a shortest path in S connecting the vertices (z0, ε0) ∈ Lx ⊆ A
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and (zk, εk) ∈ Ly ⊆ A. It follows that (zi, εi) ∈ A for every i ∈ {0, 1, . . . , k}. Hence, zi ∈ X
for every i ∈ {0, 1, . . . , k} and X must be convex. �

Lemma 4.7 If X is a classical convex subspace of S, then X is a classical convex subspace
of S.

Proof. Let (x, ε) be an arbitrary point of S and (y, ε′) be an arbitrary point of X. If
z is the unique point of X nearest to x, then dS(x, y) = dS(x, z) + dS(z, y) and εxy =
εxzεzy. By Lemma 3.2(b), we have δ := dS [(x, ε), (y, ε′)] = dS(x, y) + η, where η = 0
if ε′ = εxyε and η = 1 otherwise. Using again Lemma 3.2(b), we find δ = dS(x, z) +
dS(z, y) + η = dS [(x, ε), (z, εxzε)] + dS [(z, εxzε), (y, εxzεzyε)] + η = dS [(x, ε), (z, εxzε)] +
dS [(z, εxzε), (y, εxyε)] + η = dS [(x, ε), (z, εxzε)] + dS [(z, εxzε), (y, ε

′)]. We thus see that X
must be classical in S. �

5 Convex subspaces of Type II of S
We now define a second family of convex subspaces of S. We start from a nonempty set
Y of points of S satisfying the following properties:

(P1) Y is convex;

(P2) the subgraph of the collinearity graph of S induced on Y is bipartite.

Lemma 5.1 A nonempty set Y of points of S satisfies properties (P1) and (P2) if and
only if it satisfies properties (P1) and (P2’), where

(P2′) No three points of Y lie on a common line.

Proof. Suppose Y satisfies (P1) and (P2). If a line of S contains three points y1, y2 and
y3 of Y , then {y1, y2, y3} is a clique in the collinearity graph of S, in contradiction with
(P2). So, Y also satisfies (P2′).

Conversely, suppose that Y satisfies (P1) and (P2′). Let y∗ be a fixed point of Y .
We show that the subgraph of the collinearity graph of S induced on Y is bipartite with
bipartite parts {y ∈ Y | dS(y∗, y) is even} and {y ∈ Y | dS(y∗, y) is odd}. To that end, it
suffices to prove that if y1, y2, y3 ∈ Y with y2 ∼ y3, then dS(y1, y2) 6= dS(y1, y3). Suppose
to the contrary that dS(y1, y2) = dS(y1, y3). Let u denote the unique point of y2y3 nearest
to y1. Since Y is convex, we have u ∈ Y . But then the three points u, y2 and y3 contradict
(P2′). So, also property (P2) must be satisfied. �

In the sequel, we suppose that the nonempty set Y ⊆ P satisfies (P1) and (P2). From
the proof of Lemma 5.1, we can extract the following.

Lemma 5.2 If y1, y2, y3 ∈ Y with y2 ∼ y3, then dS(y1, y2) 6= dS(y1, y3).

10



For every point y∗ ∈ P and every ε∗ ∈ {+,−}, let Φy∗,ε∗ denote the map from P to P
that sends each y ∈ P to (y, ε∗εy∗y) ∈ P . Now, let y∗ ∈ Y and ε∗ ∈ {+,−} be fixed, and
put φ := Φy∗,ε∗ .

Lemma 5.3 If y1 and y2 are collinear points of Y , then φ(y1) and φ(y2) are adjacent
vertices of Γ.

Proof. By Lemma 5.2, one of {y1, y2} is nearer to y∗ as the other, implying that εy∗y2 =
−εy∗y1 . So, the vertices φ(y1) = (y1, ε

∗εy∗y1) and φ(y2) = (y2, ε
∗εy∗y2) are indeed adjacent.

�

Lemma 5.4 For all y1, y2 ∈ Y , we have εy∗y1εy1y2 = εy∗y2.

Proof. We prove this by induction on k = dS(y1, y2), the case k = 0 being trivial (as
εy1y2 = + then). So, suppose k ≥ 1. Let y3 be an arbitrary vertex of Γ1(y2)∩Γk−1(y1). By
the induction hypothesis, we have εy∗y1εy1y3 = εy∗y3 . Since y3 ∼ y2, we have dS(y∗, y3) 6=
dS(y∗, y2) by Lemma 5.2 and hence εy∗y2 = −εy∗y3 . We also know εy1y2 = −εy1y3 . It follows
that εy∗y1 · εy1y2 = −εy∗y1 · εy1y3 = −εy∗y3 = εy∗y2 . �

Lemma 5.5 The map y 7→ φ(y) is a distance-preserving map between Y and S.

Proof. Let y1, y2 ∈ Y . By Lemmas 3.2(b) and 5.4, the distance between φ(y1) =
(y1, ε

∗εy∗y1) and φ(y2) = (y2, ε
∗εy∗y2) is equal to dS(y1, y2) since ε∗εy∗y1 · εy1y2 = ε∗εy∗y2 . �

Proposition 5.6 φ(Y ) is a convex subspace of S not containing any line of S.

Proof. As any line of S contains two points, φ(Y ) is a subspace. By definition, this
subspace cannot contain any line of S. It remains to show that φ(Y ) is convex.

Let y1, y2 ∈ Y and suppose (z0, ε0), (z1, ε1), . . . , (zk, εk) is a shortest path between
(z0, ε0) = φ(y1) = (y1, ε

∗εy∗y1) and (zk, εk) = φ(y2) = (y2, ε
∗εy∗y2). As the distance in S

between φ(y1) and φ(y2) is equal to dS(y1, y2), we thus see that y1 = z0, z1, . . . , zk = y2

is a shortest path between y1 and y2. As Y is convex, each zi with i ∈ {0, 1, . . . , k}
is also contained in Y . As φ(z0), φ(z1), . . . , φ(zk) is a shortest path between φ(y1) and
φ(y2) by Lemma 5.5, we see that φ(zi) = (zi, εi) for every i ∈ {0, 1, . . . , k}. So, the path
(z0, ε0), (z1, ε1), . . . , (zk, εk) is completely contained in φ(Y ). �

A convex subspace that is of the form Φy∗,ε∗(Y ), where ε∗ ∈ {+,−} and Y is a set of
points of S containing y∗ ∈ P and satisfying (P1) and (P2), is called a convex subspace of
Type II. The following proposition, in combination with Proposition 4.6, offers a complete
classification of all convex subspaces of S.

Proposition 5.7 Every nonempty convex subspace of S not containing any line of S is
of Type II.

Proof. Suppose A is a convex subspace of S not containing any line of S. Put Y = {y ∈
P | (y, ε) ∈ A for some ε ∈ {+,−}} 6= ∅. Then for every y ∈ Y , there exists a unique
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εy ∈ {+,−} such that φ(y) := (y, εy) ∈ A. Then A = φ(Y ). Let y∗ be a distinguished
point of Y , and put ε∗ = εy∗ .

Let y ∈ Y . As Ly is not contained in the convex subspace A, the unique point of Ly
contained in A is the unique point of Ly nearest to (y∗, ε∗), which is the point (y, ε∗εy∗y)
by Lemma 3.2(a). This shows that φ(y) = (y, ε∗εy∗y).

Let y1, y2 ∈ Y . As the line Ly2 is not contained in A, the unique point of Ly2 nearest
to φ(y1) = (y1, ε

∗εy∗y1) is the point φ(y2) = (y2, ε
∗εy∗y2). By Corollary 3.4, we thus see

that the map φ is isometric. Since the collinearity graph of S is bipartite, this shows that
the subgraph of the collinearity graph of S induced on Y is bipartite.

Finally, we show that Y is convex. Let y1, y2 be two points of Y , and y1 = z0, z1, . . . ,
zk = y2 be a shortest path between y1 and y2. Put ε0 = εy1 . Then (z0, ε0) ∈ A. In S,
there exists a path of the form (z0, ε0), (z1, ε1), . . . , (zk, εk), where (zk, εk) is the unique
point of Ly2 nearest to (z0, ε0) = (y1, εy1). This point coincides with (y2, εy2). As (z0, ε0)
and (zk, εk) belong to A, the convexity of A implies that all (zi, εi) with i ∈ {0, 1, . . . , k}
belong to A. This implies that all zi with i ∈ {0, 1, . . . , k} belong to Y . So, Y is indeed
convex.

We conclude that A = φ(Y ) is a convex subspace of Type II. �

6 Characterizations of S in terms of polygonal triples

We continue with the notation introduced in Section 3. Put Q := {L× {+,−} |L ∈ L}.
By Proposition 4.5, Q is a set of quads of S.

Proposition 6.1 (S, S,Q) is a polygonal triple whose associated near hexagon is isomor-
phic to S.

Proof. Let (x, εx) be an arbitrary point of S. The unique line of S containing (x, εx) is
the line Lx = {(x,+), (x,−)}. Let {(x, εx), (y, εy)} be another line of S through (x, εx).
Then dS(x, y) = 1 and εy = −εx. Suppose Q is a quad of Q containing (x, εx) and (y, εy).
Then Q = L× {+,−} for a certain line L of S. Obviously, L = xy and so there exists a
unique quad of Q containing (x, εx) and (y, εy).

Let S ′ be the point-line geometry whose points and lines are the elements of S and
Q, with incidence being containment. The points of S ′ have the form {x} × {+,−} with

x ∈ P and the lines have the form L × {+,−} with L ∈ L. It thus follows that S ′ is
isomorphic to S. �

Theorem 6.2 Suppose (S ′, S ′,Q′) is a polygonal triple whose associated near polygon is
isomorphic to S such that every line of S ′ is thin. Then there exists an isomorphism from
S ′ to S, mapping S ′ to S and Q′ to Q.

Proof. Let x∗ be a given point of S. Since S is isomorphic to the associated near polygon,
there corresponds with each point x of S a line Ux of S ′ and with each line L of S a quad
QL of Q′ such that for every point-line pair (y,M) of S, we have y ∈ M if and only if
Uy ⊆ QM . For any two points x and y in S, we have dS′(Ux, Uy) = dS(x, y).
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We label the two points of L∗ := Ux∗ by (x∗,+) and (x∗,−). Put εx = + if d(x∗, x) is
even and εx = − if d(x∗, x) is odd. For every line Ux ∈ S ′, we label the unique point of Ux
nearest to (x∗,+) by (x, εx) and the other point by (x,−εx). For every point u of S ′, we
denote the label of u by L(u). We show that the map u 7→ L(u) defines an isomorphism
between S ′ and S.

Let us examine when two points u1 and u2 with respective labels (x1, ε1) and (x2, ε2)
are collinear in S ′. One way for this to happen is that x1 = x2 and {ε1, ε2} = {+,−}.
So, suppose x1 6= x2. Then Ux1 6= Ux2 , dS(x1, x2) = 1 and there exists a unique quad Q
of Q′ containing the lines Ux1 and Ux2 (namely the quad Qx1x2). Note that Q is a dual
grid since every line of S ′ is thin. The quad Q is also classical in S ′. We denote by x3 the
unique point of x1x2 nearest to x∗ (in S). Then Ux3 = πQ(L∗). We distinguish two cases.

(1) x3 = xi for a certain i ∈ {1, 2}. Then εx2 = −εx1 . Since Q is classical in S ′,
there exists a shortest path in S ′ connecting (x∗,+) to (x3−i, εx3−i) via (xi, εxi) =
πQ[(x∗,+)]. We thus see that (x1,+) ∼ (x2,−) and (x1,−) ∼ (x2,+).

(2) Suppose x3 6∈ {x1, x2}. Then ε := εx1 = εx2 = −εx3 . Since Q is classical in S ′, there
exists a shortest path in S ′ connecting (x∗,+) to (x1, ε) via (x3,−ε) = πQ[(x∗,+)],
and a shortest path in S ′ connecting (x∗,+) to (x2, ε) via (x3,−ε). We see that
(x1, ε) ∼ (x3,−ε) ∼ (x2, ε). Now, Q is a dual grid containing the lines Ux1 , Ux3 and
Ux2 . So, (x1, ε) 6∼ (x2, ε). This implies that (x1,+) ∼ (x2,−) and (x1,−) ∼ (x2,+).

Combining the above, we indeed see that the map θ : u 7→ L(u) defines an isomorphism
between S ′ and S. Moreover, θ maps the lines of S ′ to the lines of S and hence also
the quads of Q′ to the quads of Q (Recall that the set of quads of a polygonal triple is
uniquely determined by the line spread of the triple). �

In Example 4 of [6], we showed that the hyperbolic dual polar space DQ+(2n+ 1,F) with
n ∈ N \ {0} and F a field has a spread S and a set Q of quads such that (DQ+(2n +
1,F), S,Q) is an admissible triple whose associated near polygon is isomorphic to the
parabolic dual polar space DQ(2n,F). Since DQ+(2n + 1,F) is a thin near polygon,
Theorem 6.2 implies the following.

Proposition 6.3 If S is isomorphic to the dual polar space DQ(2d,F), where d ∈ N\{0}
and F a field, then S is isomorphic to the dual polar space DQ+(2d+ 1,F).

Suppose S1 and S2 are two near polygons. Then S1 and S2 are two thin near polygons
having admissible spreads S1 and S2 (as defined in Section 3). By [4, Theorem 1], it is
possible to obtain glued near polygons from S1 and S2 by glueing along the admissible
spreads S1 and S2. As each Si has an automorphism interchanging the two points on each
line of Si (Proposition 3.6(1)), there is essentially one glued near polygon that can be
constructed in this way. We denote this glued near polygon by S1⊗S2. By Example 7 of
[6], the near polygon S1⊗S2 has a spread S and a set Q of quads such that (S1⊗S2, S,Q)
is a polygonal triple for which S1 × S2 is the associated near polygon. By Theorem 6.2,
we thus have that S1 ⊗ S2 = S1 × S2.
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7 Examples

7.1 The existence of quads

We first provide an example of a nonempty set Y satisfying the properties (P1) and (P2)
of Section 5. We continue with the notation introduced before. Suppose Q is a quad
of S and x and y are two noncollinear points of Q. Let {x, y}⊥ ⊆ Q denote the set
of points collinear with x and y and denote by {x, y}⊥⊥ the set of points collinear with
each point of {x, y}⊥. The pair {x, y} is called regular if for any two distinct points
a, b ∈ {x, y}⊥, we have {a, b}⊥ = {x, y}⊥⊥. If this is the case, then for any two distinct
points c, d ∈ {x, y}⊥⊥, we also have {c, d}⊥ = {x, y}⊥. If {x, y} is a regular pair, then the
set Y = {x, y}⊥ ∪ {x, y}⊥⊥ ⊆ Q satisfies the conditions (P1) and (P2). If Q has order
(s, t), then for every y ∈ Y and every ε ∈ {+,−}, the set Φy,ε(Y ) is a quad of S which is
the dual of a (t+ 1)× (t+ 1)-grid.

Lemma 7.1 If every two points of S at distance 2 are contained in a (necessarily unique)
quad, and if every pair of noncollinear points of a quad is regular, then every two points
at distance 2 in S are contained in a unique quad.

Proof. Let u1 = (x1, ε1) and u2 = (x2, ε2) be two points of S at distance 2 from each
other. We distinguish two cases.

Suppose first that dS(x1, x2) = 1 and ε1 = ε2. If L is the line x1x2, then by Proposition
4.5 L× {+,−} is the (necessarily unique) quad of S containing u1 and u2.

Suppose next that dS(x1, x2) = 2 and ε2 = ε1. Let Q denote the unique quad of S
containing x1 and x2. Put Y := {x1, x2}⊥ ∪ {x1, x2}⊥⊥. Then Y satisfies (P1) and (P2).
By Proposition 5.6, Φx1,ε1(Y ) is the (necessarily unique) quad of S containing u1 and u2.
�

Proposition 7.2 Suppose every line of S is incident with at least three points. Then
every two points of S at distance 2 from each other are contained in a unique quad if and
only if the following two properties are satisfied:
• every two points of S at distance 2 have at least two common neighbours;
• every pair of noncollinear points of a quad of S is regular.

Proof. The former of the two properties and the fact that lines contain at least three
points imply by Yanushka’s lemma that every two points of S at distance 2 are contained
in a unique quad. So, if these two conditions are satisfied, then we know from Lemma 7.1
that every two points of S are contained in a unique quad.

Conversely, suppose that every two points of S at distance 2 from each other are
contained in a unique quad. Take two points x1 and x2 in S at distance 2 from each
other, and ε ∈ {+,−}. Then the points u1 = (x1, ε) and u2 = (x2, ε) of S lie at distance
2 from each other. As u1 and u2 are contained in a quad, these points have two common
neighbours (x3,−ε) and (x4,−ε). Then x3 and x4 are two common neighbours of x1 and x2

in S, and so by Yanushka’s lemma we know that there is a unique quad Q of S containing
x1 and x2.
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Suppose {x1, x2} is not a regular pair of Q. Then there exist a, b, c ∈ {x1, x2}⊥ such
that a and b have a common neighbour d that is not a neighbour of c. Since x1 6∼ d 6∼ c,
there exists a point e ∈ x1c\{x1, c} collinear with d. Then e is a common neighbour of x1

and d. Now, any set Y of points satisfying (P1), (P2) and containing x1, x2 also contains
a, b and c, and hence also d and e. But that is impossible as x1, e and c are on a line. �

Examples of generalized quadrangles for which each pair of noncollinear points is regu-
lar are the grids, the symplectic generalized quadrangles and quadrangles arising from
Hermitian varieties of Witt index 2 in projective spaces of dimension 3, see [8].

7.2 Examples with a regular set of convex subspaces

Consider the family of geometries consisting of all thin near polygons S, where S is a
near polygon. In the present section, we take a closer look at those near polygons of this
family that have a regular set of convex subspaces. We first derive a criterion to decide
whether a near polygon of the family has a regular set of convex subspaces.

Proposition 7.3 Let S be a near 2d-gon and δ ∈ {0, 1, . . . , d+1}. Then every two points
of S at distance δ from each other are contained in a unique convex subspace of diameter
δ if and only if the following properties hold.

(1) Every two points of S at distance δ − 1 from each other are contained in a unique
convex subspace of diameter δ − 1.

(2) Every two points of S at distance δ from each other are contained in a unique set
of points satisfying (P1), (P2) and having diameter δ.

Proof. Suppose (x1, ε1) and (x2, ε2) are two points of S at distance δ. Put ε′2 = ε1εx1x2 .
We distinguish two cases.

(a) ε′2 6= ε2. Then dS(x1, x2) = δ − 1 by Lemma 3.2(b). If A is a convex subspace of
diameter δ containing (x1, ε1) and (x2, ε2), then A also contains (x2, ε

′
2) as this point

is on a shortest path between (x1, ε1) and (x2, ε2). So, A contains the line Lx2 and
is a convex subspace of Type I by Proposition 4.6. So, A = B, where B is a convex
subspace of diameter δ − 1 containing x1 and x2. The number of convex subspace
of diameter δ of S containing (x1, ε1) and (x2, ε2) is thus equal to the number of
convex subspaces of diameter δ − 1 of S containing x1 and x2.

(b) ε′2 = ε2. Then dS(x1, x2) = δ by Lemma 3.2(b). If A is a convex subspace of diameter
δ containing (x1, ε1) and (x2, ε2), then A cannot contain the point (x2,−ε2) since
this point lies at distance δ+ 1 from (x1, ε1) and so A must be a convex subspace of
Type II. Hence, A = Φx1,ε1(B), where B is a set of points of S having diameter δ,
satisfying (P1), (P2) and containing x1 and x2. So, the number of convex subspaces
of diameter δ containing (x1, ε1) and (x2, ε2) is equal to the number of sets of points
of S containing x1, x2, satisfying (P1), (P2) and having diameter δ.
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Note that Properties (1) and (2) of Proposition 7.3 always hold if δ ≤ 1. In the near
polygon S, any two points at distance δ ≤ 1 are indeed contained in a unique convex
subspace of diameter δ (which is either a singleton or a line).

Our next aim is to show that if S is a dual polar space of quadratic type, then S has
a regular set of convex subspaces. In order to achieve this goal, we need a number of
lemmas. Note that every set X of points of a near polygon is contained in a unique
smallest convex set, namely the intersection of all convex sets containing X.

Lemma 7.4 Let x and y be two points of a near 2d-gon S at distance d from each other.
Let Y be the smallest convex set of points of S containing x and y. Suppose Y satisfies
(P2) (or equivalently (P2’)) and also the property that for every point y1 ∈ Y , there exists
a point y2 ∈ Y at distance d from x. Then Y is the unique set of points of S containing
x and y and satisfying (P1) and (P2).

Proof. Suppose Y ′ is a convex set containing x and y and satisfying properties (P1) and
(P2). Then Y ⊆ Y ′. Suppose v ∈ Y ′ \ Y . Denote by z one of the points of Y nearest to
v, and let z′ denote a point in Y opposite to z. Let L denote a line through z containing
a point u at distance d(v, z)− 1 from v. Since Y ′ is convex and z, v ∈ Y ′, we have u ∈ Y ′.
By the minimality of d(v, z), we have u 6∈ Y . Now, the line L contains a unique point w
at distance d−1 from z′. Since Y is convex and z, z′ ∈ Y , we have w ∈ Y ⊆ Y ′ and hence
w 6= u. But that is impossible as it would imply that the line L contains three points of
Y ′, namely z, u and w. �

Lemma 7.5 Let x and y be two points of a near 2d-gon S at distance δ from each other.
Let Y be the smallest convex set of points of S containing x and y. Suppose that F is a
convex subspace of diameter δ containing x and y that satisfies the following properties:

• F is classical in S;

• If u and v are two points of F at distance at most δ− 1 from each other, then there
is a line of F through v containing a point at distance d(u, v) + 1 from u.

Then:

(a) Y coincides with the smallest convex set of points of F̃ containing x and y.

(b) For every point z1 ∈ Y , there exists a point z2 ∈ Y at distance δ from z1.

(c) If Y satisfies Property (P2), then Y is the unique set of points of S containing x
and y, satisfying (P1) and (P2), and having diameter δ.

Proof. The set Y is the intersection of all convex sets of points containing x and y,
and hence we should have Y ⊆ F . As distances in F̃ coincide with their corresponding
distances in S, the set Y coincides with the smallest convex set of points of F̃ containing
x and y.
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We prove that for every point z1 ∈ Y , there exists a point z2 ∈ Y at distance δ from
z1. We show this by induction on the distance d(x, z1). The case d(x, z1) = 0 is trivial,
since z1 = x in this case and we can take z2 equal to y. Suppose therefore that d(x, z1) > 0.
Let z′1 be a point collinear with z1 at distance d(x, z1)− 1 from x. Since Y is convex, we
have z′1 ∈ Y . By the induction hypothesis there exists a point z′2 ∈ Y at distance δ from
z′1. If d(z1, z

′
2) = δ, then we are done. So, we may suppose that d(z1, z

′
2) = δ − 1. Then

there is a line L of F through z′2 containing besides z′2 only points at distance δ from z1.
So, the unique point z2 on L at distance δ−1 from z′1 must lie at distance δ from z1. This
point belongs to Y as it lies on a shortest path between the points z′1, z

′
2 ∈ Y .

In the remainder of the proof, we suppose that Y satisfies Property (P2). If we apply

Lemma 7.4 now to the near polygon F̃ , then we see that every set Y ′ of points of S
containing x and y and satisfying (P1) and (P2) must intersect F in the set Y . So, in
order to prove the lemma, it suffices to prove that for every point w not contained in F ,
there is a point in Y at distance at least δ + 1 from w. Since F is classical in S and
d(w, πF (w)) ≥ 1, it thus suffices to show that there is a point in Y at distance at least δ
from πF (w). Let w′ be a point of Y at maximal distance from πF (w). Then we know that
there exists a point w′′ ∈ Y at distance δ from w′. If d(πF (w), w′) = δ, then we are done.
So, suppose d(πF (w), w′) ≤ δ − 1. Then there exists a line L of F through w′ containing
besides w′ only points at distance d(πF (w), w′) + 1 from πF (w). The unique point of L
at distance δ − 1 from w′′ must belong to Y (since it lies on a shortest path from w′ ∈ Y
to w′′ ∈ Y ) and lies at distance d(πF (w), w′) + 1 from πF (w), a contradiction. �

Lemma 7.6 Let x and y be two opposite points of the dual polar space DQ+(2n− 1,F),
n ≥ 2 and F a field. Then the smallest convex set of points of DQ+(2n− 1,F) containing
x and y coincides with the whole point set.

Proof. In a general dual polar space ∆, the smallest convex subspace of ∆ containing
two opposite points coincides with the whole point set of ∆, see e.g. [5, Theorem 8.11].
In the case ∆ = DQ+(2n−1,F), every line of ∆ is thin, and so every convex set of points
is also a convex subspace. The claim of the lemma is now clear. �

Lemma 7.7 Let Q be a nonsingular quadric of Witt index n ≥ 2 in a projective space
Σ over a field F. Let α and β be two disjoint generators of Q. Let Π be the polar and
dual polar spaces corresponding to Q. The subspace 〈α, β〉 of Σ meets Q in a hyperbolic
quadric Q+(2n−1,F). Then the smallest convex set X of points of ∆ containing α and β
consists of all generators of Q+(2n− 1,F). Moreover, this set of points satisfies Property
(P2).

Proof. By Lemma 2.2, the set X ′ of generators of Q+(2n − 1,F) = Q ∩ 〈α, β〉 is a
convex set of points of ∆. Hence, X ⊆ X ′, i.e. X is a set of points of the dual polar space
DQ+(2n−1,F) associated with Q+(2n−1,F). Lemma 2.1 implies that distances between
points of DQ+(2n−1,F) coincide with their distances in ∆. Lemma 7.6 then implies that
X consists of all points of DQ+(2n− 1,F), i.e. all generators of Q+(2n− 1,F). The fact
that DQ+(2n − 1,F) is a thin near polygon implies that Property (P2′) and hence also
Property (P2) holds. �
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By Lemmas 2.3, 2.4, 7.5 and 7.7, we conclude

Proposition 7.8 Let ∆ be a dual polar space of quadratic type having rank n ≥ 2. Then
every two points x and y of ∆ at distance δ are contained in a unique set Z of points
satisfying (P1), (P2) and having diameter δ. Moreover, for every point z ∈ Z, there exists
a point z′ ∈ Z at distance δ from z.

Recall that any two points of a dual polar space at distance δ from each other are contained
in a unique convex subspace of diameter δ. Combining this fact with Propositions 7.3
and 7.8, we find:

Corollary 7.9 Let ∆ be a dual polar space of quadratic type having rank n ≥ 2. Then
∆ has a regular set of convex subspaces. The set of convex subspaces of ∆ thus defines a
diagram geometry, with diagram as depicted in Section 1.

Our next aim is to determine the automorphism groups of the thin near polygons ∆,
where ∆ is a quadratic dual polar space of rank at least 2. In order to achieve this goal,
we need some preparatory lemmas.

Lemma 7.10 Let Q be a nonsingular quadric of Witt index n ≥ 2 in a projective space
Σ over a field F. Let α1 and α2 be two disjoint generators of Q and suppose the subspace
〈α1, α2〉 has co-dimension at least 2 in Σ. Then there is a line L of Σ contained in Q and
disjoint from 〈α1, α2〉.

Proof. The proof of the lemma makes use of the fact that the points of a nonempty
nonsingular quadric of a projective space generates the whole projective space.

Since 〈Q〉 = Σ, there this exists a point x ∈ Q not contained in 〈α1, α2〉. The tangent
hyperplane Tx to Q in the point x cannot contain 〈α1, α2〉, as otherwise 〈x, α1〉 would be a
singular subspace properly containing α1. So, Tx ∩ 〈α1, α2〉 is a subspace of co-dimension
at least 2 in Tx. Since the lines of Q through x generate Tx, there exists a line L of Q
through x disjoint from Tx ∩ 〈α1, α2〉, i.e. disjoint from 〈α1, α2〉. �

Lemma 7.11 Let Y be a nonempty set of points of S satisfying (P1) and (P2). Let
y∗ ∈ Y and ε∗ ∈ {+,−}. If there exists a point x of S such that there are least three
points in Y nearest to x, then the convex subspace Φy∗,ε∗(Y ) of S is not classical.

Proof. Let y1, y2 and y3 be three points in Y nearest to x. Let ε1, ε2, ε3 ∈ {+,−} such
that (yi, εi) ∈ Φy∗,ε∗(Y ) for every i ∈ {1, 2, 3}. Let ε′i ∈ {+,−} such that (x, ε′i) is the
unique point of Lx nearest to (yi, εi). Suppose ε ∈ {+,−} occurs at least two times in
the sequence ε′1, ε

′
2, ε
′
3. Then by Lemma 3.2(b) two of the points (yi, εi), i ∈ {1, 2, 3}, are

among the points of Φy∗,ε∗(Y ) that are nearest to (x, ε). So, Φy∗,ε∗(Y ) cannot be classical.
�

Lemma 7.12 Let Q be a nonsingular quadric of Witt index n ≥ 2 in a projective space
Σ over a field F. Let α1 and α2 be two disjoint generators of Q such that the subspace
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〈α1, α2〉 has co-dimension at least 2 in Σ. Let Y be the set of generators contained in
〈α1, α2〉. Then in the dual polar space ∆, there exists a point x such that at least three
points in Y are nearest to x.

Proof. By Lemma 7.10, we can take a line L of Q disjoint from 〈α1, α2〉. Let α be a
generator through L, and put β = α ∩ 〈α1, α2〉. Then β has co-dimension at least 2 in
α and hence co-dimension at least 2 in any generator of Q+(2n − 1,F) = 〈α1, α2〉 ∩ Q.
So, there must be three generators γ1, γ2 and γ3 of Q+(2n − 1,F) through β. For any
generator γ contained in 〈α1, α2〉, we have d∆(α, γ) = n−1−dim(α∩γ) ≥ n−1−dim(β) =
n − 1 − dim(γi) = d∆(α, γi) for every i ∈ {1, 2, 3}. So, there are at least three points in
Y nearest to the point x in ∆ corresponding to the maximal singular subspace α. �

The following is an immediate consequence of Lemmas 7.11, 7.12 and the classification of
the nonempty sets of points satisfying (P1) and (P2).

Corollary 7.13 Suppose ∆ is a quadratic dual polar space of rank n ≥ 2 associated with
a quadric in a projective space of dimension at least 2n + 1. Then in ∆, there are no
classical convex subspaces of Type II that have diameter at least 2.

Proposition 7.14 Let Q be a nonsingular quadric of Witt index n ≥ 2 in a projective
space Σ over a field F. Let ∆ be the dual polar space associated with Q. If dim(Σ) ≥ 2n+1,
then Aut(∆) ∼= Aut(∆)× C2.

Proof. Let x be a point of ∆ and y a point of Lx. As the lines of ∆ through x intersect
in the singleton {x}, the quads of type I of ∆ through y intersect in the line Lx. Invoking
Lemma 4.7 and Corollary 7.13, we this see that the classical quads through a given point
of ∆ intersect in a line of the spread S. So, the spread S is stabilized by any automorphism
of ∆. Proposition 3.7 then implies that Aut(∆) ∼= Aut(∆)× C2. �

In the case that dim(Σ) = 2n − 1 ≥ 3, then ∆ ∼= DQ+(2n − 1, 2) and hence ∆ ∼=
DQ+(2n−1, 2)×L2 by Proposition 3.8. Also in this case, we have Aut(∆) ∼= Aut(∆)×C2.
In the case that dim(Σ) = 2n ≥ 4, then ∆ ∼= DQ(2n, 2) and ∆ ∼= DQ+(2n + 1, 2). In
this case, Aut(∆) is much bigger than the automorphism group Aut(∆)× C2 mentioned
in Proposition 3.7.

Another instance where S has a regular set of convex subspaces is the case where S is
a Hamming near polygon. Suppose S is a Hamming near polygon of diameter d, i.e.
the direct product of d lines. Let x and y be two opposite points of S and let Y be
the smallest convex set of points containing x and y. The graph induced on Y by the
collinearity relation is then a d-dimensional cube. The set Y satisfies Property (P2). Note
that the convex subspaces of Hamming near polygons are classical on which the induced
geometries are also Hamming near polygons. Following a completely similar reasoning as
in the case of dual polar spaces of quadratic type, we then see that the following should
hold.

Proposition 7.15 Let S be a Hamming near polygon. Then the following hold.
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• Every two points x and y of S at distance δ are contained in a unique set Z of points
satisfying (P1), (P2) and having diameter δ. Moreover, for every point z ∈ Z, there
exists a point z′ ∈ Z at distance δ from z.

• S has a regular set of convex subspaces. The set of convex subspaces of S thus
defines a diagram geometry, with diagram as depicted in Section 1.

In the case that every line of the Hamming near polygon S is incident with at least three
points, we can use Lemma 7.11 (in a similar fashion as above) to show that Aut(S) ∼=
Aut(S)×C2. The restriction that there are at least three points per line cannot be omitted.
E.g. if S is the d-dimensional cube, then by Proposition 3.8, S is the (d+ 1)-dimensional
cube, and so we have |Aut(S)| = 2dd! and |Aut(S)| = 2d+1(d+ 1)!.

7.3 Other examples

Let us first look to those finite near polygons S of the family for which every pair of
points at distance 2 is contained in a quad of the same size. Suppose all quads are duals
of (s+ 1)× (s+ 1)-grids. For the Type I quads this means that every line of S is incident
with precisely s + 1 points. For the Type II quads this implies that every two points of
S at distance 2 have precisely s + 1 common neighbours. So, every two points of S at
distance 2 are contained in a quad of the same size if and only if there exists an s ∈ N\{0}
such that every two points x and y of S at distance 2 are contained in a quad of order
(s, s) in which the pair {x, y} is regular. The following is a special case of this situation.

Lemma 7.16 Suppose S is a near 2d-gon, d ≥ 2, with the property that every two points
at distance 2 are contained in a W (q)-quad, with q a prime power. Then S is a near
(2d+ 1)-gon with the property that every two points at distance 2 are contained in a quad
which is the dual of a (q + 1)× (q + 1)-grid.

Examples of near 2d-gons satisfying the property mentioned in Lemma 7.16 are the dual
polar spaces DQ(2d, q), d ≥ 2, and the M24 near hexagon E2 defined in [9, Section 3.6].
If S ∼= DQ(2d, q), then we know that S ∼= DQ+(2d+ 1, q). In this case, we already know
that every two points of S at distance δ are contained in a unique convex subspace of
diameter δ and that the automorphism group of S is bigger than what we would expect
from Proposition 3.6. Let is now investigate the convex subspaces and automorphism
group of the near octagon E2. For every point x of E2, let Lx be the line {(x,+), (x,−)}
of E2, and denote by S the set of all lines Lx, where x is a point of E2.

Lemma 7.17 The near hexagon E2 does not have convex sets of diameter 3 that satisfy
(P1) and (P2).

Proof. Suppose Y is such a set of points, and denote by y1 and y2 two points of Y at
distance 3 from each other. Let Q be a W (2)-quad through y1 not containing a point
of Γ1(y2). Then each line of Q through y1 contains a unique point of Γ2(y2), necessarily
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belonging to Y as this set is convex. The three points z1, z2, z3 that arise in this way
belong to the ovoid Γ2(y2) ∩ Q of Q, and so do not form a hyperbolic line. So, if u is a
common neighbour of z1 and z2 distinct from y1, then the fact that z1 6∼ z3 6∼ u implies
that z3 ∼ v, where v is the third point on the line z1u. Since Y is convex, we have u ∈ Y
(since u is on a shortest path from z1 ∈ Y to z2 ∈ Y ) and v ∈ Y (since v is on a shortest
path from u ∈ Y and z3 ∈ Y ). This is however impossible as it would imply that the
points z1, v and u are on a common line. �

The following is a consequence of Lemma 7.17.

Corollary 7.18 The near octagon E2 has no convex subspaces of Type II that have di-
ameter 3.

We remarked above that every two points of E2 at distance 2 are contained in a unique
quad. Corollary 7.18 implies that not every two points of E2 at distance 3 are contained
in a unique convex subspace of diameter 3.

Lemma 7.19 The convex subspaces of diameter 3 through a given point y of E2 intersect
in the unique line of S through y.

Proof. Let x be the point of E2 such that y ∈ Lx. As the quads of E2 through x intersect
in the singleton {x}, the convex subspaces of diameter 3 (necessarily of Type I) through
y intersect in the line Lx. �

Lemma 7.19 and Proposition 3.7 immediately imply the following.

Corollary 7.20 Every automorphism of E2 stabilizes the line spread S, and so the full
automorphism group of E2 is isomorphic to Aut(E2)× C2

∼= M24 × C2.

The case of the near hexagon E1 related to the extended ternary Golay code is similar. If
x and y are two opposite points of E1, then we verified with GAP [10] that the smallest
convex set of points containing x and y coincides with the whole point set. So, there are
no sets of points of diameter 3 satisfying (P1) and (P2). This means that in the near
octagon E1 not every pair of points at distance 3 are contained in a convex subspace of
diameter 3. In the near octagon E1, there are also two types of quads, the quads of Type
I are duals of (3×3)-grids and the quads of Type II are (2×2)-grids. The quads of Type I
through a given point intersect in an element of the line spread. So, every automorphism
of E1 stabilizes the line spread, and so Aut(E1) ∼= Aut(E1)× C2

∼= 36 : 2 ·M12 × 2.

We can recycle an argument in the proof of Lemma 7.19 to show the following.

Proposition 7.21 Let S = (P ,L, I) be a near polygon of diameter at least 2 having the
property that every two points at distance 2 have a unique common neighbour. Then
Aut(S) = 〈Aut(S), σ〉 is isomorphic to Aut(S) × C2. In particular, this holds if S is a
generalized 2d-gon with d ≥ 3.
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Proof. Lemma 5.5 and the fact that every two points of S at distance 2 have a unique
common neighbour imply that S has no quads of Type II. Since the lines through a given
point x of S intersect in the singleton {x}, the quads (of Type I) through a given point
y of Lx = {(x,+), (x,−)} intersect in Lx. So, every automorphism of S stabilizes the
line spread S = {Lx |x ∈ P}, and the claim of the proposition follows once more from
Proposition 3.7. �
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Birkhäuser, 2016.

[6] B. De Bruyn. On polygonal triples. Preprint.

[7] A. Pasini. Diagram geometries. Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York, 1994.

[8] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Second edition. EMS
Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich,
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